2.7 弧长及扇形的面积
- 格式:ppt
- 大小:1.06 MB
- 文档页数:15
弧长与扇形面积知识点总结圆是数学中常见的几何图形之一,而与圆相关的知识点也是我们学习数学不可或缺的一部分。
其中,弧长和扇形面积是圆的两个重要概念。
本文将对弧长和扇形面积这两个知识点进行总结,并介绍其计算公式和应用。
一、弧长弧长是指圆周的一部分长度,它与圆的半径和圆心角有关。
圆心角是以圆心为顶点的角,其对应的弧称为弧度。
下面是计算弧长的公式:弧长 = 弧度 ×半径其中,弧度是以弧长与圆心角所对应的弧度数。
要计算弧度,可以使用以下公式:弧度 = 圆心角/360° × 2π在计算弧长时,需要注意圆心角的单位应与弧度的单位一致,如都是弧度或都是角度。
二、扇形面积扇形是圆中的一部分,由圆心角和两条半径所围成。
扇形的面积是扇形所占的圆的面积。
为了方便计算扇形面积,我们需要了解如下公式:扇形面积 = 扇形的圆心角/360° × πr²其中,r是扇形的半径,π是一个近似值,约等于3.14。
计算扇形面积时,需要将圆心角的单位与面积的单位保持一致。
三、应用案例1. 弧长应用假设一辆车以10m/s的速度绕一个半径为20m的圆形跑道做匀速圆周运动,问车在15秒内行驶的弧长是多少?解:首先,我们需要计算圆心角:圆周长= 2πr = 2π × 20 = 40π m车在15秒内行驶的弧长 = 10m/s × 15s = 150m2. 扇形面积应用一块土地位于一个半径为10m的花圃内,其夹角为60°,问这块土地的面积是多少?解:首先,计算扇形的面积:扇形面积= 60°/360° × π×10² = 1/6 × π × 100 ≈ 52.36m²四、总结弧长和扇形面积是圆的重要概念,它们的计算可以帮助我们解决各种实际问题。
在计算弧长时,需要了解弧度的概念,并注意圆心角的单位。
弧长扇形面积与弦长的计算弧长(arc length)与扇形面积(sector area)是圆形几何中的重要概念。
弧长指的是圆的一部分弧的长度,而扇形面积是由这一弧和与之相交的两条半径所围成的图形的面积。
在数学中,我们可以通过一些公式和方法来计算弧长、扇形面积以及它们与弦长(chord length)之间的关系。
一、弧长的计算在计算弧长时,我们需要知道圆的半径和所对应的圆心角(central angle)。
根据圆的性质,我们可以得出以下公式来计算弧长。
1. 当圆心角使用弧度制时:弧长 = 半径 ×圆心角弧长的单位与半径的单位相同,例如,如果半径使用米(m)作为单位,则弧长也使用米(m)作为单位。
2. 当圆心角使用度数制时:弧长 = (半径 ×圆心角× π) / 180这里的π是一个常数,近似取3.14159。
例如,假设圆的半径为5m,对应的圆心角为60度,则根据上述公式计算得到弧长为(5 × 60 × 3.14159) / 180 ≈ 5.24m。
二、扇形面积的计算扇形面积是由圆心、弧和两条半径所围成的区域。
计算扇形面积时,我们需要知道圆的半径和所对应的圆心角。
扇形面积的计算公式如下:扇形面积 = (半径的平方 ×圆心角) / 2其中,半径的平方表示半径的平方值。
与弧长计算中的圆心角一样,如果圆心角使用度数制,则计算扇形面积时需要将圆心角转换为弧度制。
例如,假设圆的半径为4cm,对应的圆心角为45度,则根据上述公式计算得到扇形面积为(4^2 × 45 × 3.14159) / (2 × 180) ≈ 5.65cm²。
三、弦长与弧长、扇形面积的关系弦是圆内连接两个任意点的线段,它与圆的弧和扇形面积有一定的关系。
1. 弧长与弦长的关系当弧长和弦长的夹角(内切角)相同时,弦长越长,对应的弧长也越长。
2. 扇形面积与弦的关系当扇形面积和弦的夹角(内切角)相同时,弦越长,对应的扇形面积也越大。
弧长和扇形面积的计算弧长和扇形面积是圆的基本性质,在几何学和数学运算中经常使用。
本文将介绍如何计算弧长和扇形面积,并提供示例以便更好地理解。
一、弧长的计算弧长是圆上一段弧的长度。
要计算弧长,需要知道弧所对应的圆的半径(r)和弧的夹角(θ)。
公式:L = 2πr × (θ/360°)其中,L表示弧长,r表示半径,θ表示夹角。
示例1:如果半径为5 cm的圆的夹角为60°,则弧长可以通过以下计算得到:L = 2π × 5 cm × (60°/360°) = 10π/3 cm ≈ 10.47 cm示例2:如果半径为8 m的圆的夹角为120°,则弧长计算如下:L = 2π × 8 m × (120°/360°) = 16π/3 m ≈ 16.76 m二、扇形面积的计算扇形面积是圆的一部分,由弧与两个半径所围成。
要计算扇形面积,需要知道扇形所对应的圆的半径(r)和扇形的夹角(θ)。
公式:A = πr² × (θ/360°)其中,A表示扇形面积,r表示半径,θ表示夹角。
示例3:如果半径为10 cm的圆的夹角为90°,则扇形面积计算如下:A = π × (10 cm)² × (90°/360°) = 25π cm² ≈ 78.54 cm²示例4:如果半径为6 m的圆的夹角为150°,则扇形面积可以通过以下计算得到:A = π × (6 m)² × (150°/360°) = 9π m² ≈ 28.27 m²通过上述示例,我们可以看到如何计算弧长和扇形面积。
这两个计算都使用了圆周率(π),在具体计算时,可以使用3.14或根据需要的精度使用更多位小数。
弧长和扇形面积公式在几何学中,弧长和扇形面积是与圆形和圆的扇形相关的重要概念和计算方法。
这些公式可以用于解决许多几何问题,例如计算圆的周长、计算弧长和扇形的面积等。
本文将详细介绍关于弧长和扇形面积的公式及其推导过程。
首先,我们先来介绍一下什么是圆和圆的扇形。
圆是一个平面上所有点到一个固定点的距离都相等的图形。
而圆的扇形则是由半径为r的圆上的一段弧和两条半径所围成的图形。
1.弧长公式:弧长是圆上一段弧的长度,由于圆在数学上具有无限个点,所以我们可以定义一个角度来度量弧长。
我们知道圆的一周是360度,因此弧长的度量可以用度数或弧度来表示。
当我们用度数来度量弧长时,弧长和弧度的关系可以由以下公式得到:弧长=弧度×半径该公式是通过比较整个圆的周长与360度的比例得到的。
当我们用弧度来度量弧长时,弧度的定义是:圆的半径等于半径所对应的弧长的度数。
因此,当我们用弧度来度量弧长时,直接使用半径和弧度的乘积即可表示弧长。
2.扇形面积公式:扇形是由圆心、圆上一段弧和两条半径所围成的图形。
扇形的面积就是扇形所覆盖的圆的面积。
扇形面积可以由以下公式得到:扇形面积=(弧度÷2π)×πr²该公式是通过将圆的面积与圆的周长的比例乘以扇形所对应的弧长所得到的。
推导过程如下:假设圆的半径为r,圆心角为θ度,则该圆心角所对应的弧长为:弧长=(θ÷360)×2πr由于扇形是由半径为r的圆上一段弧和两条半径所围成的,所以扇形的面积可以表示为:扇形面积=(θ÷360)×πr²化简得到:扇形面积=(θ÷2π)×πr²将弧度用θ表示,得到最终的扇形面积公式:扇形面积=(弧度÷2π)×πr²需要注意的是,使用上述公式计算扇形面积时,角度必须使用弧度表示。
如果给出的是度数,则需将角度转换为弧度后再进行计算。
苏科版数学九年级上册《2.7 弧长及扇形的面积》教学设计3一. 教材分析苏科版数学九年级上册《2.7 弧长及扇形的面积》是学生在学习了三角形、四边形、圆等基本几何图形的基础上,进一步深入研究圆的相关知识的章节。
本节内容主要介绍了弧长和扇形面积的计算方法,旨在让学生理解和掌握弧长和扇形面积的求法,培养学生运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识基础,对圆的相关概念有一定的了解。
但是,对于弧长和扇形面积的计算方法,学生可能还比较陌生。
因此,在教学过程中,教师需要通过具体的实例和生动的讲解,帮助学生理解和掌握弧长和扇形面积的计算方法。
三. 教学目标1.让学生理解弧长和扇形面积的概念,掌握弧长和扇形面积的计算方法。
2.培养学生运用数学知识解决实际问题的能力。
3.提高学生对圆的相关知识的学习兴趣和积极性。
四. 教学重难点1.弧长和扇形面积的概念。
2.弧长和扇形面积的计算方法。
五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探究,激发学生的学习兴趣。
2.使用多媒体教学手段,如PPT、视频等,生动展示弧长和扇形面积的计算过程,帮助学生理解和记忆。
3.学生进行小组讨论和合作,培养学生的团队协作能力和沟通能力。
4.进行课堂练习和课后作业的布置,巩固学生对弧长和扇形面积计算方法的掌握。
六. 教学准备1.PPT课件的制作。
2.相关视频资料的准备。
3.练习题的准备。
七. 教学过程1.导入(5分钟)通过提出问题,如“在生活中,我们经常会遇到圆形物体,那么如何计算一个扇形的面积呢?”引导学生思考和讨论,引出本节课的主题——弧长及扇形的面积。
2.呈现(10分钟)使用PPT课件和视频资料,生动展示弧长和扇形面积的计算过程,帮助学生理解和记忆。
同时,教师进行讲解,解释弧长和扇形面积的概念,以及如何进行计算。
3.操练(10分钟)学生根据教师提供的练习题,进行弧长和扇形面积的计算。
苏科新版九年级上册《2.7弧长及扇形的面积》2024年同步练习卷一、选择题:本题共6小题,每小题3分,共18分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.若扇形的圆心角为,半径为6,则该扇形的弧长为()A.B.C.D.2.一个圆中有三个扇形甲、乙、丙,其中甲、乙所占总面积的百分比如图所示,那么扇形丙的圆心角是() A. B.C.D.3.如图,在中,,,以BC 为直径作半圆,交AB 于点D ,则阴影部分的面积是()A. B.C.D.24.如图,半圆O 的直径,将半圆O 绕点B 顺针旋转得到半圆,与AB 交于点P ,则图中阴影部分的面积为() A. B. C. D.5.如图,半径为10的扇形AOB 中,,C 为弧AB 上一点,,,垂足分别为D ,若图中阴影部分的面积为,则()A. B. C.D.6.如图,将半径为2cm的圆形纸片翻折,使得、恰好都经过圆心O,折痕为AB、BC,则阴影部分的面积为()A.B.C.D.二、填空题:本题共6小题,每小题3分,共18分。
7.在圆心角为的扇形AOB中,半径,则扇形OAB的面积为______.8.如图,的半径为2,点A,C在上,线段BD经过圆心O,,,,则图中阴影部分的面积为_______.9.如图,图1是由若干个相同的图形图组成的美丽图案的一部分,图2中,图形的相关数据:半径,则图2的周长为______结果保留10.如图,矩形ABCD的四个顶点分别在扇形OEF的半径和弧上,若,,,则AB的长为______.11.如图,半圆O中,直径,弦,长为,则由与AC,AD围成的阴影部分面积为______.12.如图,的半径为5,A、B是圆上任意两点,且,以AB为边作正方形点D、P在直线AB两侧若AB边绕点P旋转一周,则对角线BD边扫过的面积为______.三、解答题:本题共4小题,共32分。
解答应写出文字说明,证明过程或演算步骤。
13.本小题8分如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为,AB长为30cm,贴纸部分的宽BD为20cm,求贴纸部分的面积纸扇有两面,结果精确到14.本小题8分如图,已知在中,,,,半径为2的分别与AC、BC相切于点E、求证:AB是的切线;求的度数,写出图中阴影部分的面积.15.本小题8分如图,D是等边内的一点,将线段AD绕点A顺时针旋转得到线段AE和扇形EAD,连接CD、BE、若,求阴影部分的面积;结果保留根号和若,求的度数.16.本小题8分如图,AB是以BC为直径的半圆O的切线,D为半圆上一点,,AD、BC的延长线相交于点求证:AD是半圆O的切线;连结CD,求证:答案和解析1.【答案】C【解析】解:该扇形的弧长故选:根据弧长公式计算.本题考查了弧长的计算:弧长公式:弧长为l,圆心角度数为n,圆的半径为2.【答案】B【解析】解:,故选:根据扇形统计图的意义可得,扇形丙的圆心角占的,计算即可得答案.本题考查认识平面图形,掌握扇形统计图的意义是正确解答的前提.3.【答案】D【解析】解:连接CD,是半圆的直径,,在中,,,是等腰直角三角形,,阴影部分的面积,故选:连接CD,根据圆周角定理得到,推出是等腰直角三角形,得到,根据三角形的面积公式即可得到结论.本题考查了扇形的面积的计算,等腰直角三角形的性质,正确的作出辅助线是解题的关键.4.【答案】A【解析】解:由已知可得,,,弓形PB的面积是:,阴影部分的面积是:,故选:根据题意和扇形面积计算公式、三角形的面积公式,可以计算出图中阴影部分的面积,本题得以解决.本题考查扇形面积的计算、旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.5.【答案】B【解析】解:连接OC,,,,四边形CDOE是矩形,,在与中,,≌,图中阴影部分的面积=扇形OBC的面积,,,,≌,,,,故选:连接OC,易证得四边形CDOE是矩形,则≌,得到图中阴影部分的面积=扇形OBC的面积,利用扇形的面积公式即可求得,然后根据求得三角形的性质以及平行线的性质即可求得本题考查了扇形的面积,矩形的判定与性质,全等三角形的判定和性质,利用扇形OBC的面积等于阴影的面积是解题的关键.6.【答案】C【解析】解:作于点D,连接AO,BO,CO,如图所示:,,同理,,阴影部分的面积面积;故选:作于点D,连接AO,BO,CO,求出,得到,进而求得,再利用阴影部分的面积得出阴影部分的面积是面积的,即可得出结果.本题主要考查了翻折变换的性质、扇形面积以及圆的面积公式等知识;解题的关键是确定7.【答案】【解析】解:圆心角为的扇形AOB中,半径,扇形OAB的面积,故答案为:根据扇形的面积公式即可得到结论.别人看出来扇形的面积的计算,熟练掌握扇形的面积公式是解题的关键.8.【答案】【解析】【分析】本题考查了全等三角形的判定、解直角三角以及扇形的面积公式,解题的关键是找出本题属于基础题,难度不大,解决该题型题目时,根据拆补法将不规则的图形变成规则的图形,再套用规则图形的面积公式进行计算即可.通过解直角三角形可求出,,从而可求出,再通过证三角形全等找出,套入扇形的面积公式即可得出结论.【解答】解:在中,,,,,,同理,可得出:,在和中,有,≌故答案为9.【答案】【解析】解:由图1得:的长的长的长半径,则图2的周长为:,故答案为:先根据图1确定:图2的周长个的长,根据弧长公式可得结论.本题考查了弧长公式的计算,根据图形特点确定各弧之间的关系是本题的关键.10.【答案】2【解析】解:如图,连接OD,,,,,四边形ABCD是矩形,,,在中,,,,,在中,根据勾股定理,得,,解得,故答案为:连接OD,可得,根据已知可得,根据四边形ABCD是矩形,可得,,再根据含30度角的直角三角形可得,根据勾股定理即可求出OB的长,进而可得AB的长.本题考查了矩形的性质,含30度角的直角三角形,勾股定理,解决本题的关键是连接OD得到11.【答案】【解析】解:连接OC,OD,直径,,,,长为,阴影部分的面积为,故答案为:连接OC,OD,根据同底等高可知,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式来求解.本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.12.【答案】【解析】解:连接PD,过点P作与点E,PE交AB于点F,则BD边扫过的面积为以PD为外圆半径、PB为内圆半径的圆环面积,如图所示,,又为的弦,,,在中,易知,,,,,在中,,边扫过的面积为故答案为:连接PD,过点P作与点E,PE交AB于点F,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,利用垂径定理即可得出,进而可得出,再根据圆环的面积公式结合勾股定理即可得出BD边扫过的面积.本题考查了垂径定理、勾股定理、平行线的性质以及圆环的面积公式,结合AB边的旋转,找出BD边旋转过程中扫过区域的形状是关键.13.【答案】解:答:贴纸部分的面积为【解析】扇形面积公式可计算出两个扇形的面积,然后相减即可得.主要考查了扇环的面积求法.一般情况下是让大扇形的面积减去小扇形的面积求扇环面积.14.【答案】证明:连接OE、OD,过点O作,垂足为M,与AC,BC相切于点E、D,,,,,,,,,,,又,是的切线;,,,,、OB分别是、的角平分线,,,,,,,,图中阴影部分的面积为:【解析】根据已知分别与AC、BC相切于点E、D,想到连接OD,OE,可得,要证明AB是的切线,想到过点O作,垂足为M,只要求出即可,然后通过面积法进行计算即可解答;由得,,,,从而可得OA、OB分别是、的角平分线,即可求出的度数,最后利用的面积减去扇形的面积进行计算即可解答.本题考查了切线的判定与性质,勾股定理,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.15.【答案】解:,,是等边三角形,,;是等边三角形,,,线段AD绕点A顺时针旋转,得到线段AE,,,,,在和中,,≌,,,,为等边三角形,,【解析】利用扇形面积公式和三角形面积公式求得即可;由SAS证≌可得,证为等边三角形,则,继而得出答案.本题主要考查扇形面积的计算,旋转的性质,等边三角形的性质和全等三角形的判定与性质等知识;熟练掌握旋转的性质,证得三角形的全等是解题的关键.16.【答案】解:连结OD,BD,是的切线,,即,,,,,,,是半圆O的切线.由知,,,是半圆O的切线,,,是的直径,,,,,,【解析】连接OD,BD,根据圆周角定理得到,根据等腰三角形的性质得到,,根据等式的性质得到,根据切线的判定定理即可得到即可;由AD是半圆O的切线得到,于是得到,根据圆周角定理得到,等量代换得到,即可得到结论.本题考查了切线是性质,弧长的计算,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.。