气体传感器2018-19资料_baidu
- 格式:pdf
- 大小:2.74 MB
- 文档页数:12
气体传感器基本知识传感器是对信息有感受的器件。
按照传感器感知的信息种类分类:传感器分为物理量(物理信息)传感器、化学量(化学信息)传感器、生物量(生物信息)传感器。
物理量传感器包括:力学量,光学量,热学量,电学量传感器。
即力、光、热、电。
力学量中常见:压力,加速度,位移;光学量中常见:可见光,红外,紫外。
热学量中常见:低温,中温,高温。
电学量中常见:电流,电压,电场,电磁等;化学量传感器:成份、浓度。
生物量传感器:血压、血糖、血脂、心率等。
按照传感过程中信息和传感器的作用过程的属性分类:传感器可以分为物理类、化学类、生物类气体传感器是测量气体成分和浓度的化学量传感器。
气体传感器按气体与传感器的作用方式分类:物理类,化学类、生物类。
物理类即传感作用过程是物理过程,即传感作用过程不导致气体化学性质发生变化。
化学类即传感作用过程是化学过程,即传感作用过程导致气体化学性质发生变化。
生物类即传感作用过程是生物过程,即传感作用过程通过生物活动导致气体化学性质发生变化。
常见的物理类气体传感器:热传导、红外吸收,表面声波,QCM 等;化学类:半导体,催化,电化学等;生物类在普通工业、家庭不太常用。
在常见的气体传感器PID严格讲是另类:为物理化学类。
即物理方法导致化学变化。
气体传感器门类众多,一下进介绍几种常见的不同工作原理的气体传感器半导体气体传感器:原理:在一定的温度条件下,被测气体到达半导体敏感材料表面时将与其表面吸附的氧发生化学反应,并导致半导体敏感材料电阻发生变化,其电阻变化率与被测气体浓度呈指数关系,通过测量电阻的变化即可测得气体浓度。
单支半导体气体传感器通过选择性催化、物理或化学分离等方式在已知环境中可以实现对气体的有限识别。
大规模半导体气体传感器阵列可以实现对未知环境中气体种类的精确识别。
半导体顾名思义是电导率介于绝缘体与导体之间的物质。
半导体气体传感器的敏感材料就这么一种物质。
常见的气体敏感材料分为表面控制型和体控制型。
摘要随着国民经济的发展,及时、准确地对易燃、易爆、有毒气体进行监测、预报和自动控制已成为煤炭、石油、化工、电力等部门亟待解决的问题。
近年来,全国燃气行业发展迅猛,液化气、天然气、煤制气等城市燃气作为清洁能源已在工商业和城镇居民用户中得到广泛应用,特别是随着“西气东输”工程的快速进展,燃气行业发展潜力巨大。
城市燃气的普及与应用无疑对改善城市的环境质量和提高居民的生活质量发挥了巨大的作用。
但是随着燃气的广泛应用,由于燃气泄漏所引发的爆炸、中毒和火灾事故也时有发生,这在某种程度上增加了城市的不安全和不稳定因素。
为了使燃气更好地造福于民,造福于社会,减少并杜绝各种因燃气泄漏而引发的爆炸及火灾事故,各燃气使用单位及居民用户选择一种适合的煤气报警器实为必要之举。
本次课程设计的题目是室内环境测量方案,我们小组设计的是室内煤气和天然气泄漏报警装置,煤气泄漏报警装置是用于当煤气泄漏达到一定危害浓度时就立即发出报警,并自动关闭。
目录第1章绪论 (1)1.1该课题研究的背景和意义 (1)1.1.1课题研究的背景 (1)1.1.2课题研究的意义 (2)1.2本课题的主要研究内容、要求与拟解决主要问题 (2)1.3国内外研究情况及其发展 (2)1.3.1可燃性气体泄漏报警器种类与结构 (2)1.3.2国内外情况及其发展趋势 (2)第2章系统设计 (4)2.1设计思路 (4)2.2 气敏传感器工作原理 (4)2.3 系统模块设计 (6)2.3.1 气体浓度检测模块 (6)2.3.2主控制模块 (6)2.3.2 声光报警模块 (7)第3章硬件电路设计 (9)3.1 电源电路 (9)3.2 气体检测电路 (9)3.3 单片机模块的设计 (10)3.4 声光报警和排气装置电路 (11)3.5电子开关电路 (12)3.6单元模块的联接 (13)第4章程序设计 (14)4.1 主函数程序设计 (14)第5章结论 (18)致谢 (19)参考文献 (20)第1章绪论1.1该课题研究的背景和意义1.1.1课题研究的背景人的生存离不开空气,人的一生大约有80%的时间是在室内度过的,室内环境质量的好坏影响着人们的身心健康。
气体传感器的介绍与应用1964年,由Wickens和Hatman利用气体在电极上的氧化还原反应研制出了第一个气敏传感器,1982年英国Warwick大学的Persaud等提出了利用气敏传感器模拟动物嗅觉系统的结构[1],自此后气体传感器飞速发展,应用于各种场合,比如气体泄漏检测,环境检测等。
现在各国研究主要针对的是有毒性气体和可燃烧性气体,研究的主要方向是如何提高传感器的敏感度和工作性能、恶劣环境中的工作时间以及降低成本和智能化等。
下面简单介绍各种常用的气体传感器的工作原理和一些常用气体传感器的最新的研究进展。
气体传感器主要有半导体传感器(电阻型和非电阻型)、绝缘体传感器(接触燃烧式和电容式)、电化学式(恒电位电解式、伽伐尼电池式),还有红外吸收型、石英振荡型、光纤型、热传导型、声表面波型、气体色谱法等。
电阻式半导体气敏元件是根据半导体接触到气体时其阻值的改变来检测气体的浓度;非电阻式半导体气敏元件则是根据气体的吸附和反应使其某些特性发生变化对气体进行直接或间接的检测。
接触燃烧式气体传感器是基于强催化剂使气体在其表面燃烧时产生热量,使传感器温度上升,这种温度变化可使贵金属电极电导随之变化的原理而设计的。
另外与半导体传感器不同的是,它几乎不受周围环境湿度的影响。
电容式气体传感器则是根据敏感材料吸附气体后其介电常数发生改变导致电容变化的原理而设计。
电化学式气体传感器,主要利用两个电极之间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。
电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。
有液体电解质和固体电解质,而液体电解质又分为电位型和电流型。
电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。
红外吸收型传感器,当红外光通过待测气体时,这些气体分子对特定波长的红外光有吸收,其吸收关系服从朗伯—比尔(Lambert-Beer)吸收定律,通过光强的变化测出气体的浓度。
气体传感器简介课件 (一)气体传感器简介课件是一种介绍气体传感器相关知识的课程资料。
它主要包括气体传感器的工作原理、分类、应用领域等内容。
本文将从以下几个方面进行介绍。
一、气体传感器的工作原理气体传感器是一种用于检测气体浓度的设备。
它的基本工作原理是通过一些特定的化学反应或物理效应与气体发生作用,使气体分子发生变化,从而产生一些可测量的电信号。
目前,常见的气体传感器主要有化学传感器、红外传感器、热导传感器、声波传感器等几种。
其中,化学传感器的工作原理是通过氧化还原反应来检测气体,如一氧化碳传感器。
红外传感器则是利用气体分子的吸收特性来检测气体,如二氧化碳传感器。
热导传感器则是通过测量气体导热系数的变化来检测气体,如乙烯传感器。
而声波传感器则是通过设置一定的声场来检测气体,如甲烷传感器。
二、气体传感器的分类根据所检测的气体种类和浓度范围的不同,气体传感器可以分为多个种类。
主要有一氧化碳传感器、二氧化碳传感器、甲烷传感器、乙烯传感器等。
同时,还有室内空气质量传感器和汽车尾气排放检测传感器等。
在应用领域上,气体传感器也有不同的分类。
它们可以被用于矿井、化工、石油、医学等不同领域的气体检测。
特别是在工业过程控制领域,气体传感器几乎已经成为了不可或缺的一部分。
三、气体传感器的应用领域气体传感器的应用领域非常广泛。
在生活领域,氧气传感器常被用于医疗设备中的氧气供应控制,也可作为煤气灶的煤气泄漏探测器。
同时,汽车尾气排放检测中也需要用到气体传感器。
而在工业制造过程中,气体传感器也具有非常重要的作用。
它们被广泛应用于石化、钢铁、电子、车间、环保、垃圾处理和精细化工等各种工业领域,如氨气传感器被广泛应用于肥料制备和生物工程领域,一氧化碳传感器被应用于钢铁、化工等行业的安全防范控制中。
总之,气体传感器是一种应用非常广泛的传感器。
它们不仅可以在医疗、环保、交通等领域中发挥作用,也可以在工业生产中发挥重要的作用,保障工人和公众的安全。