单双物镜设计
- 格式:doc
- 大小:449.55 KB
- 文档页数:17
湖南工程学院课程设计课程名称光电设计课题名称双分离物镜设计专业班级学号姓名指导教师刘建2010年06月6日一.光学概述光学(optics)是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。
传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。
光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。
狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。
而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到X射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。
光学是物理学的一个重要组成部分,也是与其他应用技术紧密相关的学科。
系统设计及其仿真我们通常把光学分成几何光学、物理光学和量子光学。
几何光学是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。
它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。
物理光学是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。
它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。
波动光学的基础就是经典电动力学的麦克斯韦方程组。
波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。
波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。
量子光学是以辐射的量子理论研究光的产生、传输、检测及光与物质相互作用的学科。
1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。
Zemax光学设计:Petzval物镜的设计实例引言:Petzval物镜,它是由两个被空气分离的正透镜组构成。
1839年Joseph Petzval 设计了这个著名的“照相物镜”。
其前组是一个双胶合,后组是一个双分离,两者之间有一个光圈。
前组可以很好地校正球差,但会引入彗差。
彗差由后组校正,光阑位置校正了大部分像散。
然而,这会导致额外的场曲和晕影。
因此,FOV限制在30度以内。
f/3.6的f值是可以实现的,这比当时的其他镜头要快得多。
Petzval首次根据光学定律计算透镜的组成,而之前的光学系统则是根据经验进行磨制和抛光的。
为了计算,奥地利大公路易(炮兵司令)向匹兹瓦提供了8名炮兵和3名下士,因为火炮是进行数学计算的少数职业之一。
1.Seidel分析双片式物镜的局限性在于单组元件无法校正像散,这大大限制了它的视场角范围。
在光阑上的薄透镜组的像散为:即其总是不为零。
因此,只有一些透镜组不在光阑上,才能校正像散。
因此,两个分离的透镜组可以用于产生等量反向的像散。
这两个透镜组不一定是单透镜,也可以是消色差双片式或者更复杂的透镜组。
若我们假设光阑在第一个透镜组上,第二个透镜组和它相距一段距离,那么会有光阑平移效应。
只要第二个透镜组没有完全校正球差和彗差,那么平移第二个透镜组远离光阑一定距离,就可以产生足够的像散来校正第一个透镜组的像散。
我们可以得到任意的一个像散值S3,但是两个正透镜组都会对场曲产生贡献,即Petzval 物镜的 Petzval 和总是正值。
这意味着像面总是朝向镜头弯曲。
通常,我们想要零像散,则让总的S3为零,场曲会使子午和弧矢像重合于弯曲的像面上。
但是,还有其他选择,由弧矢像差,只要S3=-S4,我们就可以使弧矢像面为平面。
而且,若让S3=-S4/3,则就可以使子午像面为平面。
在设计 Petzval 镜头中有一个很好的准则,那就是让前组(A)的光焦度为K /2,后组(B)的光焦度为K,为保证总光焦度为K,让它们之间的距离为1/K。
光学课程设计——望远镜系统结构设计姓名:学号:班级:指导老师:一、设计题目:光学课程设计二、设计目的:运用应用光学知识,了解望远镜工作原理的基础上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计。
了解光学设计中的PW法基本原理。
三、设计原理:光学望远镜是最常用的助视光学仪器,常被组合在其它光学仪器中。
为了观察远处的物体,所用的光学仪器就是望远镜,望远镜的光学系统简称望远系统. 望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。
所以,望远镜是天文和地面观测中不可缺少的工具。
它是一种通过物镜和目镜使入射的平行光束仍保持平行射出的光学系统.其系统由物镜和目镜组成,当观察远处物体时,物镜的像方焦距和目镜的物方焦距重合,光学间距为零.在观察有限远的物体时,其光学间距是一个不为零的小数量,一般情况下,可以认为望远镜是由光学间距为零的物镜和目镜组成的无焦系统.常见望远镜按结构可简单分为伽利略望远镜,开普勒望远镜,和牛顿式望远镜。
常见的望远镜大多是开普勒结构,既目镜和物镜都是凸透镜(组),这种望远镜结构导致成像是倒立的,所以在中间还有正像系统。
物镜组(入瞳)目镜组视场光阑出瞳1'1ω2'2'ω3 'f物—f目'l z'3上图为开普勒式望远镜,折射式望远镜的一种。
物镜组也为凸透镜形式,但目镜组是凸透镜形式。
为了成正立的像,采用这种设计的某些折射式望远镜,特别是多数双筒望远镜在光路中增加了转像稜镜系统。
此外,几乎所有的折射式天文望远镜的光学系统为开普勒式。
伽利略望远镜是以会聚透镜作为物镜、发散透镜作为目镜的望远镜(会聚透镜的焦距要大于发散透镜的焦距),当远处的物体通远物镜(u>2f )在物镜后面成一个倒立缩小的实像,而这个象一个要让它成现在发散透镜(目镜)的后面即靠近眼睛这一边,当光线通过发散透镜时,人就能看到一个正立缩小的虚象。
《光学设计》PW 法求初始结构参数(双胶合物镜设计)姓名:李军 学号:12085212光学特性:已知焦距mm f 435=;通光孔径mm D 67= ; 入曈位置与物镜重合 0=z I展成玻璃板的总厚度mm d 175=。
(1)确定物镜形式:由于物镜相对孔径较小:1540.043567,==fD视场不大,物镜系统没有特殊要求,可以采用简单的双胶合物镜。
(2)求初始结构 1、求,,z h h J由设计条件,有:5.332672===D h ,由于瞳孔与物镜重合,所以0=zh注意:由于含有平板,平板会产生像差,所以要用物镜的像差来平衡平板的像差。
0770.04355.33,,===f h u 80.22)3tan(435tan ,.=-⨯-=⋅-=。
ωf y 756.180.220770.0,,,=⨯==y u n J2、计算玻璃的平板像差 ,两个平板:0524.0-3,0770.0=-==。
z u u ,6805.00770.00524.0-=-=u u z由已知条件:(n 为折射率,v 为阿贝常数)1.64,5163.1,175===νn d将上列数值带入初级相差公式得到:00233.00773.05163.115163.1175143232-=⨯-⨯-=--=n n d S I00158.0)6805.0(00233.0=-⨯-==uu S S zIII 00363.00770.05163.11.6415163.117512222-=⨯⨯-⨯-=--=u n n d S IS ν3、双胶合物镜像差双胶合物镜像差应该与平行平板像差等值反号,据此提出物镜像差。
(若不需平衡平板像差的话,取物镜像差都为0)(1)根据S I,求C 并规划成C 进行规化后:c h c h S IS 22∑==,所以000003234.0=C求规划后的C ,根据公式:00141.0435000003587.0,=⨯==Cf C(2)求P 、W : 由初级相差和数hp hp S I ∑==:得到0000695.05.3300233.0===h S P I 由公式:JW p h W J hp S Z I I -=-=∑∑,由于0=z h , 所以00090.0756.1)00158.0(=--=-=J S WII (3)求P ∞、W ∞:已知mm f 435=,,5.33=h000457.0)(00593.0,0770.032,====ϕϕϕh h fh h ,)(根据公式可以得到:152.0000457.00000695.0)(3===ϕh P P1518.000593.000090.0)(2===ϕh W W物体平面在无限远位置,无需再对规划后的物体位置进行规划:152.0==∞P P , 1518.0==∞W W4)求0P冕牌玻璃在前:1497.0)1.0(85.020=--=∞W P P4.查表,选玻璃对。
Zemax光学设计:双片式透镜的Seidel像差及校正双片式物镜适用于很多小口径(最大为f/4)和小视场角的情况。
双片物镜的两个元件可以胶合在一起,也可以用空气间隔分开。
在大多数情况下,两片透镜是胶合在一起的,因为这样公差更容易满足而且更牢固。
双片镜可以单独使用,也可以用作准直镜或者望远镜的物镜。
许多透镜系统都含有若干个双片镜。
对单个双片式物镜探讨得到的大部分结果,也适用于复杂系统中的双片镜。
1.双片式物镜的Seidel分析1.1色差2.由在光阑处的薄透镜的轴向色差的Seidel方程:若要使双片式物镜的轴向色差得以校正,需要满足的条件为:同时,两个透镜的光焦度的和等于总光焦度:联立上面两式可以求出:在常规的光学设计中,常用玻璃库中,折射率范围在1.5至1.8之间,V值范围在90至20之间例如,取V1=60,V2=36,代入上式可得:1.2像散与场曲的横向光线像差三阶像散与场曲的横向光线像差为:注意,δη`表示y分量(即y-z平面或子午面内的光线,),δξ`表示x分量(即x-z平面或弧矢面内的光线)。
又因为薄透镜在光阑上,当n=1.5时,则上式可以简化为:例如,一个双片式透镜,焦距f`=100mm,即光焦度K=0.01mm-1,孔径为f/5,透镜的数值孔径(在空气中)u`=n`sinU`约为0.1,半视场角为1°,那么像高η`=f`tam(1°)≈1.74mm。
因此,可以计算得到:在ZEMAX中模拟上述这个例子。
在MFE中可以使用操作数查看透镜的数值孔径(在空气中)u`=n`sinU`约为0.1,和像高η`:再查看SeidelCoefficient:1.3同时校正 Petzval 和与轴向色差同时校正镜头的所有像差是不可能的。
对于可见光波段的双片式透镜,这点更为明显。
双片式透镜可以改变的设计参数非常少,而且很多可以产生更好结果的玻璃不能用。
例如,两个贴在一起的双片式透镜的场曲为:其轴向色差为:这两个方程非常类似,若我们可以找到一对玻璃满足以下条件:就可以同时校正S4和C1。
光电技术学院——望远镜系统结构设计专业:电子科学与技术班级:光电子082班姓名:毅学号:2008031161指导老师:翔2010年5月28日目录第一章引言......................................................................................... . (3)第二章概述 (3)2.1 课程设计的目的及意义 (3)2.2 课程设计的容 (3)2.3 望远镜的介绍 (3)2.4 望远镜的分类 (4)第三章伽利略望镜工作原理及发展简史 (5)3.1 望远镜的工作原理 (5)3.2 望远镜发展简史 (5)第四章望远镜的主要特性分析 (6)4.1 望远镜的主要特性分析 (6)4.2 开普勒望远镜的参数计算 (8)第五章物镜和目镜的选择 (9)5.1 物镜的选择 (9)5.2 物镜实例 (10)5.3 目镜的选择 (12)5.4 目镜实例 (13)第六章测微准直望远镜 (15)6.1 测微准直望远镜概述 (15)6.2 测微准直望远镜计量特性 (15)第七章棱镜转向系统 (16)7.1 Porro棱镜结构及其点 (16)7.2 Roof棱镜结构及其特点 (16)7.3 折转形式望远镜系统分 (17)7.4 类似棱镜结构晶体分析 (17)第八章光学系统初始结构参数计算方法 (17)第九章光栅 (19)第十章心得体会 (19)第十一章参考文献 (20)第一章引言本课程的任务是在学习工程光学基础、光学测试技术等技术基础课程的基础上,进行光学仪器的设计,目的是让学生了解光学设计中主要的环节,掌握光学仪器设计、开发的基本方法,以便今后能从事光学仪器的设计、研发工作。
本课程主要研究光学仪器设计中的基本部分,如:光源、目镜、物镜、分化板等,以及光学仪器设计中考虑的基本问题,如:物象位置关系、系统放大倍数、系统分辨率、相差等。
课程涉光学基础、光学测试技术、误差理论及数据处理、精密仪器设计等多方面。
光学课程设计——望远镜系统结构设计班级:姓名:学号:指导老师:设计目的及要求:运用应用光学知识,在了解望远镜工作原理的基础的上,完成望远镜的外形尺寸、物镜组、目镜组及转像系统的简易或原理设计,光路设计,了解望远镜的基本光学性能参数及其计算,并根据设计计算出适当光学性能参数使望远镜达到最佳的工作状态。
了解光学设计中的PW法基本原理,光栅的作用及应用。
设计过程:望远镜外形尺寸的设计;开普勒式望远镜系统的结构,原理及其光路图:开普勒式望远镜,折射式望远镜的一种。
物镜组也为凸透镜形式,但目镜组是凸透镜形式。
这种望远镜成像是上下左右颠倒的,但视场可以设计的较大,最早由德国科学家开普勒(JohannesKepler)于1611年发明。
望远镜是一种用于观察远距离物体的目视光学仪器,能把远物很小的张角按一定倍率放大,使之在像空间具有较大的张角,使本来无法用肉眼看清或分辨的物体变清晰可辨。
开普勒式原理由两个凸透镜构成,由于两者之间有一个实像,可方便的安装分划板(安装在目镜焦平面处),并且性能优良,所以目前军用望远镜,小型天文望远镜等专业级的望远镜都采用此种结构。
但这种结构成像是倒立的,所以要在中间增加正像系统。
正像系统分为两类:棱镜正像系统和透镜正像系统。
我们常见的前后窄的典型双筒望远镜既采用了双直角棱镜正像系统。
这种系统的优点是在正像的同时将光轴两次折叠,从而大大减小了望远镜的体积和重量。
透镜正像系统采用一组复杂的透镜来将像倒转,成本较高。
开普勒式望远镜看到的是虚像, 物镜相当于一个投影仪,目镜相当于一个放大镜.上图为开普勒望远镜原理光路图。
从物体射来的平行光线,经物镜后,在焦点以外距焦点很近处成一倒立缩小实像a ′b ′。
目镜的前焦点和物镜的焦点是重合的,所以实像a ′b ′位于目镜和它的焦点之间距焦点很近的地方,目镜以a ′b ′为物形成放大的虚像ab 。
当我们对着目镜观察时,进入眼睛的光线就好像是从ab 射来的。
燕山大学
课程设计说明书题目:单双望远物镜的设计
学院(系):电气工程学院
年级专业: 10级仪表3班
学号: 1001030201
学生姓名:
指导教师:
教师职称:副教授
电气工程学院《课程设计》任务书
课程名称:光学仪器基础课程设计
说明:1、此表一式三份,系、学生各一份,报送院教务科一份。
2、学生那份任务书要求装订到课程设计报告前面。
电气工程学院教务科
燕山大学课程设计评审意见表
摘要
望远镜是一种利用凹透镜和凸透镜观测遥远物体的光学仪器。
利用通过透镜的光线折射或光线被凹镜反射使之进入小孔并会聚成像,再经过一个放大目镜而被看到。
又称“千里镜”。
望远镜的第一个作用是放大远处物体的张角,使人眼能看清角距更小的细节。
望远镜第二个作用是把物镜收集到的比瞳孔直径(最大8毫米)粗得多的光束,送入人眼,使观测者能看到原来看不到的暗弱物体。
随着科学技术的发展光学仪器已普遍应用在社会的各个领域。
我们知道,光学仪器的核心部分是光学系统。
然而一个高质量的成像光学系统是要好的光学设计来实现的,所以说,光学设计是实现各种光学仪器的基础。
光学设计要完成的工作包括光学系统设计和光学结构设计。
所谓光学设计就是根据系统所提出的使用要求,来决定满足各种使用要求的数据,即设计出光学系统的性能参数、外形尺寸、各光组的结构等。
大体可以分为两个阶段。
第一阶段根据仪器总体的要求,从仪器的总体出发,拟定出光学系统原理图,并初步计算系统的外形尺寸,以及系统中各部分要求的光学特性等。
第二阶段是根据初步计算结果,确定每个透镜组的具体结构参数,以保证满足系统光学特性和成像要求。
这一阶段的设计成为“相差设计”,一般简称光学设计。
评价一个光学系统的好坏,一方面要看它的性能和成像质量,另一方面要系统的复杂度。
一个系统设计的好坏应该是在满足使用要求的情况下,结构设计最简单的系统。
目录
第一章ZEMAX软件介绍
第二章缩放法的简介
第三章初始结构的参数及曲线
第四章优化后的光学系统参数及曲线
第五章学习心得
第六章参考文献
第一章ZEMAX软件介绍
ZEMAX是美国Focus Software Inc.所发展出的光学设计软件,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是套可以运算Seqential及
Non-Seqential的软件。
ZEMAX 是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、分析、公差以及报表整合在一起。
ZEMAX 不只是透镜设计软件而已,更是全功能的光学设计分析软件,具有直观、功能强大、灵活、快速、容易使用等优点,与其它软件不同的是 ZEMAX 的 CAD 转文件程序都是双向的,如IGES、STEP、SAT等格式都可转入及转出。
而且 ZEMAX可仿真Sequential 和Non-Sequential 的成像系统和非成像系统。
ZEMAX光学设计程序是一个完整的光学设计软件,是将实际光学系统的设计概念,优化,分析,公差以及报表集成在一起的一套综合性的光学设计仿真软件。
包括光学设计需要的所有功能,可以在实践中对所有光学系统进行设计,优化,分析,并具有容差能力,所有这些强大的功能都直观的呈现于用户界面中。
ZEMAX功能强大,速度快,灵活方便,是一个很好的综合性程序。
ZEMAX能够模拟连续和非连续成像系统及非成像系统。
ZEMAX 能够在光学系统设计中实现建模、分析和其他的辅助功能。
ZEMAX 的界面简单易用,只需稍加练习,就能够实现互动设计。
ZEMAX 中有很多功能能够通过选择对话框和下拉菜单来实现。
同时,也提供快捷键以便快速使用菜单命令。
手册中对使 ZEMAX 时的一些惯用方法进行了解释,对设计过程和各种功能进行了描述。
ZEMAX目前已经是被光电子领域熟知的光学设计的首选软件。
该软件拥有两大特点,就是可以实现序列和非序列分析。
在全球范围内,这款软件已经被广大的应用在设计显示系统,照明,成像的使用系统,激光系统以及漫射光的设计应用方面。
第二章 缩放法的简介
所谓缩放,即根据对光学系统的要求,找出性能参数比较接近的已有结构,将其各尺寸乘以缩放比K,,得到所求的系统结构,并估计像差的大小或变化趋势。
具体步骤如下:
(1)根据所设计的外部参数,由手册等资料选取比较接近的现有结构。
外部参数指D 、f ’、2w 等。
其中主要是f'不能相差太大,相差太大即失去了原有数据的参考价值。
(2)根据焦距计算缩放比K :
现有焦距
设计焦距f f
K
(3)将现有结构中的所有线量放大K 倍,角量和相对量不变。
(4)估计使用条件下的相差和瞳孔位置的变化,所选的结构被放大后,所有线量相差进而也随之放大,原有结构的使用条件不可能与现在的使用条件完全相同,但可以根据原来使用的孔径和视场及相差曲线的趋势,推算出新的使用条件下的相差值等。
(5)检查和调整间隔(中心厚或边缘厚),以满足工艺要求,必要时更换玻璃材料。
(6)上机计算。
首先检查焦距是否为预想值,若相差太远,可复查缩放过程或原始值。
再查其他值,或作像差矫正等。
第三章初始结构的参数及曲线查阅光学设计手册得到单双物镜的类似结构系统,参数如下:
缩放后结构系统,参数如下:
选定视场角:w=4,0.707w=2.828
原始数据如下
优化前的Layouts (外形图)
优化前的Ray Fan(光线曲线)
优化前的Optical Path Difference (OPD) Fans(光程差曲线)
优化前的MTF分析曲线
第四章优化后的光学系统参数及曲线
优化函数设置
设定默认优化函数:选择工具栏Editors→Merit Function→ Tools→Default Merit Function,在该选项框中选择RMS, Spot Radius, Centroid, 其它项默认即可,选择确定。
为避免焦距变化过大,将其确定为初始值,即设定有效焦距EFFL为100,权重为1。
优化后参数如下:
优化后的Layouts (外形图)
优化后的Ray Fan(光线曲线)
优化后的Optical Path Difference (OPD) Fans(光程差曲线)
优化后的Spot Diagrams (点列图)
通过观察图像及数据,除去个别数据,发现各项误差均有所减小,基本达到了优化要求。
第五章学习心得
光学设计课程结课已过去很长时间,重新学习起来稍有困难,在开始的前两天通过上网查阅关于课程设计的资料,初步掌握缩放法的基本步骤,ZEMAX是设计给光学系统的专业软件,仔细阅读老师给的资料以及向周围的同学的学习,慢慢地知道了设计的基本过程,光学系统看似简单,其实是一门学问很深的课程,优化的过程很是考验耐力,因为各种参数的变化,加上自己的知识又不充分,学习起来很是吃力。
总的来讲,这次课程设计使我懂得了ZENAX的一些基本知识以及设计光学系统的基本过程,加深了我对光学设计知识的理解,提高了动手操作能力。
第六章参考文献
1、刘钧,高明编著,《光学设计》,2006,西安电子科技大学出版社,西安
2、《光学仪器设计手册》,1971,国防科技出版社,北京
3、光学设计软件ZEMAX。