第9章 新型光电传感器
- 格式:ppt
- 大小:2.02 MB
- 文档页数:46
光电传感器实验报告(文档4篇)以下是网友分享的关于光电传感器实验报告的资料4篇,希望对您有所帮助,就爱阅读感谢您的支持。
光电传感器实验报告第一篇实验报告2――光电传感器测距功能测试1.实验目的:了解光电传感器测距的特性曲线;掌握LEGO基本模型的搭建;熟练掌握ROBOLAB软件;2.实验要求:能够用LEGO积木搭建小车模式,并在车头安置光电传感器。
能在光电传感器紧贴红板,以垂直红板的方向作匀速直线倒车运动过程中进行光强值采集,绘制出时间-光强曲线,然后推导出位移-光强曲线及方程。
3.程序设计:编写程序流程图并写出程序,如下所示:ROBOLAB程序设计:4.实验步骤:1) 搭建小车模型,参考附录步骤或自行设计(创新可加分)。
2) 用ROBOLAB编写上述程序。
3) 将小车与电脑用USB数据线连接,并打开NXT的电源。
点击ROBOLAB 的RUN按钮,传送程序。
4) 取一红颜色的纸板(或其他红板)竖直摆放,并在桌面平面与纸板垂直方向放置直尺,用于记录小车行走的位移。
5) 将小车的光电传感器紧贴红板放置,用电脑或NXT的红色按钮启动小车,进行光强信号的采样。
从直尺上读取小车的位移。
6) 待小车发出音乐后,点击ROBOLAB的数据采集按钮,进行数据采集,将数据放入红色容器。
共进行四次数据采集。
7) 点击ROBOLAB的计算按钮,分别对四次采集的数据进行同时显示、平均线及拟和线处理。
8) 利用数据处理结果及图表,得出时间同光强的对应关系。
再利用小车位移同时间的关系(近似为匀速直线运动),推导出小车位移同光强的关系表达式。
5.调试与分析a) 采样次数设为24,采样间隔为0.05s,共运行1.2s。
采得数据如下所示。
b) 在ROBOLAB的数据计算工具中得到平均后的光电传感器特性曲线,如图所示:c) 对上述平均值曲线进行线性拟合,得到的光强与时间的线性拟合函数:d) 取四次实验小车位移的平均值,根据时间与光强的拟合函数求取距离与光强的拟合函数:由上图可得光强与时间的关系为:y=-25.261858×t+56.524457 ; 量取位移为4.5cm,用时1.2s,得:x=3.75×t ;光强与位移的关系为:y= -6.73649547×x+56.524457 ;e) 通过观测上图及导出的光强位移函数可知,光电传感器在短距离里内对位移信号有着良好的线性关系,可以利用光强值进行位移控制。
认识和应用光电传感器公开课教案教学设计一、教学目标1. 让学生了解光电传感器的基本概念和工作原理。
2. 使学生掌握光电传感器的应用方法和技巧。
3. 培养学生的动手实践能力和团队协作精神。
二、教学内容1. 光电传感器的基本概念介绍光电传感器的定义、分类和特点。
2. 光电传感器的工作原理讲解光电传感器的工作原理,包括光敏元件、光电器件等。
3. 光电传感器的应用方法介绍光电传感器的应用领域,如自动控制、光电开关等,并演示实际应用案例。
4. 光电传感器的调试与维护讲解光电传感器的调试方法,如参数设置、故障排查等,以及日常维护注意事项。
5. 动手实践:制作光电传感器应用电路分组进行动手实践,引导学生根据实际需求设计并制作光电传感器应用电路。
三、教学过程1. 导入:通过展示光电传感器的实际应用场景,引发学生兴趣,导入新课。
2. 理论讲解:讲解光电传感器的基本概念、工作原理和应用方法。
3. 案例分析:分析光电传感器在实际应用中的典型案例,让学生更好地理解理论知识。
4. 动手实践:分组进行光电传感器应用电路的制作,培养学生的动手能力和团队协作精神。
5. 总结与拓展:总结本节课的主要内容,提出课后思考题,拓展学生的知识面。
四、教学评价1. 课堂讲解评价:评估学生对光电传感器的基本概念、工作原理和应用方法的掌握程度。
2. 动手实践评价:评估学生在动手实践环节的制作效果,包括电路设计、元件焊接等。
3. 课后作业评价:评估学生对课堂内容的复习和拓展情况。
五、教学资源1. 教材:光电传感器相关教材或教学资源。
2. 实验器材:光电传感器、电路元件、实验板等。
3. 辅助工具:示波器、Multimeter 等调试工具。
4. 教学课件:制作光电传感器相关课件,辅助讲解和展示。
六、教学方法1. 讲授法:通过讲解光电传感器的基本概念、工作原理和应用方法,使学生掌握相关知识。
2. 案例分析法:通过分析实际应用案例,让学生更好地理解光电传感器的工作原理和应用。
部分习题参考答案第9章新型光电传感器9.1 象限探测器与PSD光电位置传感器有什么异同?各有哪些特点?9.2 叙述SSPD自扫描光电二极管阵列工作原理及主要参数特征。
9.3 CCD电荷耦合器主要由哪两个部分组成?试描述CCD输出信号的特点。
9.4 试述CCD的光敏元和读出移位寄存器工作原理。
9.5 用CCD做几何尺寸测量时应该如何由像元数确定测量精度。
9.6 CCD信号二值化处理电路主要有哪种电路形式,可起到什么作用?9.7说明光纤传感器的结构和特点,试述光纤的传光原理。
9.8 当光纤的折射率N1=1.46,N2=1.45时,如光纤外部介质N0=1,求最大入射角θc的值。
9.9 什么是光纤的数值孔径?物理意义是什么?NA取值大小有什么作用?有一光纤,其纤芯折射率为1.56,包层折射率为1.24,求数值孔径为多少?9.10光纤传感器有哪两大类型?它们之间有何区别?9.11 图9-36为Y结构型光纤位移测量原理图,光源的光经光纤的一个分支入射,经物体反射后光纤的另一分支将信号输出到光探测器上。
光探测器的输出信号与被测距离有什么样关系,试说明其调制原理,画出位移相对输出光强的特性曲线。
9.12光纤可以通过哪些光的调制技术进行非电量的检测,说明原理。
9.13埋入式光纤传感器有哪些用途,举例说明可以解决哪些工程问题。
答案9.1答:1)象限探测器它是利用光刻技术,将一个整块的圆形或方形光敏器件敏感面分隔成若干个面积相等、形状相同、位置对称的区域,这就构成了象限探测器。
PSD光电位置传感器是一种对入射到光敏面上的光点位置敏感的光电器件。
两种器件工作机理不同,但其输出信号与光点在光敏面上的位置有关。
光电位置传感器被广泛应用于激光束对准、平面度检测、二维坐标检测以及位移和振动测量系统。
2)象限探测器有几个明显缺点:它需要分割从而产生死区,尤其当光斑很小时,死区的影响更明显。
若被测光斑全部落入某个象限时,输出的电信号无法表示光斑位置,因此它的测量范围、控制范围都不大,测量精度与光强变化及漂移密切相关,因此它的分辨率和精度受到限制。
光电传感器的发展及其应用导言光电传感器是一类能够将光信号转化为电信号的设备,它具有高灵敏度、快速响应、低功耗等特点,广泛应用于工业自动化、生物医药、环境监测等领域。
本文将全面、详细、完整且深入地探讨光电传感器的发展历程及其在各个领域的应用。
光电传感器的发展历程光电传感器的起源光电传感器的起源可以追溯到19世纪末,当时科学家们发现某些物质在受到光照时会产生电流。
这一现象被称为光电效应,奠定了光电传感器的理论基础。
光电传感器的发展阶段1.第一代光电传感器:光电管20世纪初,人们发现某些物质对光的敏感性很高,可以将光信号转化为电信号。
光电管就是利用光电效应原理制成的光电转换器件,它具有简单、可靠的特点,被广泛用于光电报警、光电隔离等领域。
2.第二代光电传感器:光敏电阻20世纪50年代,人们发现某些半导体材料在受到光照时电阻发生变化。
光敏电阻是利用光敏材料的电阻特性制成的光电转换器件,它具有体积小、响应速度快的特点,被广泛用于光电测距、光电计数等领域。
3.第三代光电传感器:光电二极管20世纪60年代,人们发现某些半导体材料在受到光照时产生电压。
光电二极管是利用光电效应和PN结的原理制成的光电转换器件,它具有快速响应、高灵敏度的特点,被广泛用于光电开关、光电控制等领域。
4.第四代光电传感器:光电三极管20世纪70年代,人们发现在光电二极管的基础上添加一个感光区,可以进一步提高灵敏度。
光电三极管是利用光电效应和双极晶体管的原理制成的光电转换器件,它具有更高的灵敏度和更低的噪声,被广泛用于光电测量、光电传输等领域。
5.第五代光电传感器:光电二极管阵列20世纪80年代,人们发现将多个光电二极管排列在一起可以形成光电二极管阵列,提高光电转换的效率和精度。
光电二极管阵列被广泛用于图像传感、光谱分析等领域。
6.第六代光电传感器:光电三极管阵列20世纪90年代,人们发现在光电二极管阵列基础上添加一个感光区,可以进一步提高灵敏度。
光电式传感器1.概述2.物理特性2.1外光电效应2.1.1光子假设2.2 内光电效应2.2.1光电导效应2.2.2光电转换元件3.光电式传感器3.1工作原理3.2光电传感器分类4.光电传感器应用4.1光电传感器优点4.1.1光电式带材跑偏检测器4.1.2包装充填物高度检测4.1.3光电色质检测4.1.4烟尘浊度监测仪4.1.5其他方面的应用5.光纤传感器5.1基本工作原理5.2光纤的种类与特性5.3光纤传感器的应用6.常用光电传感器及生产厂家和参数光电式传感器1.概述光电传感器是采用光电元件作为检测元件的传感器。
它首先把被测量的变化转换成光信号的变化,然后借助光电元件进一步将光信号转换成电信号。
光电传感器一般由光源、光学通路和光电元件三部分组成。
光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。
光电传感器是各种光电检测系统中实现光电转换的关键元件,它是把光信号(红外、可见及紫外光辐射)转变成为电信号的器件。
光电式传感器是以光电器件作为转换元件的传感器。
它可用于检测直接引起光量变化的非电量,如光强、光照度、辐射测温、气体成分分析等;也可用来检测能转换成光量变化的其他非电量,如零件直径、表面粗糙度、应变、位移、振动、速度、加速度,以及物体的形状、工作状态的识别等。
光电式传感器具有非接触、响应快、性能可靠等特点,因此在工业自动化装置和机器人中获得广泛应用。
近年来,新的光电器件不断涌现,特别是CCD图像传感器的诞生,为光电传感器的进一步应用开创了新的一页。
2.物理特性2.1外光电效应2.1.1光子假设1887年,赫兹发现光电效应,爱因斯坦第一个成功解释光电效应。
爱因斯坦根据普朗克量子假说而进一步提出的光量子,即光子概念,对光电效应研究做出了决定性的贡献。
爱因斯坦光子假说的核心思想是:表面上看起来连续的光波是量子化的。
第9章光电式传感器一、单项选择题1、下列光电式传感器中属于有源光敏传感器的是()。
A. 光电效应传感器B. 红外热释电探测器C. 固体图像传感器D. 光纤传感器2、下列光电器件是根据外光电效应做出的是()。
A. 光电管B. 光电池C. 光敏电阻D. 光敏二极管3、当光电管的阳极和阴极之间所加电压一定时,光通量与光电流之间的关系称为光电管的()。
A. 伏安特性B. 光照特性C. 光谱特性D. 频率特性4、下列光电器件是基于光导效应的是()。
A. 光电管B. 光电池C. 光敏电阻D. 光敏二极管5、光敏电阻的相对灵敏度与入射波长的关系称为()。
A. 伏安特性B. 光照特性C. 光谱特性D. 频率特性6、下列关于光敏二极管和光敏三极管的对比不正确的是()。
A. 光敏二极管的光电流很小,光敏三极管的光电流则较大B. 光敏二极管与光敏三极管的暗点流相差不大C. 工作频率较高时,应选用光敏二极管;工作频率较低时,应选用光敏三极管D. 光敏二极管的线性特性较差,而光敏三极管有很好的线性特性7、光电式传感器是利用()把光信号转换成电信号。
A. 被测量B. 光电效应C. 光电管D. 光电器件8、光敏电阻的特性是()A.有光照时亮电阻很大 B.无光照时暗电阻很小C.无光照时暗电流很大 D.受一定波长范围的光照时亮电流很大9、基于光生伏特效应工作的光电器件是()A.光电管 B.光敏电阻C.光电池 D.光电倍增管10、CCD以()为信号A. 电压B.电流C.电荷 D.电压或者电流11、构成CCD的基本单元是()A. P型硅B.PN结C. 光电二极管D.MOS电容器12、基于全反射被破坏而导致光纤特性改变的原理,可以做成()传感器,用于探测位移、压力、温度等变化。
A.位移B.压力C.温度D.光电13、光纤传感器一般由三部分组成,除光纤之外,还必须有光源和( )两个重要部件。
A.反射镜B.透镜C.光栅D.光探测器14、按照调制方式分类,光调制可以分为强度调制、相位调制、频率调制、波长调制以及( )等,所有这些调制过程都可以归结为将一个携带信息的信号叠加到载波光波上。
新型传感器的原理和应用传感器是一种能够将物理量或化学反应等转换为数字信号的电子设备,而新型传感器则指的是在传统传感器的基础上,加入了新的元器件或采用了更先进的原理进行设计的传感器。
新型传感器具有更高的精度、更广的适用范围及更好的可靠性,因此在当前的信息时代中被广泛应用于各种领域中。
一、新型传感器的原理1、光电传感器光电传感器是利用光电器件将光信号转换为电信号的传感器。
例如,常见的反光式传感器是利用发射器发出的光束被反射回来后被接收器接收的原理,作为触发电平来控制设备的运行。
2、声波传感器声波传感器是采用超声波、声纳等原理来测量物体的位置、形状等参数的传感器。
例如,超声波定位装置利用了超声波发射器和接收器之间的反射原理,通过计算返回的时间和距离来确定物体的位置。
3、生物传感器生物传感器是基于生物学原理、技术和材料,在微观尺度下建立的一种新型传感器。
例如,基于DNA的生物传感器就是通过在电极表面固定DNA分子,利用DNA分子与目标分子的特异性识别性,达到检测目标分子的目的。
二、新型传感器的应用1、智能家居智能家居可以通过无线网络连接智能传感器,从而实现温度、湿度、烟雾、气体、光照等参数的实时监测和远程控制。
例如,利用温湿度传感器可以实现室内温度的调节,通过烟雾传感器可以及时检测火灾情况。
2、工业制造传感器技术在工业制造领域的应用十分广泛,实现了整个生产链的自动化和数字化。
例如,采用压力传感器,可以实时检测液压系统的压力变化,从而确保工程机械的运行安全。
3、医疗健康新型传感器的应用在医疗健康领域也具有巨大潜力。
例如,通过生物传感器可以检测人体内的生理指标,如血液中的葡萄糖、脂肪等,从而帮助人们实现远程监测和健康管理。
4、无人驾驶随着人工智能的发展和传感器技术的不断更新,无人驾驶技术已取得了长足进步。
例如,利用激光雷达和摄像头等传感器,可以在车辆运行时检测周围环境,进而实现自主驾驶的功能。
总之,新型传感器具有越来越广泛的应用领域,未来将会有更多类别、更先进的传感器技术不断涌现,为人类的生活带来更多的便利和安全。
第9章电控悬架系统9.1 概述车辆行驶在复杂的环境里,即路况(路面不平度等级)、车速以及工况(加速、制动、转向、直线行驶)经常要发生变化。
例如汽车在急速起步或急速加速时会产生“加速后仰”现象,汽车高速行驶紧急制动时会产生“制动点头”现象;汽车在急转弯行驶时会产生“转向侧倾”现象。
上述情况会对汽车的行驶平顺性和操纵稳定性产生不利的影响。
被动悬架由于其结构特点,很难保证汽车的乘坐舒适性和操纵稳定性同时达到最佳。
因此,为解决这一问题产生了根据工况要求保证汽车的性能达到最佳的电控悬架。
电控悬架采用传感器技术、控制技术和机电液一体化技术对汽车的行驶工况进行监测。
由控制计算机根据一定的控制逻辑产生控制指令控制执行元件产生动作,保证汽车具有良好的行驶性能.9.1.1 电控悬架的功能1 调节车身高度。
汽车载荷变化时,电控悬架系统能自动维持车身高度不变,汽车即使在凸凹不平道路上行驶也可保持车身平稳。
2 提高车辆的行驶平顺性和操纵稳定性,抑制车辆姿态的变化(后仰、点头、侧倾) 。
当汽车急速起步或加速行驶时,由于惯性力及驱动力的作用,会使车尾下蹲产生"后仰"现象。
电控悬架能够及时地改变悬架的俯仰角刚度,抑制后仰的发生。
当汽车在高速行驶中紧急制动时,由于惯性力和轮胎与地面摩擦力的作用,会使车头下沉产生制动点头现象。
电控悬架能使汽车在这种工况下车头的下沉量得到抑制。
当汽车急转弯时,由于离心力的作用汽车车身向一侧倾斜,转弯结束后离心力消失。
汽车在这样的工况下会产生汽车车身的横向晃动.电控悬架在这种工况下能够减少车身倾斜的程度、抑制车身横向摇动的产生。
因此,电控悬架在一定程度上能使悬架适应负荷状况、路面不平度和操纵情况的变化.3 提高车轮与地面的附着力,改善汽车制动性能和提高汽车抵抗侧滑能力。
普通汽车在制动时车头向下俯冲,由于前、后轴载荷发生变化,使后轮与地面的附着条件恶化,延长了制动过程。
电控悬架系统可以在制动时使车尾下沉,充分利用车轮与地面的附着条件,加速制动过程,缩短制动距离。
第1章 传感器基础知识1 什么是传感器?按照国标定义,“传感器”应该如何说明含义?答:从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。
我们对传感器定义是:一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。
从狭义角度对传感器定义是:能把外界非电信息转换成电信号输出的器件。
我国国家标准对传感器的定义是:“能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置”。
定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。
按使用的场合不同传感器又称为变换器、换能器、探测器。
2 传感器由哪几部分组成?试述它们的作用及相互关系。
答:组成——由敏感元件、转换元件、基本电路组成;①敏感元件:指传感器中直接感受被测量的部分。
②传感器:能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。
③信号调理器:对于输入和输出信号进行转换的 装置。
④变送器:能输出标准信号的传感器关系,作用——传感器处于研究对象与测试系统的接口位置,即检测与控制之首。
传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。
第二章:传感器特性 何谓传感器的静态特性,传感器的主要静态特性有哪些? 静态特性是指检测系统的输入为不随时间变化的恒定信号时,系统的输出与输入之间的关系。
主要包括线性度、灵敏度、迟滞、重复性、漂移等。
(1) 线性度指传感器输出量与输入量之间的实际关系曲线偏离拟合直线的程度。
(2) 灵敏度灵敏度是传感器静态特性的一个重要指标。
其定义为输出量的增量Δy 与引起该增量的相应输入量增量Δx 之比。
它表示单位输入量的变化所引起传感器输出量的变化,显然,灵敏度S 值越大,表示传感器越灵敏.(3) 迟滞传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象称为迟滞。
传感器基础教材总序我们所处的时代被称为信息时代信息科学与技术的迅速发展和广泛应用深深地改变着人类生产生活的各个方面人类社会生产力发展和人们生活质量的提高越来越得益于和依赖于信息科学与技术的发展自动化科学与技术涉及到信息的检测分析处理控制和应用等各个方面是信息科学与技术领域的重要组成部分在我国经济建设的进程中工业化是不可逾越的发展阶段面对全面建设小康社会的发展目标党和国家提出走新型工业化道路的战略决策这是一条我国当代工业化进程的必由之路实现新型工业化就是要坚持走科技含量高经济效益好资源消耗低环境污染少人力资源优势得到充分发挥的可持续发展的科学发展之路在这个过程中自动化科学与技术起着不可替代的重要作用高等学校的自动化学科肩负着人才培养和科学研究的光荣的历史使命我国高等教育中工科在校大学生数占在校大学生总数的 35~40 其中自动化类的学生是工科各专业中学生人数最多的专业之一在我国高等教育已走进大众化阶段的今天人才培养模式多样化已成为必然的趋势其中应用型人才是我国经济建设和社会发展需求最多的一大类人才为了促进自动化领域应用型人才培养发挥院校之间相互合作的优势北京大学出版社组织了此套《21 世纪全国高等院校自动化系列实用规划教材》参加这一系列教材编写的基本上都是来自地方工科院校自动化学科的专家学者由此确定了教材的使用范围也为实用教材的定位找到了落脚点本系列教材具有如下特点1 注重实用性地方工科院校的人才培养规格大多定位在高级应用型对这一大类人才的培养要注重面向工程实践培养学生理论联系实际解决实际问题的能力从这一教学原则出发本系列教材注重实用性注意引用工程中的实例培养学生的工程意识和工程应用能力因此将更适合地方工科院校的教学要求2 体现新颖性更新教材内容跟进时代加入一些新的先进实用的知识同时淘汰一些陈旧过时的内容3 院校间合作交流的成果每一本教材都有几所院校的教师参加编写北大出版社事先在西安市和长春市召开了编写计划会和审纲会来自各院校的教师比较充分地交流了情况在相互借鉴取长补短的基础上形成了编写大纲确定了编写原则因此这一系列教材可以反映出各参编院校一些好的经验和做法4 这一系列教材几乎涵盖了自动化类专业从技术基础课到专业课的各门课程到目前为止列入计划的已有 30 多门教材门数多参与的院校多参加编写人员多前言现代化生产与自动控制系统是以计算机为核心以传感器为基础组成的传感器是实现自动检测和自动控制的首要环节没有好的传感器就没有精确可靠的自动检测和控制系统近年来随着科学技术的发展各种类型的传感器已广泛应用到工业生产与控制的各个领域中要及时准确地获取各种信息解决工程生产及科研中遇到的各种具体的检测问题就必须了解和熟悉传感器同时也要学会合理选择和应用各种传感器及传感技术本书是自动化系列教材之一书中内容丰富全面原理描述由浅入深浅显易懂应用实例广泛实用全书以传统的典型传感器为主同时增加了新型的传感器主要介绍传感器的原理结构特点测量电路以及传感器在工业生产日常生活中的实际应用本书共分 12 章包括三个单元第一单元介绍传感器的基础知识第二单元介绍各种传感器的原理结构及应用第三单元介绍传感器的补偿和抗干扰技术书中每章内容具有独立性使用本教材时可根据不同专业的要求和特点有选择性地进行教学本书由北华大学赵玉刚长春工业大学邱东任主编长春大学曹昕燕武汉理工大学徐沪萍长春工业大学崔利娜任副主编赵玉刚编写第 4 章第 5 章和第 10 章邱东编写第 1 章第 2 章和第 11 章曹昕燕编写第 6 章和第 7 章徐沪萍编写第 3 章和第 9 章崔利娜编写第 8 章和第 12 章该书在编写过程中得到了许多同行的支持和帮助他们提出了许多宝贵意见同时也得到了北京大学出版社第六事业部和中国林业出版社编辑的指导和支持对他们的悉心指导和帮助表示真挚的谢意对本书参考文献中的有关作者致以衷心的感谢由于编者水平有限书中错误和不妥之处在所难免恳请广大读者批评指正提出宝贵意见编者2006 年 6 月目录第 1 章传感器理论基础 1 思考题与习题 6111 传感器基础 1 第 3 章电感式传感器 63com 传感器的概念 131 自感式传感器 63com 传感器的组成和分类 2com 工作原理 63com 传感器的基本特性 4com 电感计算及输出特性分析 65com 传感器的命名代号和图形com 测量电路 67符号 1032 差动变压器式传感器 70com 传感器的发展趋势 12 com 工作原理及特性 7012 检测技术理论基础 15com 测量电路 73com 检测技术 15com 零点残余电压及消除方法 74com 测量方法 1533 电涡流式传感器 76com 检测系统 17com 工作原理 76com 测量误差及数据处理 19 com 测量电路 79本章小结 3034 电感式传感器的应用 81思考题与习题 30com 自感式传感器的应用 81第 2 章电阻式传感器 32 com 差动变压器式传感器的应用 83com 电涡流式传感器的应用 8521 电位器式电阻传感器 32本章小结 87com 工作原理 32思考题与习题 88com 结构与材料 3722 应变式电阻传感器 39 第 4 章电容式传感器 89com 应变效应和工作原理 3941 工作原理和结构类型 89com 电阻应变片的种类材料com 工作原理 89及粘贴 41com 结构类型 89com 电阻应变片的主要特性 4442 转换电路 93com 电阻应变片的温度误差com 等效电路 93及补偿 47com 测量电路 93com 测量电路 4943 电容式传感器的主要性能特点 9823 压阻式传感器 53com 主要性能 98com 工作原理 53com 特点 100com 影响压阻系数的因素 54 44 电容式传感器的应用 100com 压阻式传感器的材料 55 com 电容式压力传感器 10024 电阻式传感器的应用 57com 电容式加速度传感器 102本章小结 61·VI · 传感器基础com 电容式测厚传感器103 com CCD 图像传感器 134com 电容式液位传感器103 com 图像传感器的应用 137com 电容式温度传感器104 本章小结 138本章小结 105 思考题与习题 138思考题与习题 105第 7 章光纤传感器 140第 5 章压电式传感器10771 光导纤维 14051 工作原理 107 com 光纤的结构 140com 压电效应及压电材料107 com 光纤的分类 140com 压电式传感器111 com 光纤的传光原理 14152 等效电路和测量电路112 72光纤传感器概述 143com 等效电路 112 com 光纤传感器的组成 143com 测量电路 113 com 光纤传感器的性能特点 14353 压电式传感器的应用115 com 光纤传感器的分类 143com 压电式测力传感器115 com 光纤传感器的工作原理 144com 压电式加速度传感器115 73 光纤传感器的应用 146com 压电式报警器116 com 光纤加速度传感器 146com 压电式测量均匀压力com 光纤速度传感器 146传感器 117 com 光纤压力传感器 147本章小结 117 com 光纤温度传感器 148思考题与习题 118 com 光纤声传感器148com 光纤光电传感器 149第 6 章光电式传感器119com 光纤图像传感器 15061 光电效应 119 本章小结 150com 外光电效应 119 思考题与习题150com 内光电效应119第 8 章热电式传感器 15162 外光电效应器件 121com 光电管 121 81 热电偶温度传感器151com 光电倍增管 122 com工作原理 151com 外光电效应器件的应用123 com 基本定律 15463 光电导器件 125 com 热电偶的材料结构及常用com 光敏电阻 125 热电偶 155com 光电导器件的应用126 com 热电偶冷端温度补偿 15864 光生伏特器件 129 82 热电阻温度传感器 160com 光敏二极管 129 com热电阻测温原理及类型 160com 光敏三极管 130 com热电阻的结构 161com 光电池 131 com 测量电路161com 光生伏特器件的应用132 83 热敏电阻温度传感器 16265 图像传感器134 com 热敏电阻测温原理 162·VI ·目录·VII ·com 结构与材料和特性162 com 红外传感器 208com 热敏电阻的应用165 com 核辐射式传感器 20984 集成温度传感器 166 com 辐射式传感器的应用 213com 工作原理 166 本章小结 214com 集成温度传感器的应用167 思考题与习题 215本章小结 169第 11 章智能传感器 216思考题与习题 170111 智能传感器概述 216第 9 章半导体式传感器171com 智能传感器的概念 21691 半导体气敏传感器 171 com智能传感器的功能 217com 半导体气敏传感器的分类171 com 智能传感器的特点 217com 电阻型半导体气敏传感器172 112 智能传感器的实现途径 218com 气敏传感器的应用174 com 非集成化实现 21892 半导体湿敏传感器 176 com集成化实现 219com 概述 176 com 混合实现 221com 湿敏电阻的类型及原理178 113 集成化智能传感器 222com 湿敏传感器的应用181 com 集成化智能传感器的几种93 半导体磁敏传感器182 形式 222com 磁敏电阻器 182 com 集成智能传感器实例 223com 霍耳式传感器186 114 智能传感器的发展方向 22594 离子敏传感器 192 本章小结 228com ISFET 传感器的结构和工作思考题与习题 229原理 192第 12 章传感器的补偿和抗干扰技术 230com ISFET 传感器的应用195本章小结 197 121 传感器的补偿技术 230思考题与习题 198 com 非线性误差及补偿230com 温度误差及补偿 232第 10 章波式和辐射式传感器199122 传感器的标定 233101 超声波传感器 199 123 抗干扰技术 235com 超声波的测量原理199 com 干扰的产生 235com 超声波传感器的应用201 com 干扰的类型 236102 微波传感器 204 com 干扰信号的耦合方式 236com 微波传感器的原理204 com 常用的抑制干扰的措施 239com 微波传感器的组成和分类205 本章小结 241com 微波传感器的应用206 思考题与习题 241103 辐射式传感器 208参考文献 242·VII ·第 1 章传感器理论基础在系统学习各类传感器之前首先应该掌握传感器的基本理论及检测技术的相关知识主要包括传感器的概念分类和基本特性检测系统的组成与功能基本测量方法测量误差及数据处理等内容为后续知识的学习打下基础11 传感器基础在当今的信息时代人们越来越迫切地希望能准确地掌握自然界和生产领域更多的各类信息而传感器则是人们获取这些信息的主要途径和手段因此传感器与人们的关系越来越密切传感器是实现自动检测和自动控制的首要环节它对于提高生产的自动化程度促进现代科学技术的发展具有极其重要的作用com 传感器的概念关于传感器的概念我国国家标准 GB 7665 1987 规定传感器 sensor 是能感受规定的测量量并按一定规律转换成可用输出信号的器件或装置也就是说传感器是一种按一定的精度把被测量转换为与之有确定关系的便于应用的某种物理量的测量器件或装置用于满足系统信息传输存储显示记录及控制等要求①传感器首先是一种测量器件或装置它的作用体现在测量上例如我们常见的发电机它是一种可以将机械能转变成电能的转换装置从能量转换的角度看它是一种发电设备不能称之为传感器但从另一个角度看人们可以通过发电机发电量的大小来测量调速系统的机械转速这时发电机就可看成是一种用于测量转速的测量装置是一种速度传感器通常称之为测速发电机应用传感器的目的就是为了获得被测量的准确信息这也是本课程的学习目的②传感器定义中所谓可用输出信号是指便于传输转换及处理的信号主要包括气光和电等信号现在一般就是指电信号如电压电流电势及各种电参数等而规定的测量量一般是指非电量信号主要包括各种物理量化学量和生物量等在工程中常需要测量的非电量信号有力压力温度流量位移速度加速度转速浓度等正是由于这类非电量信号不能像电信号那样可由电工仪表和电子仪器直接测量所以就需要利用传感器技术实现由非电量到电量的转换③传感器的输入和输出信号应该具有明确的对应关系并且应保证一定的精度④关于传感器这个词目前国外还有许多提法如变换器 transducer 转换器converter 检测器 detector 和变送器 transmitter 等而根据我们国家的规定传感器定名为 sensor 当传感器的输出信号为标准信号 1V ~5V 4mA ~20mA 时称为变送器transmitter 注意二者不要混淆·2 ·传感器基础com 传感器的组成和分类1 传感器的组成传感器的种类繁多其工作原理性能特点和应用领域各不相同所以结构组成差异很大但总的来说传感器通常由敏感元件转换元件及测量电路组成有时还加上辅助电源如图 11 所示图 11 传感器组成框图1 敏感元件 sensing element敏感元件是指传感器中能直接感受被测量的变化并输出与被测量成确定关系的某一物理量的元件敏感元件是传感器的核也是研究设计和制作传感器的键如图 12所示是一气体压力传感器的示意图膜盒 2 的下半部与壳体 1 固定上半部通过连杆与磁芯 4 相连磁芯 4 置于两个电感线圈 3 中后者接入测量电路 5 这里的膜盒就是敏感元件其外部与大气压力 p a 相通内部感受被测压力 p 当p 变化时引起膜盒上半部移动即输出相应的位移量图 12 气体压力传感器1壳体2膜盒3电感线圈4磁芯5测量电路2 转换元件 transduction element转换元件是指传感器中能将敏感元件输出的物理量转换成适于传输或测量的电信号的部分在图 12 中转换元件是可变电感线圈 3它把输入的位移量转换成电感的变化需要指出的是并不是所有的传感器都能明显地区分敏感元件和转换元件两部分有的传感器转换元件不止一个需要经过若干次的转换有的则是二者合二为一3 测量电路 measuring circuit测量电路又称转换电路或信号调理电路它的作用是将转换元件输出的电信号进行进·2 ·第 1 章传感器理论基础·3 ·一步的转换和处理如放大滤波线性化补偿等以获得更好的品质特性便于后续电路实现显示记录处理及控制等功能测量电路的类型视传感器的工作原理和转换元件的类型而定一般有电桥电路阻抗变换电路振荡电路等2 传感器的分类通常一种传感器可以检测多种参数一种参数又可以用多种传感器测量所以传感器的分类方法也很多至今尚无统一规定归纳起来一般有以下几种1 按工作原理分类这是传感器最常见的分类方法这种分类方法将物理化学生物等学科的原理规律和效应作为分类的依据有利于对传感器工作原理的阐述和对传感器的深入研究与分析本书主要就是按这一分类方法作为编写体系介绍各种类型的传感器按照传感器工作原理的不同传感器可分为电参数式传感器包括电阻式电感式和电容式传感器压电式传感器光电式传感器包括一般光电式光纤式激光式和红外式传感器等热电式传感器半导体式传感器波式和辐射式传感器等这些类型的传感器大部分是分别基于其各自的物理效应原理命名的2 按被测量分类按被测量的性质进行分类有利于准确表达传感器的用途对人们系统地使用传感器很有帮助为更加直观清晰地表述各类传感器的用途将种类繁多的被测量分为基本被测量和派生被测量见表 1-1对于各派生被测量的测量亦可通过对基本被测量的测量来实现表 1- 1 基本被测量和派生被测量基本被测量派生被测量线位移长度厚度应变振动磨损平面度位移角位移旋转角偏转角角振动线速度振动流量速度角速度转速角振动线加速度振动冲击质量加速度角加速度角振动转矩转动惯量力压力质量应力力矩时间频率周期计数光光通量与密度光谱温度热容湿度水汽含水量露点浓度气液体成分黏度3 按结构分类按传感器的结构构成可分为结构型物性型和复合型传感器结构型传感器是依靠传感器结构参数如形状尺寸等的变化利用某些物理规律·3 ··4 ·传感器基础实现信号的变换从而检测出被测量它是目前应用最多最普遍的传感器这类传感器的特点是其性能以传感器中元件相对结构位置的变化为基础而与其材料特性关系不大物性型传感器则是利用某些功能材料本身所具有的内在特性及效应将被测量直接转换成电量的传感器例如热电偶传感器就是利用金属导体材料的温差电动势效应和不同金属导体间的接触电动势效应实现对温度的测量的而利用压电晶体制成的压力传感器则是利用压电材料本身所具有的压电效应实现对压力的测量这类传感器的敏感元件就是材料本身无所谓结构变化因此通常具有响应速度快的特点而且易于实现小型化集成化和智能化复合型传感器则是结构型和物性型传感器的组合同时兼有二者的特征4 按能量转换关系分类按照传感器的能量转换情况传感器可分为能量控制型和能量转换型传感器两大类所谓能量控制型传感器是指其变换的能量是由外部电源供给的而外界的变化即传感器输入量的变化只起到控制的作用如电阻电感电容等电参数传感器霍耳传感器等都属于这一类传感器能量转换型传感器主要由能量变换元件构成它不需要外电源如基于压电效应热电效应光电效应等的传感器都属于此类传感器此外根据被测量的性质可以将传感器分成物理型化学型和生物型传感器三大类根据传感器的使用材料也可以将传感器分为半导体传感器陶瓷传感器金属材料传感器复合材料传感器高分子材料传感器等根据应用领域的不同还可分为工业用农用民用医用及军用等不同类型根据具体的使用目的又可分为测量用监视用检查用诊断用控制用和分析用传感器等com 传感器的基本特性为了更好地掌握和使用传感器必须充分地了解传感器的基本特性传感器的基本特性是指系统的输出输入关系特性即系统输出信号 y t 与输入信号被测量 x t 之间的系如图 13 所示图 13 传感器系统根据传感器输入信号 x t 是否随时间变化其基本特性分为静态特性和动态特性它们是系统对外呈现出的外部特性但与其内部参数密切相关不同的传感器内部参数不同因此其基本特性也表现出不同的特点一个高精度传感器必须具有良好的静态特性和动态特性才能保证信号无失真地按规律转换1 静态特性当传感器的输入信号是常量不随时间变化或变化极缓慢时其输出输入关系特性称为静态特性传感器的静态特性主要由下列几种性能来描述·4 ·第 1 章传感器理论基础·5 ·1 测量范围 measuring range传感器所能测量到的最小输入量 xmin 与最大输入量 x 之间的范围称为传感器的测量范围2 量程 span传感器测量范围的上限值x 与下限值xmin 的代数差x xmin 称为量程3 精度 accuracy传感器的精度是指测量结果的可靠程度是测量中各类误差的综合反映测量误差越小传感器的精度越高传感器的精度用其量程范围内的最大基本误差与满量程输出之比的百分数表示其基本误差是传感器在规定的正常工作条件下所具有的测量误差由系统误差和随机误差两部分组成如用 S 表示传感器的精度则ΔS × 100 1-1y FS式中Δ测量范围内允许的最大基本误差y FS 满量程输出 FS 是英文 Full Scale 满量程的缩写工程技术中为简化传感器精度的表示方法引用了精度等级的概念精度等级以一系列标准百分比数值分档表示代表传感器测量的最大允许误差如果传感器的工作条件偏离正常工作条件还会带来附加误差温度附加误差就是最主要的附加误差4 线性度 linearity所谓传感器的线性度是指其输出量与输入量之间的关系曲线偏离理想直线的程度又称为非线性误差如不考虑迟滞蠕变等因素一般传感器的输出输入特性关系可用 n 次多项式表示为y a a x a x2 a xn 1-20 1 2 n式中x 为输入量 y 为输出量 a 为零输入时的输出也叫零位输出 a 为传感器线性1项系数也称为线性灵敏度 a2 a3 an 为非线性项系数在不考虑零位输出的情况下传感器的线性度可分为以下几种情况1 理想线性特性当式 1-2 中a 为常数而 a a a a 0 时即1 023 ny a x 1-31称为理想线性特性如图 14 a 所示这时传感器的线性最好也是我们最希望传感器所具有的特性具有该特性的传感器的灵敏度为直线y a x 的斜率即1yk a1 常数1-4x2 仅有偶次非线性项传感器的输出输入特性为y a a x 2 a x 4 a nx 2n n 0 1 2 1-50 2 4 2由于没有对称性此特性线性范围较窄线性度较差如图 14 b 所示一般传感器设计很少采用这种特性·5 ··6 · 传感器基础3 仅有奇次非线性项传感器的输出输入特性为y a a x 3 a x 5 a n x 2n1 n 0 1 2 1-61 3 52 1此传感器特性相对于坐标原点对称其线性范围较宽线性度较好如图 14 c 所示是比较接近于理想直线的非线性特性4 普遍情况一般情况下传感器的输出输入特性为y a x a x2 a x3 a x n 1-71 2 3 n如图 14 d 所示图 14 传感器的非线性在实际使用非线性传感器时如果非线性项的次数不高则在输入量变化范围不大的情况下可采用直线近似地代替实际输入输出特性曲线的某一段使传感器的非线性特性得到线性化处理这里所采用的直线称为拟合直线实际输入输出特性曲线与拟合直线的最大相对误差就是非线性误差用γ L 来表示即ΔLγL ± × 100 1-8y FS式中ΔL 非线性最大误差y FS 满量程输出值目前常用的拟合方法有理论拟合过零旋转拟合端点拟合端点平移拟合及最小二乘拟合等在图 15 a 中拟合直线为传感器的理论特性与实际测试值无关这种方法称为理论拟合应用十分简便但一般说来ΔL 很大图 15 b 为过零旋转拟合常用于校正特性曲线过零的传感器拟合时使ΔL ΔL1 2ΔL 这种方法也比较简单非线性误差比前一种小很多图 15 c 所示的端点拟合是把实际特性曲线两端点的连线作为拟合直线这种方法比较简便但ΔL 较大。
光电传感器技术的新发展及应用前言随着信息技术和工业技术的不断发展,传感器技术得到了迅速发展,成为促使信息化、智能化、自动化等领域发展的关键核心技术之一。
光电传感器是一种将光学、电子学和计算机信号处理技术相结合的探测装置,具有灵敏度高、响应速度快、小型化等特点。
本篇文章将介绍光电传感器技术的新发展及应用。
光电传感器技术的发展光电传感器的种类光电传感器包括接近开关、光栅编码器、红外传感器、激光传感器等种类。
每种类型的光电传感器都有不同的工作原理和应用场景。
传统光电传感器存在问题虽然光电传感器在生产和制造中得到了广泛应用,但目前的传统光电传感器存在精度不够高、工作环境要求苛刻、使用寿命有限、易受干扰等问题。
新型光电传感器技术的发展为了解决传统光电传感器的弊端,新型光电传感器技术正在不断发展。
红外成像技术红外成像技术采用红外光,通过对物体的辐射分析,可以得出物体的温度分布图,从而实现对物体的检测和识别。
在军事、安防、工业等领域有着广泛的应用,如用于无人机的导航与控制、人体的热成像探测等。
光学纤维传感技术光学纤维传感技术是一种基于光学纤维传输的传感技术,具有高精度、对环境干扰小等优点,已经广泛应用于飞行器的安全监测、工业自动化中的压力和温度测量等领域。
光学陀螺仪传感技术光学陀螺仪传感技术是近年来新兴的一种光电传感器技术,它采用光路变化的方式测量转速,具有高灵敏度、高精度、小体积等特点,广泛应用于航空、空间等领域。
光电传感器的应用光电传感器技术的应用非常广泛,主要包括以下几个方面。
工业自动化光电传感器在工业自动化中起着重要作用。
如在车间中用来检测机器人对工件的加工情况、检测物体的位置和移动速度等。
智能家居随着智能家居的普及,光电传感器也被应用于智能家居中。
如通过红外传感器来实现智能灯光控制、通过温度传感器来实现智能空调控制等。
无人驾驶光轮雷达、摄像头和激光雷达等光电传感器技术被广泛应用于无人驾驶领域,为无人驾驶车辆提供直接的环境感知和定位服务。