2011年台湾第一次中考数学试题含答案word版
- 格式:doc
- 大小:1022.00 KB
- 文档页数:7
第23章 等腰三角形一、选择题1. (2011浙江省舟山,7,3分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33 (C )34 (D )36【答案】B2. (2011四川南充市,10,3分)如图,⊿ABC 和⊿CDE 均为等腰直角三角形,点B,C,D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC=CDBC ;②S ⊿ABC +S ⊿CDE ≧S ⊿ACE ;③BM ⊥DM;④BM=DM.正确结论的个数是( )(A )1个 (B )2个 (C )3个 (D )4个MEDCBA【答案】D3. (2011浙江义乌,10,3分)如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,四边形ACDE 是平行四边形,连结CE 交AD 于点F ,连结BD 交 CE 于点G ,连结BE . 下列结论中:① CE =BD ; ② △ADC 是等腰直角三角形; ③ ∠ADB =∠AEB ; ④ CD ·AE =EF ·CG ; 一定正确的结论有ABCDEF G (第7题)AB CDEA.1个B.2个C.3个D.4个【答案】D4. (2011台湾全区,30)如图(十三),ΔABC中,以B为圆心,BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若∠A=30∘,AB=AC,则∠BDE的度数为何?A.45 B.52.5 C.67.5 D.75【答案】C5. (2011台湾全区,34)如图(十六),有两全等的正三角形ABC、DEF,且D、A分别为△ABC、△DEF的重心.固定D点,将△DEF逆时针旋转,使得A落在DE上,如图(十七)所示.求图(十六)与图(十七)中,两个三角形重迭区域的面积比为何?A.2:1 B.3:2 C.4:3 D.5:4【答案】C6. (2011山东济宁,3,3分)如果一个等腰三角形的两边长分别是5cm和6cm,那么此三角形的周长是A.15cm B.16cmC.17cm D.16cm或17cm【答案】D7. (2011四川凉山州,8,4分)如图,在ABC△中,13AB AC==,10BC=,点D 为BC的中点,D E D E AB⊥,垂足为点E,则D E等于()A.1013B.1513C.6013D.7513【答案】C 8.二、填空题1. (2011山东滨州,15,4分)边长为6cm 的等边三角形中,其一边上高的长度为________.【答案】2. (2011山东烟台,14,4分)等腰三角形的周长为14,其一边长为4,那么,它的底边为 . 【答案】4或63. (2011浙江杭州,16,4)在等腰Rt △ABC 中,∠C =90°,AC =1,过点C 作直线l ∥AB ,F 是l 上的一点,且AB =AF ,则点F 到直线BC 的距离为 .224. (2011浙江台州,14,5分)已知等边△ABC 中,点D,E 分别在边AB,BC 上,把△BDE 沿直线DE 翻折,使点B 落在点B ˊ处,DB ˊ,EB ˊ分别交边AC 于点F ,G ,若∠ADF=80º ,则∠EGC 的度数为【答案】80º5. (2011浙江省嘉兴,14,5分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = °.【答案】1106. (2011湖南邵阳,11,3分)如图(四)所示,在△ABC 中,AB=AC ,∠B=50°,则∠A=_______。
2011全国中考真题解析120考点汇编等腰三角形的性质和判定一、选择题1.(2011•铜仁地区7,3分)下列关于等腰三角形的性质叙述错误的是()A、等腰三角形两底角相等B、等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合C、等腰三角形是中心对称图形D、等腰三角形是轴对称图形考点:等腰三角形的性质;轴对称图形;中心对称图形。
分析:根据等腰三角形的性质:等腰三角形两底角相等(等边对等角),等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合(三线合一),等腰三角形是轴对称图形但不是中心对称图形,即可求得答案.解答:解:A、等腰三角形两底角相等,故本选项正确;B、等腰三角形底边上的高、底边上的中线、顶角的平分线互相重合,故本选项正确;C、等腰三角形不是中心对称图形,故本选项错误;D、等腰三角形是轴对称图形,故本选项正确.故选C.点评:此题考查了等腰三角形的性质.注意等边对等角,三线合一,以及其对称性的应用.2.(2011内蒙古呼和浩特,7,3)如果等腰三角形两边长是6cm和3cm,那么它的周长是()A、9cmB、12cmC、15cm或12cmD、15cm考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长.根据三角形三边关系定理列出不等式,确定是否符合题意.解答:解:当6为腰,3为底时,6-3<6<6+3,能构成等腰三角形,周长为5+5+3=13;当3为腰,6为底时,3+3=6,不能构成三角形.故选D.点评:本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.3.(2011辽宁沈阳,7,3)如图,矩形ABCD中,AB<BC,对角线AC、BD相交于点O,则图中的等腰三角形有()A、2个B、4个C、6个D、8个考点:等腰三角形的判定;矩形的性质。
2011全国各省市中考数学试题分类汇编-—函数与一次函数(选择题及答案)一.选择题1.(2011台湾中考)1.坐标平面上,若点(3, b )在方程式923-=x y 的图形上,则b 值为何?( )(A)-1 (B) 2 (C) 3 (D) 92.(2011台湾中考)15.图(三)的坐标平面上有一正五边形ABCDE ,其中C 、D 两点坐标分别为(1,0)、(2,0) 。
若在没有滑动的情况下,将此正五边形沿着 x 轴向右滚动,则滚动过程中,下列何者会 经过点(75 , 0)?( )(A) A (B) B (C) C (D) D3.(2011台湾中考)16.已知数在线A 、B 两点坐标分别为-3、-6,若在数在线找一点C ,使得A 与C 的距离为4;找一点D ,使得B 与D 的距离为1,则下列何者不可能为C 与D 的距离?( ) (A) 0 (B) 2 (C) 4 (D) 64.(2011台湾中考)29.已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?( )(A) 100 (B) 180 (C) 220 (D) 2605.(2011台北中考)9.图(三)的坐标平面上,有一条通过点(-3,-2)的直线L 。
若四点(-2 , a )、(0 , b )、(c , 0)、(d ,-1)在L 上,则下列数值的判断,何者正确?( )(A) a =3 (B) b >-2(C) c <-3 (D) d =26.(2011台北中考)17.如图(七),坐标平面上有两直线L 、M ,其方程式分别为y =9、y =-6。
若L 上有一点P ,M 上有一点Q ,PQ 与y 轴平行,且PQ 上有一点R ,PR :RQ =1:2,则R 点与x 轴的距离为何?( )(A) 1 (B) 4 (C) 5 (D) 107.(2011台北中考)21.坐标平面上有一个线对称图形,)25,3(-A 、)211,3(-B 两点在此图形上且互为对称点。
(2012年1月最新最细)2011全国中考真题解析120考点汇编原创好题、新题一、选择题1.负数的引入是数学发展史上的一大飞跃,使数的家族得到了扩张,为人们认识世界提供了更多的工具.最早使用负数的国家是()A、中国B、印度C、英国D、法国【答案】A【考点】正数和负数.【分析】根据数学历史材料即可得出答案.【解答】解:中国是世界上最早认识和应用负数的国家,比西方早(一千多)年.负数最早记载于中国的《九章算术》(成书于公元一世纪)中,比国外早一千多年,故选A.【点评】此题主要考查了负数的来源,根据历史记载是解决问题的关键.2.(2011江苏南京,6,2分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为a的值是()A、B、2C、D、2考点:一次函数综合题。
专题:综合题。
分析:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,P A.分别求出PD、DC,相加即可.解答:解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接PO,P A.∵AE =12AB P A =2,PE .PD∵⊙P 的圆心是(2,a ),∴DC =2,∴a =PD +DC故选B .点评:本题综合考查了一次函数与几何知识的应用,题中运用圆与直线的关系以及直角三角形等知识求出线段的长是解题的关键.注意函数y =x 与x 轴的夹角是45°. 3. (2011内蒙古呼和浩特,9,3)如图所示,四边形ABCD 中,DC ∥AB ,BC=1,AB=AC=AD=2.则BD 的长为( )A. 14B. 15C. 23D. 32 考点:勾股定理.专题:计算题.分析:以A 为圆心,AB 长为半径作圆,延长BA 交⊙A 于F ,连接DF .在△BDF 中,由勾股定理即可求出BD 的长.解答:解:以A 为圆心,AB 长为半径作圆,延长BA 交⊙A 于F ,连接DF .可证∠FDB=90°,∠F=∠CBF ,点评:本题考查了勾股定理,解题的关键是作出以A 为圆心,AB 长为半径的圆,构建直角三角形,从而求解.4. (2011江苏扬州,8,3分)如图,在Rt △ABC 中,∠ACB=90º,∠A=30º,BC=2,将△ABC 绕点C 按顺时针方向旋转n 度后,得到△EDC ,此时,点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( )A. 30,2B.60,2C. 60,D. 60,3考点:旋转的性质;含30度角的直角三角形。
第26章 矩形、菱形与正方形一、选择题1. (2011浙江省舟山,10,3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( ) (A )48cm (B )36cm (C )24cm(D )18cm【答案】A2. (2011山东德州8,3分)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是(A )2n (B )4n (C )12n + (D )22n + 【答案】C3. (2011山东泰安,17 ,3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为图1 图2 图3……(第10题)FAB CDHEG①②③④⑤A.17B.17C.18D.19 【答案】B4. (2011山东泰安,19 ,3分)如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE 的长为 A.2 3 B.332C. 3D.6【答案】A5. (2011浙江杭州,10,3)在矩形ABCD 中,有一个菱形B F D E (点E ,F 分别在线段AB ,CD 上),记它们的面积分别 为ABCD BFDE S S 和.现给出下列命题:( )①若22ABC D BFD ES S +=,则tan 3E DF ∠=.②若2,DE BD EF =∙则2DF AD =.则:A .①是真命题,②是真命题B .①是真命题,②是假命题C .①是假命题,②是真命题D ,①是假命题,②是假命题 【答案】A6. (2011浙江衢州,1,3分)衢州市新农村建设推动了农村住宅旧貌变新颜,如图为一农村民居侧面截图,屋坡A F A G 、分别架在墙体的点B 、点C 处,且A B A C =,侧面四边形B D E C 为矩形,若测得100F A G ∠=︒,则FBD ∠=( )A. 35°B. 40°C. 55°D. 70° 【答案】C7. (2011浙江温州,6,4分)如图,在矩形ABCD 中,对角线AC ,BD 交于点O .已知∠AOB = 60°,AC =16,则图中长度为8的线段有( ) A .2条B .4条C .5条D .6条【答案】D8. 2011四川重庆,10,4分)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是()A .1B .2C .3D .4【答案】C9. (2011浙江省嘉兴,10,4分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( ) (A )48cm (B )36cm (C )24cm(D )18cm【答案】A10.(2011台湾台北,29)如图(十二),长方形ABCD 中,E 为BC 中点,作AEC 的角平分线交AD 于F 点。
2024年台湾省中考数学试卷一、第一部分:选择题(1~25题)1.(3分)算式之值为何?()A.B.C.D.2.(3分)如图为一个直三角柱的展开图,其中三个面被标示为甲、乙、丙.将此展开图折成直三角柱后,判断下列叙述何者正确?()A.甲与乙平行,甲与丙垂直B.甲与乙平行,甲与丙平行C.甲与乙垂直,甲与丙垂直D.甲与乙垂直,甲与丙平行3.(3分)若二元一次联立方程式的解为,则a+b之值为何?()A.﹣28B.﹣14C.﹣4D.144.(3分)若想在如图的方格纸上沿着网格线画出坐标平面的x轴、y轴并标记原点,且以小方格边长作为单位长,则下列哪一种画法可在方格纸的范围内标出(5,3)、(﹣4,﹣4)、(﹣3,4)、(3,﹣5)四点?()A.B.C.D.5.(3分)阿贤利用便利贴拼成一个圣诞树图案,圣诞树图案共有10层,每一层由三列的便利贴拼成,前3层如图所示.若同一层中每一列皆比前一列多2张,且每一层第一列皆比前一层第一列多2张,则此圣诞树图案由多少张便利贴拼成?()A.354B.360C.384D.3906.(3分)箱内有50颗白球和10颗红球,小慧打算从箱内抽球31次,每次从箱内抽出一球,如果抽出白球则将白球放回箱内,如果抽出红球则不将红球放回箱内.已知小慧在前30次抽球中共抽出红球4次,若她第31次抽球时箱内的每颗球被抽出的机会相等,则这次她抽出红球的机率为何?()A.B.C.D.7.(3分)图1有A、B两种图案,其中A经过上下翻转后与B相同,且图案的外围是正方形,图2是将四个A图以紧密且不重叠的方式排列成大正方形,图3是将两个A图与两个B图以紧密且不重叠的方式排列成大正方形.判断图2、图3是否为轴对称图形?()A.图2、图3皆是B.图2、图3皆不是C.图2是,图3不是D.图2不是,图3是8.(3分)若a=3.2×10﹣5,b=7.5×10﹣5,c=6.3×10﹣6,则a、b、c三数的大小关系为何?()A.a<b<c B.a<c<b C.c<a<b D.c<b<a9.(3分)癌症分期是为了区别恶性肿瘤影响人体健康的程度,某国统计2011年确诊四种癌症一到四期的患者在3年后存活的比率(3年存活率),並依据癌症类别与不同分期将资料整理成如图.甲、乙两人对该国2011年确诊上述四种癌症的患者提出看法如下:(甲)一到四期的乳癌患者的3年存活率皆高于50%(乙)在这四种癌症中,三期与四期的3年存活率相差最多的是胃癌对于甲、乙两人的看法,下列判断何者正确?()A.甲、乙皆正确B.甲、乙皆错误C.甲正确,乙错误D.甲错误,乙正确10.(3分)下列何者为多项式5x(5x﹣2)﹣4(5x﹣2)2的因式分解?()A.(5x﹣2)(25x﹣8)B.(5x﹣2)(5x﹣4)C.(5x﹣2)(﹣15x+8)D.(5x﹣2)(﹣20x+4)11.(3分)将化简为,其中a、b为整数,求a+b之值为何?()A.5B.3C.﹣9D.﹣1512.(3分)甲、乙两个二次函数分别为y=(x+20)2+60、y=﹣(x﹣30)2+60,判断下列叙述何者正确?()A.甲有最大值,且其值为x=20时的y值B.甲有最小值,且其值为x=20时的y值C.乙有最大值,且其值为x=30时的y值D.乙有最小值,且其值为x=30时的y值13.(3分)如图为阿成调整他的计算机画面的分辨率时看到的选项,当他从建议选项1920×1080调整成1400×1050时,由于比例改变(1920:1080≠1400:1050),画面左右会出现黑色区域,当比例不变就不会有此问题.判断阿成将他的计算机画面分辨率从1920×1080调整成下列哪一种时,画面左右不会出现黑色区域?()A.1680×1050B.1600×900C.1440×900D.1280×102414.(3分)小玲搭飞机出国旅游,已知她搭飞机产生的碳排放量为800公斤,为了弥补这些碳排放量,她决定上下班时从驾驶汽车改成搭公交车.依据图(九)的信息,假设小玲每日上下班驾驶汽车或搭公交车的来回总距离皆为20公里,则与驾驶汽车相比,她至少要改搭公交车上下班几天,减少产生的碳排放量才会超过她搭飞机产生的碳排放量?()每人使用各种交通工具每移动1公里产生的碳排放量●自行车:0公斤●公交车:0.04公斤●机车:0.05公斤●汽车:0.17公斤A.310天B.309天C.308天D.307天15.(3分)甲、乙两个最简分数分别为、,其中a、b为正整数.若将甲、乙通分化成相同的分母后,甲的分子变为50,乙的分子变为54,则下列关于a的叙述,何者正确?()A.a是3的倍数,也是5的倍数B.a是3的倍数,但不是5的倍数C.a是5的倍数,但不是3的倍数D.a不是3的倍数,也不是5的倍数16.(3分)有研究报告指出,1880年至2020年全球平均气温上升趋势约为每十年上升0.08℃.已知2020年全球平均气温为14.88℃,假设未来的全球平均气温上升趋势与上述趋势相同,且每年上升的度数相同,则预估2020年之后第x年的全球平均气温为多少℃?(以x表示)()A.14.88+0.08xB.14.88+0.008xC.14.88+0.08[x+(2020−1880)]D.14.88+0.008[x+(2020−1880)]17.(3分)△ABC中,∠B=55°,∠C=65°.今分别以B、C为圆心,BC长为半径画圆B、圆C,关于A点位置,下列叙述何者正确?()A.在圆B外部,在圆C内部B.在圆B外部,在圆C外部C.在圆B内部,在圆C内部D.在圆B内部,在圆C外部18.(3分)如图,平行四边形ABCD与平行四边形EFGH全等,且A、B、C、D的对应顶点分别是H、E、F、G,其中E在DC上,F在BC上,C在FG上.若AB=7,AD=5,FC=3,则四边形ECGH的周长为何?()A.21B.20C.19D.1819.(3分)如图的数在线有A(−2)、O(0)、B(2)三点.今打算在此数在线标示P(p)、Q(q)两点,且p、q互为倒数,若P在A的左侧,则下列叙述何者正确?()A.Q在AO上,且AQ<QO B.Q在AO上,且AQ>QOC.Q在OB上,且OQ<QB D.Q在OB上,且OQ>QB20.(3分)四边形ABCD中,E、F两点在BC上,G点在AD上,各点位置如图所示.连接GE、GF后,根据图中标示的角与角度,判断下列关系何者正确?()A.∠1+∠2<∠3+∠4B.∠1+∠2>∠3+∠4C.∠1+∠4<∠2+∠3D.∠1+∠4>∠2+∠321.(3分)如图,、皆为半圆,与相交于E点,其中A、B、C、D在同一直在线,且B为AC 的中点.若=58°,则的度数为何?()A.58B.60C.62D.6422.(3分)如图,△ABC内部有一点D,且△DAB、△DBC、△DCA的面积分别为5、4、3.若△ABC 的重心为G,则下列叙述何者正确?()A.△GBC与△DBC的面积相同,且DG与BC平行B.△GBC与△DBC的面积相同,且DG与BC不平行C.△GCA与△DCA的面积相同,且DG与AC平行D.△GCA与△DCA的面积相同,且DG与AC不平行23.(3分)如图1,等腰梯形纸片ABCD中,AD∥BC,AB=DC,∠B=∠C,且E点在BC上,DE∥AB.今以DE为折线将C点向左折后,C点恰落在AB上,如图2所示.若CE=2,DE=4,则图2的BC与AC的长度比为何?()A.1:2B.1:3C.2:3D.3:5请阅读下列叙述后,回答24~25题.体重为衡量个人健康的重要指标之一,表(一)为成年人利用身高(公尺)计算理想体重(公斤)的三种方式,由于这些计算方式没有考虑脂肪及肌肉重量占体重的比例,因此结果仅供参考.女性理想体重男性理想体重算法①身高×身高×22身高×身高×22算法②(100×身高﹣70)×0.6(100×身高﹣80)×0.7算法③(100×身高﹣158)×0.5+52(100×身高﹣170)×0.6+6224.(3分)以下为甲、乙两个关于成年女性理想体重的叙述:(甲)有的女性使用算法①与算法②算出的理想体重会相同(乙)有的女性使用算法②与算法③算出的理想体重会相同对于甲、乙两个叙述,下列判断何者正确?()A.甲、乙皆正确B.甲、乙皆错误C.甲正确,乙错误D.甲错误,乙正确25.(3分)无论我们使用哪一种算法计算理想体重,都可将个人的实际体重归类为表(二)的其中一种类别.实际体重类别大于理想体重的120%肥胖介于理想体重的110%~过重120%正常介于理想体重的90%~110%介于理想体重的80%~90%过轻小于理想体重的80%消瘦当身高1.8公尺的成年男性使用算法②计算理想体重并根据表(二)归类,实际体重介于70×90%公斤至70×110%公斤之间会被归类为正常.若将上述身高1.8公尺且实际体重被归类为正常的成年男性,重新以算法③计算理想体重并根据表(二)归类,则所有可能被归类的类别为何?()A.正常B.正常、过重C.正常、过轻D.正常、过重、过轻二、第二部分:非选择题(1~2题)26.「健康饮食餐盘」是一种以图画呈现饮食指南的方式,图画中各类食物区块的面积比,表示一个人每日所应摄取各类食物的份量比.某研究机构对于一般人如何搭配「谷类」、「蛋白质」、「蔬菜」、「水果」这四大类食物的摄取份量,以「健康标语」说明这四大类食物所应摄取份量的关系如图1,并绘制了「健康饮食餐盘」如图2.请根据上述信息回答下列问题,完整写出你的解题过程并详细解释:(1)请根据图1的「健康标语」,判断一个人每日所应摄取的「水果」和「蛋白质」份量之间的大小关系.(2)将图2的「健康饮食餐盘」简化为一个矩形,且其中四大类食物的区块皆为矩形,如图3所示.若要符合图1的「健康标语」,在纸上画出图3的图形,其中餐盘长为16公分,宽为10公分,则a、b 是否可能同时为正整数?27.某教室内的桌子皆为同一款多功能桌,4张此款桌子可紧密拼接成中间有圆形镂空的大圆桌,上视图如图1所示,其外围及镂空边界为一大一小的同心圆,其中大圆的半径为80公分,小圆的半径为20公分,且任两张相邻桌子接缝的延长线皆通过圆心.为了有效运用教室空间,老师考虑了图2及图3两种拼接此款桌子的方式.这两种方式皆是将2张桌子的一边完全贴合进行拼接.A、B两点为图2中距离最远的两个桌角,C、D 两点为图3中距离最远的两个桌角,且CD与2张桌子的接缝EF相交于G点,G为EF中点.请根据上述信息及图2、图3中的标示回答下列问题,完整写出你的解题过程并详细解释:(1)GF的长度为多少公分?(2)判断CD与AB的长度何者较大?请说明理由.2024年台湾省中考数学试卷参考答案与试题解析一、第一部分:选择题(1~25题)1.(3分)算式之值为何?()A.B.C.D.【分析】根据有理数的减法的运算方法,求出算式的值即可.【解答】解:=+=.故选:A.【点评】此题主要考查了有理数的减法的运算方法,解答此题的关键是要明确有理数减法法则:减去一个数,等于加上这个数的相反数.2.(3分)如图为一个直三角柱的展开图,其中三个面被标示为甲、乙、丙.将此展开图折成直三角柱后,判断下列叙述何者正确?()A.甲与乙平行,甲与丙垂直B.甲与乙平行,甲与丙平行C.甲与乙垂直,甲与丙垂直D.甲与乙垂直,甲与丙平行【分析】画出折叠后的几何体,进行分析甲、乙、丙的位置关系.【解答】解:折叠后如图所示,,∴甲与乙平行,甲与丙垂直,乙与丙垂直,故选:A.【点评】本题考查了展开图折叠问题,关键是画出折叠后的几何体进行分析.3.(3分)若二元一次联立方程式的解为,则a+b之值为何?()A.﹣28B.﹣14C.﹣4D.14【分析】把代入得关于a,b的方程组,解方程组求出a,b,再代入求出a+b的值即可.【解答】解:把代入得:,把②代入①得:5a﹣3×(﹣3a)=28,5a+9a=28,14a=28,a=2,把a=2代入②得:b=﹣6,∴a+b=2+(﹣6)=﹣4,故选:C.【点评】本题主要考查了二元一次方程组的解,解题关键是熟练掌握二元一次方程组的解是使各个方程左右两边相等的未知数的值.4.(3分)若想在如图的方格纸上沿着网格线画出坐标平面的x轴、y轴并标记原点,且以小方格边长作为单位长,则下列哪一种画法可在方格纸的范围内标出(5,3)、(﹣4,﹣4)、(﹣3,4)、(3,﹣5)四点?()A .B .C .D .【分析】根据点的坐标特点解答即可.【解答】解:A 、坐标系中不能表示出点(3,﹣5),不符合题意;B 、坐标系中不能表示出点(3,﹣5),不符合题意;C 、坐标系中不能表示出点(5,3),不符合题意;D 、坐标系中能表示出各点,符合题意,故选:D .【点评】本题考查的是点的坐标,熟知各点坐标在平面直角坐标系中的表示方法是解题的关键.5.(3分)阿贤利用便利贴拼成一个圣诞树图案,圣诞树图案共有10层,每一层由三列的便利贴拼成,前3层如图所示.若同一层中每一列皆比前一列多2张,且每一层第一列皆比前一层第一列多2张,则此圣诞树图案由多少张便利贴拼成?()A.354B.360C.384D.390【分析】根据各层图案使用便利贴的张数,可得出第n层由(6n+3)张便利贴拼成,将前n层图案使用便利贴的张数相加,可得出前n层图案由(3n2+6n)张便利贴拼成,再代入n=10,即可求出结论.【解答】解:根据题意得:第一层由1+3+5=9(张)便利贴拼成,第二层由3+5+7=15(张)便利贴拼成,第三层由5+7+9=21(张)便利贴拼成,…,∴第n(n为正整数)层由2n﹣1+2n+1+2n+3=6n+3(张)便利贴拼成;∵9+15+21+…+6n+3==3n2+6n,∴当n=10时,3n2+6n=3×102+6×10=360,∴此圣诞树图案由360张便利贴拼成.故选:B.【点评】本题考查了规律型:图形的变化类,根据各层图案使用便利贴的张数的变化,找出变化规律“第n层由(6n+3)张便利贴拼成(n为正整数)”是解题的关键.6.(3分)箱内有50颗白球和10颗红球,小慧打算从箱内抽球31次,每次从箱内抽出一球,如果抽出白球则将白球放回箱内,如果抽出红球则不将红球放回箱内.已知小慧在前30次抽球中共抽出红球4次,若她第31次抽球时箱内的每颗球被抽出的机会相等,则这次她抽出红球的机率为何?()A.B.C.D.【分析】让红球的个数除以球的总数即为所求的概率.【解答】解:∵第31次抽球时箱内共有56个球,红球有6个,∴这次她抽出红球的概率为=.故选:D.【点评】本题考查了概率公式,熟练掌握概率的概念是解题的关键.7.(3分)图1有A、B两种图案,其中A经过上下翻转后与B相同,且图案的外围是正方形,图2是将四个A图以紧密且不重叠的方式排列成大正方形,图3是将两个A图与两个B图以紧密且不重叠的方式排列成大正方形.判断图2、图3是否为轴对称图形?()A.图2、图3皆是B.图2、图3皆不是C.图2是,图3不是D.图2不是,图3是【分析】根据轴对称图形的定义判断即可.【解答】解:观察可知,题图2的图形不是轴对称图形,题图3的图形是轴对称图形,对称轴如图所示.故选:D.【点评】本题主要考查线对称图形,本题是在以正方形为背景下来考查线对称图形,以正方形的四条的对称轴为基准,观察题图中的图形是否关于某一条对称.8.(3分)若a=3.2×10﹣5,b=7.5×10﹣5,c=6.3×10﹣6,则a、b、c三数的大小关系为何?()A.a<b<c B.a<c<b C.c<a<b D.c<b<a【分析】根据科学记数法的方法进行解题即可.【解答】解:∵a=3.2×10﹣5=0.000032,b=7.5×10﹣5=0.000075,c=6.3×10﹣6=0.0000063,0.0000063<0.000032<0.000075,∴c<a<b.故选:C.【点评】本题考查科学记数法﹣表示较小的数,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.熟记相关结论即可.9.(3分)癌症分期是为了区别恶性肿瘤影响人体健康的程度,某国统计2011年确诊四种癌症一到四期的患者在3年后存活的比率(3年存活率),並依据癌症类别与不同分期将资料整理成如图.甲、乙两人对该国2011年确诊上述四种癌症的患者提出看法如下:(甲)一到四期的乳癌患者的3年存活率皆高于50%(乙)在这四种癌症中,三期与四期的3年存活率相差最多的是胃癌对于甲、乙两人的看法,下列判断何者正确?()A.甲、乙皆正确B.甲、乙皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】由条形图和百分数的意义,即可判断.【解答】解,由图知甲的看法正确,由图判断三期与四期的3年存活率相差最多的是大肠癌,由此乙的看法错误.故选:C.【点评】本题考查百分数的应用,关键是读懂条形图.10.(3分)下列何者为多项式5x(5x﹣2)﹣4(5x﹣2)2的因式分解?()A.(5x﹣2)(25x﹣8)B.(5x﹣2)(5x﹣4)C.(5x﹣2)(﹣15x+8)D.(5x﹣2)(﹣20x+4)【分析】多项式提公因式(5x﹣2)因式分解可得答案.【解答】解:5x(5x﹣2)﹣4(5x﹣2)2=(5x﹣2)[5x﹣4(5x﹣2)]=(5x﹣2)(﹣15x+8).故选:C.【点评】本题考查因式分解,熟练掌握提公因式法因式分解的方法是解题的关键.11.(3分)将化简为,其中a、b为整数,求a+b之值为何?()A.5B.3C.﹣9D.﹣15【分析】把将进行化简,求出a,b的值即可.【解答】解:∵===4+,∴a=4,b=1,∴a+b=4+1=5.故选:A.【点评】本题考查的是二次根式的混合运算及分母有理化,熟知二次根式分母有理化的法则是解题的关键.12.(3分)甲、乙两个二次函数分别为y=(x+20)2+60、y=﹣(x﹣30)2+60,判断下列叙述何者正确?()A.甲有最大值,且其值为x=20时的y值B.甲有最小值,且其值为x=20时的y值C.乙有最大值,且其值为x=30时的y值D.乙有最小值,且其值为x=30时的y值【分析】根据二次函数的最值问题解答即可.【解答】解:∵二次函数y=(x+20)2+60中,a=1>0,∴此函数有最小值,最小值为x=﹣20时y的值,∴A、B错误;∵二次函数y=﹣(x﹣30)2+60中,a=﹣1<0,∴此函数有最大值,最大值为x=30时y的值,∴C正确、D错误,故选:C.【点评】本题考查的是二次函数的最值问题,熟知二次函数y=ax2+bx+c(a≠0)中,当a>0时,函数图象有最低点,所以函数有最小值;当a<0时,函数图象有最高点,所以函数有最大值是解题的关键.13.(3分)如图为阿成调整他的计算机画面的分辨率时看到的选项,当他从建议选项1920×1080调整成1400×1050时,由于比例改变(1920:1080≠1400:1050),画面左右会出现黑色区域,当比例不变就不会有此问题.判断阿成将他的计算机画面分辨率从1920×1080调整成下列哪一种时,画面左右不会出现黑色区域?()A.1680×1050B.1600×900C.1440×900D.1280×1024【分析】根据比例不变,画面左右不会出现黑色区域,即可得出答案.【解答】解:∵1920:1080=1600:900,∴阿成将他的计算机画面分辨率从1920×1080调整成1600×900时,画面左右不会出现黑色区域.故选:B.【点评】本题主要考查比例的性质,熟练掌握比例的性质是解题的关键.14.(3分)小玲搭飞机出国旅游,已知她搭飞机产生的碳排放量为800公斤,为了弥补这些碳排放量,她决定上下班时从驾驶汽车改成搭公交车.依据图(九)的信息,假设小玲每日上下班驾驶汽车或搭公交车的来回总距离皆为20公里,则与驾驶汽车相比,她至少要改搭公交车上下班几天,减少产生的碳排放量才会超过她搭飞机产生的碳排放量?()每人使用各种交通工具每移动1公里产生的碳排放量●自行车:0公斤●公交车:0.04公斤●机车:0.05公斤●汽车:0.17公斤A.310天B.309天C.308天D.307天【分析】设改搭公交车上下班x天,利用减少产生的碳排放量=每天减少产生的碳排放量×改搭公交车上下班的天数,结合减少产生的碳排放量超过她搭飞机产生的碳排放量,可列出关于x的一元一次不等式,解之可得出x的取值范围,再取其中的最小整数值,即可得出结论.【解答】解:设改搭公交车上下班x天,根据题意得:(0.17﹣0.04)×20x>800,解得:x>,又∵x为正整数,∴x的最小值为308,∴至少要改搭公交车上下班308天,减少产生的碳排放量才会超过她搭飞机产生的碳排放量.故选:C.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.15.(3分)甲、乙两个最简分数分别为、,其中a、b为正整数.若将甲、乙通分化成相同的分母后,甲的分子变为50,乙的分子变为54,则下列关于a的叙述,何者正确?()A.a是3的倍数,也是5的倍数B.a是3的倍数,但不是5的倍数C.a是5的倍数,但不是3的倍数D.a不是3的倍数,也不是5的倍数【分析】利用分数的基本性质,甲的分子分母都乘以5,乙的分子分母都乘以3,然后利用最简分数的定义可判断a为3的倍数,不是5的倍数.【解答】解:∵甲的分子变为50,乙的分子变为54,∴甲的分子分母都乘以5,乙的分子分母都乘以3,∵与为最简分数,∴a为3的倍数,不是5的倍数.故选:B.【点评】本题考查了约分和通分:熟练掌握分数的基本性质是解决问题的关键.16.(3分)有研究报告指出,1880年至2020年全球平均气温上升趋势约为每十年上升0.08℃.已知2020年全球平均气温为14.88℃,假设未来的全球平均气温上升趋势与上述趋势相同,且每年上升的度数相同,则预估2020年之后第x年的全球平均气温为多少℃?(以x表示)()A.14.88+0.08xB.14.88+0.008xC.14.88+0.08[x+(2020−1880)]D.14.88+0.008[x+(2020−1880)]【分析】先求出每年平均气温约上升多少度;再表示出x年平均气温上升多少度;最后加上2020年全球平均气温即可.【解答】解:14.88+x(0.08÷10)=14.88+0.008x,故选:B.【点评】本题考查了列代数式,解题的关键根据题中的数量关系来解答.17.(3分)△ABC中,∠B=55°,∠C=65°.今分别以B、C为圆心,BC长为半径画圆B、圆C,关于A点位置,下列叙述何者正确?()A.在圆B外部,在圆C内部B.在圆B外部,在圆C外部C.在圆B内部,在圆C内部D.在圆B内部,在圆C外部【分析】利用三角形内角和定理求出∠A=60°,再利用三角形中,较大的角所对的边较长,即可解决问题.【解答】解:∵∠B=55°,∠C=65°.∴∠A=60°,∴AB>BC>AC,∴点A在圆B外,在圆C内,故选:A.【点评】本题主要考查了点和圆的位置关系,判断出AB>BC>AC是解题的关键.18.(3分)如图,平行四边形ABCD与平行四边形EFGH全等,且A、B、C、D的对应顶点分别是H、E、F、G,其中E在DC上,F在BC上,C在FG上.若AB=7,AD=5,FC=3,则四边形ECGH的周长为何?()A.21B.20C.19D.18【分析】根据全等图形的性质、平行四边形的性质求解即可.【解答】解:∵平行四边形ABCD与平行四边形EFGH全等,且A、B、C、D的对应顶点分别是H、E、F、G,∴AB=CD=HE=FG=7,AD=HG=EF=5,∠DCB=∠GFE,∴EF=EC=5,∵FC=3,∴CG=FG﹣FC=4,∵四边形ECGH的周长=EC+CG+HG+EH=5+4+5+7=21,故选:A.【点评】此题考查了平行四边形的性质,全等图形,熟记平行四边形的对边相等,全等图形的对应边相等、对应角相等是解题的关键.19.(3分)如图的数在线有A(−2)、O(0)、B(2)三点.今打算在此数在线标示P(p)、Q(q)两点,且p、q互为倒数,若P在A的左侧,则下列叙述何者正确?()A.Q在AO上,且AQ<QO B.Q在AO上,且AQ>QOC.Q在OB上,且OQ<QB D.Q在OB上,且OQ>QB【分析】取特殊值法排除A选项,再用倒数的性质排除C、D选项.【解答】解:取P(﹣3),则Q(),则AQ=,OQ=,故A错误;∵p为负数,p、q互为倒数,∴q为负数,∴点Q不可能在OB上,故C、D错误.故选:B.【点评】本题考查利用特殊值和倒数的性质解题.20.(3分)四边形ABCD中,E、F两点在BC上,G点在AD上,各点位置如图所示.连接GE、GF后,根据图中标示的角与角度,判断下列关系何者正确?()A.∠1+∠2<∠3+∠4B.∠1+∠2>∠3+∠4C.∠1+∠4<∠2+∠3D.∠1+∠4>∠2+∠3【分析】通过三角形内角和与四边形内角和,排除错误选项.【解答】解:∵∠1+∠2+∠EGF=180°,∠3+∠4+∠EGF=180°,∴∠1+∠2=∠3+∠4,故A、B选项错误,∵∠1+∠C+∠D+∠EGD=360°,∴∠1+70°+105°+∠4+∠EGF=360°,∴∠1+∠4=185°﹣∠EGF,∵∠2+∠B+∠A+∠AGF=360°,∴∠2+85°+100°+∠3+∠EGF=360°,∴∠2+∠3=175°﹣∠EGF,∴∠1+∠4>∠2+∠3,故选:D.【点评】本题考查了角度之间的大小比较,属于简单题.21.(3分)如图,、皆为半圆,与相交于E点,其中A、B、C、D在同一直在线,且B为AC 的中点.若=58°,则的度数为何?()A.58B.60C.62D.64【分析】连接BE、DE,根据圆心角、弧、弦的关系定理求出∠EBC=58°,根据直角三角形的性质求出∠EDB,进而求出的度数.【解答】解:如图,连接BE、DE,∵B为AC的中点,∴AC为左边半圆的直径,∵的度数为58°,∴∠EBC=58°,∵BD是右边圆的直径,∴∠BED=90°,∴∠EDB=90°﹣58°=32°,∴的度数为:32°×2=64°,故选:D.【点评】本题考查的是圆心角、弧、弦的关系、圆周角定理,熟记直径所对的圆周角为直角是解题的关键.22.(3分)如图,△ABC内部有一点D,且△DAB、△DBC、△DCA的面积分别为5、4、3.若△ABC 的重心为G,则下列叙述何者正确?()A.△GBC与△DBC的面积相同,且DG与BC平行B.△GBC与△DBC的面积相同,且DG与BC不平行C.△GCA与△DCA的面积相同,且DG与AC平行D.△GCA与△DCA的面积相同,且DG与AC不平行=5+4+3=12,利用三角形重心性质可得S△GBC=S△ABC=×12=4,进而【分析】由题意可得S△ABC=S△DBC=4,即可判断结论A正确.可得S△GBC【解答】解:∵△ABC内部有一点D,且△DAB、△DBC、△DCA的面积分别为5、4、3,=5+4+3=12,∴S△ABC∵△ABC的重心为G,=S△ABC=×12=4,∴S△GBC=S△DBC=4,∴S△GBC∴点D、G到BC的距离相等,且位于BC的同侧,∴DG∥BC,故结论A正确;结论B、C、D错误;故选:A.【点评】本题考查了三角形的中线、重心,三角形面积,熟练掌握三角形的重心的性质是解题关键.23.(3分)如图1,等腰梯形纸片ABCD中,AD∥BC,AB=DC,∠B=∠C,且E点在BC上,DE∥AB.今以DE为折线将C点向左折后,C点恰落在AB上,如图2所示.若CE=2,DE=4,则图2的BC与AC的长度比为何?()A.1:2B.1:3C.2:3D.3:5【分析】先证得△BCE∽△ECD,得出=,即=,求得BC=1,再由AC=AB﹣BC可得AC =3,即可求得答案.【解答】解:如图2,由折叠得:∠DEC′=∠DEC,∠DCE=∠DC′E,DC=DC′,CE=C′E=2,∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形,∴DE=AB=4,∴AB=DC=DE=DC′,∴∠DEC=∠DCE,∵∠B=∠DCE,∴∠B=∠DCE=∠DEC=∠DEC′,∵∠BEC=180°﹣∠DEC﹣∠DEC′,∠CDE=180°﹣∠DCE﹣∠DEC,∴∠BEC=∠CDE,∴△BCE∽△ECD,∴=,即=,∴BC=1,∴AC=AB﹣BC=4﹣1=3,∴=,故选:B.【点评】本题考查了梯形性质,平行四边形的判定和性质,等腰三角形的性质,折叠的性质,相似三角形的判定和性质等,熟练运用相似三角形的判定和性质是解题关键.请阅读下列叙述后,回答24~25题.体重为衡量个人健康的重要指标之一,表(一)为成年人利用身高(公尺)计算理想体重(公斤)的三种方式,由于这些计算方式没有考虑脂肪及肌肉重量占体重的比例,因此结果仅供参考.女性理想体重男性理想体重算法①身高×身高×22身高×身高×22算法②(100×身高﹣70)×0.6(100×身高﹣80)×0.7算法③(100×身高﹣158)×0.5+52(100×身高﹣170)×0.6+6224.(3分)以下为甲、乙两个关于成年女性理想体重的叙述:(甲)有的女性使用算法①与算法②算出的理想体重会相同(乙)有的女性使用算法②与算法③算出的理想体重会相同对于甲、乙两个叙述,下列判断何者正确?()A.甲、乙皆正确B.甲、乙皆错误C.甲正确,乙错误D.甲错误,乙正确【分析】假设甲叙述正确,设女性的身高为x公尺,根据使用算法①与算法②算出的理想体重会相同,可列出关于x的一元二次方程,由根的判别式Δ=﹣24<0,可得出原方程没有实数根,进而可得出假设不成立,即甲叙述错误;假设乙叙述正确,设女性的身高为y公尺,使用算法②与算法③算出的理想体重会相同,可列出关于y的一元一次方程,解之可得出y的值,进而可得出假设成立,即乙叙述正确.【解答】解:假设甲叙述正确,设女性的身高为x公尺,。
100第一次國民中學基本學力測驗 數學
科題本
班級: 座
號
:
姓名:
(A ) 1. 座標平面上,若點(3, b )在方程式923-=x y 的圖形上,則b 值為何?
(A)-1 (B) 2 (C) 3 (D) 9
(C ) 2. 計算33)4(7-+之值為何?
(A) 9 (B) 27 (C) 279 (D) 407
(D ) 3. 化簡)23(4)32(5x x ---之後,可得下列哪一個結果?
(A) 2x -27 (B) 8x -15 (C) 12x -15 (D) 18x -27
(D ) 4. 下列有一面國旗是線對稱圖形,根據選項中的圖形,判斷此國旗為何?
(A) (B)
(C) (D)
(A ) 5. 下列四個多項式,哪一個是3522-+x x 的因式? (A) 2x -1 (B) 2x -3 (C) x -1 (D) x -3
(A ) 6. 圖(一)為某校782名
學生小考成績的次
數分配直方圖,若下列有一選項為圖(一)成績的累積次數分配直方圖,則
此圖為何?
(A) (B)
(C) (D)
(C ) 7. 若△ABC 中,2(∠A +∠C )=3∠B ,則∠B 的外角度數為何?
(A) 36 (B) 72 (C) 108 (D) 144
(D ) 8. 若949)7(22+-=-bx x a x ,則b a +之值為何?
(A) 18 (B) 24 (C) 39 (D) 45
(B ) 9. 在早餐店裡,王伯伯買5顆饅頭,3顆包子,老闆少拿2元,只要50
元。
李太太買了11顆饅頭,5顆包子,老闆以售價的九折優待,只要90元。
若饅頭每顆x 元,包子每顆y 元,則下列哪一個二元一次聯立方程式可表示題目中的數量關係?
(A)⎩⎨⎧⨯=++=+9
.09051125035y x y x
(B)⎩⎨⎧÷=++=+9.09051125035y x y x
(C)⎩⎨⎧⨯=+-=+9.09051125035y x y x
(D)⎩⎨⎧÷=+-=+9
.09051125035y x y x
(C )10. 若(a -1):7=4:5,則10a +8之值為何?
(A) 54 (B) 66 (C) 74 (D) 80
(C )11. 圖(二)數線上有O 、A 、B 、C 、D 五點,根據圖中各點所表示的數,判
斷18在數線上的位置會落在下列哪一線段上? (A)OA
(B)AB (C)BC (D)CD
(A )12. 判斷312是96的幾倍?
(A) 1
(B) (31)2
(C) (31)6
(D) (-6)2
(A )13. 解不等式-5
1
x -3>2,得其解的範圍為何?
(A) x <-25 (B) x >-25 (C) x <5 (D) x >5
(B )14. 計算)4(4
3
3221-⨯++之值為何?
(A)-1 (B)-6
11 (C)-512 (D)-3
23
(B )15. 圖(三)的座標平面上有一正五邊形ABCDE ,其中C 、D 兩點座標分別
為(1,0)、(2,0) 。
若在沒有滑動的情況下,將此正五邊形沿著x 軸向右滾動,則滾動過程中,下列何者會經過點(75 , 0)? (A) A
(B) B (C) C (D) D
(C )16. 已知數線上A 、B 兩點座標分別為-3、-6,若在數線上找一點C ,使
得A 與C 的距離為4;找一點D ,使得B 與D 的距離為1,則下列何者不可能為C 與D 的距離? (B) 2 (C) 4 (D) 6
(B )17. 計算63
125412
9⨯
÷之值為何? (A)
123 (B)
6
3
(C)
3
3 (D)
4
3
3 (D )18. 判斷圖(四)中正六邊形
ABCDEF 與正三角
形FCG 的面積比為何? (A) 2:1 (B) 4:3 (C) 3:1 (D) 3:2
(D )19. 座標平面上,二次函數
362+-=x x y 的圖形與下列哪一個方程式的圖形沒有交點?
(A) x =50 (B) x =-50 (C) y =50 (D) y =-50
(B )20. 圖(五)為一張方格紙,紙上有
一灰色三角形,其頂
點均位於某兩格線的交點上,若灰色三角形面積為
4
21
平方公分,則此方格紙的面積為多少平方公
分?
(A) 11
(B) 12 (C) 13 (D) 14
(A )21. 表(一)為72人參加某商店舉辦的單手抓糖果活動的統計結果。
若抓到
糖果數的中位數為a ,眾數為b ,則a +b 之值為何?
(A) 20 (B) 21 (C) 22 (D) 23
(D )22. 計算多項式536223++-x x x 除以(x -2)2後,得餘式為何?
(A) 1 (B) 3 (C) x -1 (D) 3x -3
(B )23. 一籤筒內有四支籤,分別標記號碼1、2、3、4。
已知小武以每次取一
支且取後不放回的方式,取兩支籤,若每一種結果發生的機會都相同,則這兩支籤的號碼數總和是奇數的機率為何?
(A)43
(B)3
2
1
(C)
2
1
(D)
3
(C)24. 如圖(六),△ABC的外接圓上,AB、BC、CA三
弧的度數比為12:13:11。
自BC上取一點D,過
D分別作直線AC、直線AB的平行線,且交BC於
E、F兩點,則∠EDF的度數為何?
(A) 55
(B) 60
(C) 65
(D) 70
(B)25. 若有兩圓相交於兩點,且圓心距離為13公分,則下列哪一選項中的長度可能為此兩圓的半徑?
(A) 25公分、40公分
(B) 20公分、30公分
(C) 1公分、10公分
(D) 5公分、7公分
(B)26. 如圖(七),將某四邊形紙片ABCD的AB向BC方向摺過去(其中AB<BC),使得A點落在BC上,展開後出現摺線BD,如圖(八)。
將B
點摺向D,使得B、D兩點重疊,如圖(九),展開後出現摺線CE,如圖
(十)。
根據圖(十),判斷下列關係何者正確?
(A) AD//BC
(B) AB//CD
(C)∠ADB=∠BDC
(D)∠ADB>∠BDC
(C)27. 圖(十一)為一直角柱,其中兩底面為全等的梯形,其
面積和為16;四個側面均為長方形,其面積和為45。
若此直角柱的體積為24,則所有邊的長度和為何?
(A) 30
(B) 36
(C) 42
(D) 48
(D)28. 圖(十二)為座標平面上二次函數c
=2的圖形,且此圖形通
+
y+
bx
ax
(-1 , 1)、(2 ,-1)兩點。
下列關於此二次函數的敘述,何者正確?
(A) y的最大值小於0
(B)當x=0時,y的值大於1
(C)當x=1時,y的值大於1
(D)當x=3時,y的值小於0
(C)29. 已知小龍、阿虎兩人均在同一地點,若小龍向北直走160公尺,再向東直走80公尺
後,可到神仙百貨,則阿虎向西直走多少公尺後,他與神仙百貨的距離為340公尺? (A) 100 (B) 180 (C) 220 (D) 260
(C )30. 如圖(十三),ΔABC 中,以B 為圓心,BC 長為半徑畫
弧,分別交AC 、AB 於D 、E 兩點,並連接BD 、DE 。
若∠A =30∘,AB =AC ,則∠BDE 的度數為何? (A) 45 (B) 52.5 (C) 67.5 (D) 75
(A )31. 關於方程式95)2(882=-x 的兩根,下列判斷何者
正確?
(A)一根小於1,另一根大於3 (B)一根小於-2,另一根大於2 (C)兩根都小於0 (D)兩根都大於2
(A )32. 圖(十四)中,CA 、CD 分別切圓O 1於A 、D 兩點,CB 、CE 分別切圓
O 2於B 、E 兩點。
若∠1=60∘,∠2=65∘,判斷AB 、
CD 、CE 的長度,下列關
係何者正確?
(A)AB >CE >CD (B)AB =CE >CD (C)AB >CD >CE (D)AB =CD =CE
參考公式:
(D)33. 如圖(十五),AB為圓O的直徑,在圓O上取異於
A、B的一點C,並連接BC、AC。
若想在AB上取
一點P,使得P與直線BC的距離等於AP長,判
斷下列四個作法何者正確?
(A)作AC的中垂線,交AB於P點
(B)作∠ACB的角平分線,交AB於P點
(C)作∠ABC的角平分線,交AC於D點,過D作
直線BC的平行線,交AB於P點
(D)過A作圓O的切線,交直線BC於D點,作∠ADC的角平分線,
交AB於P點
(C)34. 如圖(十六),有兩全等的正三角形ABC、DEF,且D、A分別為△ABC、△DEF的重心。
固定D點,將△DEF逆時針旋轉,使得A落在DE上,
如圖(十七)所示。
求圖(十六)與圖(十七)中,兩個三角形重疊區域的面
積比為何?
(A) 2:1
(B) 3:2
(C) 4:3
(D) 5:4。