弧长及扇形的面积
- 格式:doc
- 大小:974.50 KB
- 文档页数:4
弧长与扇形面积公式一、弧长公式1.弧长的定义弧长是指一个圆弧所对应的圆心角所对应的圆的一部分的长度。
在圆形轨迹上,圆心角的度数与弧长成一定的比例关系。
2.弧长公式的推导首先,我们知道,在一个完整的圆中,圆心角为360度或2π弧度。
因此,一个占满整个圆周四分之一的圆弧所对应的圆心角为90度或π/2弧度。
假设一个圆的半径为r,其中一个圆弧所对应的圆心角为θ度或θ弧度,由此可得圆弧的长度为圆周的四分之一长度:长度=θ/360×2πr或长度=θ/2π×2πr通过简化上述公式,我们可以得到弧长的常用公式:长度=θ×πr/180或长度=θ×r其中,θ以度数表示时,圆弧长度使用第一个公式。
θ以弧度表示时,圆弧长度使用第二个公式。
这是弧长与圆心角的常用关系公式。
3.弧长公式的应用弧长公式是在解决圆弧上的问题时常用到的。
例如,在射击运动中,构成射击靶心边界的圆可能会被划分成不同的区域,每个区域都具有不同的分值。
当子弹击中圆的其中一点时,子弹沿弧线的走过弧长可以换算成对应的分数。
另一个应用实例是在机械制造过程中。
当需要切割或加工一个圆弧时,工人可以使用弧长公式确定刀具运动的距离。
这样,他们就能够更准确地进行切割和加工。
1.扇形面积的定义扇形是圆周上两个半径所夹的圆弧以及这两个半径所对应的圆心角组成的图形。
扇形面积是指由圆心、半径、圆弧组成的图形所围成的面积。
2.扇形面积公式的推导事实上,一个扇形可以想象成是一个半径为r的圆被一个圆心角为θ度或θ弧度的扇形切割下来而得到的。
那么,这个扇形的面积就可以看作是底边长为r,高为r的一个三角形(底边就是圆弧的长度)与这个扇形之间的差值。
通过计算底边长为r,高为r的三角形的面积,我们可以得到扇形的面积。
三角形的面积= 1/2 × r × r × sin(θ) = (r^2 × sin(θ))/2所以,扇形的面积= (r^2 × θ × sin(θ))/2其中,θ以度数表示时,扇形面积使用第一个公式。
弧长公式扇形面积公式弧度制
(最新版)
目录
1.引言
2.弧长公式
3.扇形面积公式
4.弧度制
5.结论
正文
1.引言
在数学中,扇形是一个非常基本的概念,它是由一条弧和经过这条弧两端的两条半径所围成的区域。
扇形的面积和弧长是计算扇形相关问题的重要工具,而弧度制则是一种用来度量角度的制度。
本文将介绍扇形的面积公式、弧长公式以及弧度制。
2.弧长公式
弧长公式是用来计算扇形弧长的公式,它的公式为:L = θr,其中 L 表示弧长,θ表示扇形角的弧度制表示,r 表示扇形的半径。
通过这个公式,我们可以计算出扇形中任意一段弧的长度。
3.扇形面积公式
扇形面积公式是用来计算扇形面积的公式,它的公式为:S = 1/2 ×r ×θ,其中 S 表示扇形的面积,r 表示扇形的半径,θ表示扇形角的弧度制表示。
通过这个公式,我们可以计算出扇形的面积。
4.弧度制
弧度制是一种用来度量角度的制度,它的单位是弧度。
在弧度制中,
一圆的周长被定义为 2πr,其中 r 表示圆的半径。
弧度制的应用使得计算扇形问题变得更加简便,因为它可以避免角度制中度数与弧度之间的转换。
5.结论
总结一下,扇形的面积公式和弧长公式是计算扇形相关问题的重要工具,而弧度制则为计算提供了便利。
扇形的弧长和面积公式高中
扇形所对应的弧长公式为:L=n2πR/360。
扇形面积计算公式:S=nπR/360或S=LR/2。
扇形面积公式描述了扇形面积和圆心角(顶角)、半径、所对弧长的关系。
推导过程:由定理“等半径的两个扇形的面积之比等于它们的弧长之比”,将圆看作扇形,利用弧长公式和圆的面积公式即可。
简介:组成部分:
1、圆上A、B两点之间的的部分叫做“圆弧”简称“弧”,读作“圆弧AB”或“弧AB”。
2、以圆心为中心点的角叫做“圆心角”。
3、有一种统计图就是“扇形统计图。
”
曲线的弧长也称曲线的长度,是曲线的特征之一。
不是所有的曲线都能定义长度,能够定义长度的曲线称为可求长曲线。
最早研究的曲线弧长是圆弧的长度,所以狭义上,特指圆弧的长度。
半径为R的圆中,n°的圆心角所对圆弧的弧长为n πR/180°。
弧长公式和面积公式
圆弧的弧长公式和面积公式:
1、已知弧长L与半径R:S扇形=1/2LR。
2、已知弧所对的圆心角n°与半径。
S扇形=nπR^2/360。
弧形计算公式:S=1/2LR=nπR²/360(L是弧长,R是半径)。
弧长计算公式:L=n(圆心角度数)×π(1)×r(半径)/180(角度制),L=α(弧度)×r(半径)(弧度制)。
其中n是圆心角度数,r 是半径,L是圆心角弧长。
弧形面积的计算方法
弧长、两弧点间的距离、弧高这三个条件知道任意两个就够了。
(1)由已知弧长和已知弦长(两弧点间的距离)求得圆半径和弧所对的圆心角的度数。
(2)由半径和圆心角求得扇形面积和三角形面积。
(3)扇形面积减去三角形的面积的弧形的面积。
圆的弧长与扇形面积圆是几何学中的基本概念之一,具有广泛的应用和研究价值。
在学习和使用圆的时候,我们常常需要计算圆的弧长和扇形的面积。
本文将介绍如何计算圆的弧长和扇形的面积,并提供一些应用实例。
一、圆的弧长在圆中任选两个点,以这两个点为端点的圆弧所对应的弧长称为圆弧长。
弧长是圆形状的一个重要特征,也是计算圆的其他性质的基础。
圆的弧长与圆的半径和圆心角有关。
圆心角是指以圆心为顶点的两条辐射线所夹的角度。
公式1:弧长 = 圆心角/ 360° × 2πr其中,r为圆的半径,弧长单位与半径单位相同,常用的单位有厘米、米和千米等。
在计算时需要注意角度制的单位需与弧度制相互转换。
例如,当圆的半径为5cm,圆心角为60°时,可通过公式1计算出弧长为(60/360) × 2π × 5 ≈ 5.24cm。
二、扇形的面积扇形是圆的一部分,由圆心和弧组成。
计算扇形的面积需要了解圆的半径和圆心角。
公式2:扇形面积 = 圆心角/ 360° × πr²其中,r为圆的半径,扇形面积单位为平方长度单位。
例如,当圆的半径为10m,圆心角为120°时,可通过公式2计算出扇形面积为(120/360) × π × 10² ≈ 104.72m²。
三、实际应用1. 环形围栏假设有一个圆形花坛,我们需要围栏围绕花坛的边缘。
已知花坛的直径为3m,围栏高出地面30cm。
求围栏的总长度。
首先,计算圆的半径,r = 直径/ 2 = 3 / 2 ≈ 1.5m。
其次,计算围栏的高度,h = 地面高度 + 围栏高出地面的高度 = 0.3m + 0.3m = 0.6m。
然后,计算围栏的总长度,等于圆的周长再加上围栏高度的2倍,即2πr + 2h = 2π × 1.5 + 2 × 0.6 ≈ 9.42m。
答:围栏的总长度为9.42m。
圆的弧长与扇形面积计算
圆是几何学中常见的形状,其弧长和扇形面积的计算是基础的几何学知识。
在本文中,我们将讨论如何计算圆的弧长和扇形面积。
一、圆的弧长计算
在计算圆的弧长时,我们需要知道圆的半径(r)以及弧度(θ)。
弧度是度数的一种换算方式,1弧度(rad)等于57.3度(°)。
圆的弧长(s)可以通过以下公式计算:
s = r × θ
其中,s表示圆的弧长,r表示圆的半径,θ表示圆的弧度。
例如,如果我们知道半径为5cm的圆的弧度θ为π/3,那么可以通过代入公式计算出弧长。
s = 5cm × π/3≈ 5.24cm
所以,圆的弧长为约5.24cm。
二、扇形面积的计算
扇形是以圆心角为顶点的圆弧所围成的图形。
在计算扇形面积时,我们需要知道圆的半径(r)以及圆心角的度数(θ)。
扇形的面积(A)可以通过以下公式计算:
A = (θ/360°) × πr²
其中,A表示扇形的面积,r表示圆的半径,θ表示圆心角的度数。
例如,如果我们知道半径为8cm的圆的圆心角度数θ为60°,那么可以通过代入公式计算出扇形面积。
A = (60°/360°) × π × 8cm² ≈ 13.09cm²
所以,扇形的面积为约13.09cm²。
综上所述,我们可以使用特定的公式来计算圆的弧长和扇形面积。
这些计算对于解决实际问题和理解几何学概念非常有帮助。
希望通过本文的介绍,您能更好地掌握圆的弧长和扇形面积的计算方法。
弧形面积公式3个
常见的弧形面积公式有以下三个:
1. 弧长乘以半径的公式:
弧形面积 = 弧长× 半径 / 2
公式中的弧长是弧所对应的圆周的长度,半径是弧所在圆的半径。
2. 扇形面积公式:
弧形面积 = 弧长× 半径
这个公式适用于弧所对应的角度为360度的情况,即完整的圆盘。
3. 正弦公式:
弧形面积 = (弧长× 半径²) / 2
这个公式适用于弧所对应的角度不为360度的情况,通过使用三角函数计算弧形面积。
这三个公式可以根据具体情况选择使用,根据已知条件的不同,选取合适的公式计算弧形面积。
弧长与扇形面积的计算在几何学中,弧长和扇形面积是计算圆形和弧形的重要指标。
弧长是弧所对的圆周的长度,而扇形面积则是由弧和此弧所对的两条半径所构成的扇形的面积。
计算弧长和扇形面积的公式相对简单,但是理解其原理与运用也是非常重要的。
一、弧长的计算弧长是圆周的一部分长度,可以用弧度或度数来表示。
以下介绍两种计算弧长的公式及其推导:1. 弧度制计算:弧度是一种角度的度量方式,定义为半径上的弧所对的圆心角所包含的弧长等于半径的长度。
弧度制计算弧长的公式为:L = rθ其中,L为弧长,r为半径,θ为圆心角的弧度数。
2. 度数制计算:度数制是常见的角度度量方式,360度为一圆。
计算弧长的公式为:L = 2πr(n/360)其中,L为弧长,r为半径,n为圆心角的度数。
二、扇形面积的计算扇形面积是由扇形两条半径和弧所构成的区域的面积。
以下介绍两种计算扇形面积的公式及其推导:1. 弧度制计算:扇形面积的公式为:A = (1/2)r²θ其中,A为扇形面积,r为半径,θ为圆心角的弧度数。
2. 度数制计算:扇形面积的公式为:A = (1/2)r²(n/360)其中,A为扇形面积,r为半径,n为圆心角的度数。
三、实例应用下面通过一个实例来进一步理解和应用弧长与扇形面积的计算方法:假设一个圆的半径为6cm,圆心角为60度,则根据弧度制计算弧长和扇形面积的公式,弧长L和扇形面积A分别为:弧长L = 6cm × (60/180) = 2πcm扇形面积A = (1/2) × 6cm² × (60/180) = πcm²根据度数制计算方法,同样可以得到相同的结果。
结论:- 弧长和扇形面积的计算与圆心角的度数或弧度数密切相关;- 使用弧度或度数制计算时,需根据具体问题选择合适的公式;- 运用前述公式,可以方便地计算圆形或弧形的弧长和扇形面积。
总结:本文介绍了弧长与扇形面积的计算方法及应用实例。
弧长及扇形面积第一部分 知识梳理(一)、圆的弧长及扇形面积公式在半径为R 的圆中,n °的圆心角所对的弧长为C 1,以n °为圆心角的扇形面积为S 1弧长公式 : 弧长C 1=180n R π 扇形面积公式: S 1=2360n R π=12C 1R注意:计算不规则图形的面积时,要转化成规则图形的面积进行计算。
(二)、圆锥的侧面积:注意:圆锥的侧面展开图是一个扇形 其中:(1)h 是圆锥的高,r 是底面半径;(2)l 是圆锥的母线,其长为侧面展开后所得扇形的半径R ;(3)圆锥的侧面展开图是半径等于 l ,弧长等于圆锥底面 周长C 的扇形.即: ①l =R ②180n Rπ=2πr ③h 2+r 2=l 2圆锥的侧面积 S 侧面积= πrl圆锥的全面积 S 全面积= πrl +πr 2第二部分 中考链接一、有关弧长计算 (一)、选择题1、(2018•淄博)如图,⊙O 的直径AB=6,若∠BAC=50°,则劣弧AC 的长为( )A 、2π B. 83π C 34π D. 43π1题图2题图 3题图 4题图 5题图2、(2018•黄石)如图,AB 是⊙O 的直径,点D 为⊙O 上一点,且∠ABD=30°,BO=4,则的长为( )A .23πB .43πC .2πD .83π3、(2018•沈阳)如图,正方形ABCD 内接于O ,AB=2,则的长是( )A .πB .πC .2πD .π4、(2018•陵城区二模)一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路径长度为( )A .B .C .4D .2+5、(2018•明光市二模)如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧的长是( )A .B .C .D .6、(2019青岛)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.π B.2π C.2π D.4π6题图 7题图 8题图7、(2019烟台)如图,AB是⊙O的直径,直线DE与⊙O相切于点C,过A,B分别作AD⊥DE,BE⊥DE,垂足为点D,E,连接AC,BC,若AD=,CE=3,则的长为()A.B.πC.πD.π8、(2019泰安)如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则的长为()A.πB.πC.2πD.3π(二)、填空题1、(2018•潍坊)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x轴正半轴于点A3;….按此作法进行下去,则的长是..1题图 3题图 4题图5题图8题图2、(2018•连云港)一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为cm.3、(2018•永州)如图,在平面直角坐标系中,已知点A(1,1),以点O为旋转中心,将点A逆时针旋转到点B的位置,则的长为.4、(2018•盐城)如图,图1是由若干个相同的图形(图2)组成的美丽图案的一部分,图2中,图形的相关数据:半径OA=2cm,∠AOB=120°.则图2的周长为cm(结果保留π).5、(2018常州)如图,△ABC是⊙O的内接三角形,∠BAC=60°,的长是,则⊙O的半径是.6、(2018•温州)已知扇形的弧长为2π,圆心角为60°,则它的半径为..7、(2018•白银)如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为.8.(2019泰州)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的周长为cm.(三)、解答题1.(2018•湖州)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.二、、有关扇形面积计算(一)、选择题1、(2018•德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A.2B.C.πm2 D.2πm21题图2题图 3题图4题图2、(2018•广安)如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣3、(2018•成都)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π4、(2018•绵阳)如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5)πm2B.40πm2C.(30+5)πm2D.55πm25.(2018•十堰)如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交于点D,以OC为半径的交OA于点E,则图中阴影部分的面积是()A.12π+18B.12π+36C.6D.66、(2018•山西)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣85题图6题图7题图8题图7、(2018•广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2 D.28、(2018•威海)如图,在正方形ABCD中,AB=12,点E为BC的中点,以CD为直径作半圆CFD,点F为半圆的中点,连接AF,EF,图中阴影部分的面积是()A.18+36πB.24+18πC.18+18πD.12+18π9题图10题图11题图12题图13题图9、(2019枣庄)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A.8﹣πB.16﹣2πC.8﹣2πD.8﹣12π10、(2019临沂)如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π11、(2019宿迁)如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是()A.63﹣πB.63﹣2πC.63+πD.63+2π12. (2019四川南充)如图,在半径为6的⊙O中,点A,B,C都在⊙O上,四边形OABC是平行四边形,则图中阴影部分的面积为()A. 6π B. 33π C. 23π D. 2π13.(2019四川资阳)如图,直径为2cm的圆在直线l上滚动一周,则圆所扫过的图形面积为()A. 5πB. 6πC. 20πD. 24π(二)、填空题1、(2018青岛)如图,Rt△ABC,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE、OF,则图中阴影部分的面积是.1题图2题图3题图4题图2、(2018•安顺)如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.3、(2018•荆门)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O 交BC于点E,则阴影部分的面积为.4、(2018•重庆)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)5、(2018•重庆)如图,在矩形ABCD中,AB=3,AD=2,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是(结果保留π).5题图6题图8题图9题图10题图6.(2018•香坊区)如图,点A、B、C是⊙O上的点,且∠ACB=40°,阴影部分的面积为2π,则此扇形的半径为.7、(2018•哈尔滨)一个扇形的圆心角为135°,弧长为3πcm,则此扇形的面积是cm2.8、(2019日照)如图,已知动点A 在函数4(0y x x=>)的图象上,AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,延长CA 交以A 为圆心AB 长为半径的圆弧于点E ,延长BA 交以A 为圆心AC 长为半径的圆弧于点F ,直线EF 分别交x 轴、y 轴于点M 、N ,当NF =4EM 时,图中阴影部分的面积等于 .9、(2019泰安)如图,∠AOB =90°,∠B =30°,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C ,交OB于点D ,若OA =3,则阴影都分的面积为 .10、(2019德州)如图,O 为Rt △ABC 直角边AC 上一点,以OC 为半径的⊙O 与斜边AB 相切于点D ,交OA 于点E ,已知BC =,AC =3.则图中阴影部分的面积是 .11、(2019无锡市)如图,在△ABC 中,AC :BC :AB =5:12:13,⊙O 在△ABC 内自由移动,若⊙O 的半径为1,且圆心O 在△ABC 内所能到达的区域的面积为103,则△ABC 的周长为 . A BABCOOCOOI HF GED11题图 12题图 12、(2019四川内江)如图,在平行四边形ABCD 中,AB <AD ,∠A =150°,CD =4,以CD 为直径的⊙O 交AD 于点E ,则图中阴影部分的面积为 . (三)、解答题1、(2019东营)如图,AB 是⊙O 的直径,点D 是AB 延长线上的一点,点C 在⊙O 上,且AC =CD ,∠ACD =120°.(1)求证:CD 是⊙O 的切线,(2)若⊙O 的半径为3,求图中阴影部分的面积.2、(2019无锡市)一次函数b kx y +=的图像与x 轴的负半轴相交于点A ,与y 轴的正半轴相交于点B ,且sin ∠ABO 3OAB 的外接圆的圆心M 的横坐标为﹣3. (1)求一次函数的解析式; (2)求图中阴影部分的面积.xy M BAO3.(2019·武汉)已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,DC 与⊙O 相切于点E ,分别交AM 、BN于D 、C 两点(1) 如图1,求证:AB 2=4AD ·BC(2) 如图2,连接OE 并延长交AM 于点F ,连接CF .若∠ADE =2∠OFC ,AD =1,求图中阴影部分的面积ODEMF EMO图1 图2 4.(2019·衡阳)如图,点A 、B 、C 在半径为8的⊙O 上,过点B 作BD ∥AC ,交OA 延长线于点D ,连接BC ,且∠BCA =∠OAC =30°.(1)求证:BD 是⊙O 的切线;(2)求图中阴影部分的面积.DAOCB三、圆锥(一)、选择题2、(2018•自贡)已知圆锥的侧面积是8πcm 2,若圆锥底面半径为R (cm ),母线长为l (cm ),则R 关于l 的函数图象大致是( )A .B .C .D .3、(2018•遵义)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为( )A.60πB.65πC.78πD.120π4、(2018•遂宁)已知圆锥的母线长为6,将其侧面沿着一条母线展开后所得扇形的圆心角为120°,则该扇形的面积是()A.4πB.8πC.12πD.16π5、(2018•东阳市模拟)已知一个圆锥的底面半径为3cm,母线长为10cm,则这个圆锥的侧面积为()A.30πcm2B.50πcm2C.60πcm2D.3πcm26、(2019东营)如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.3B.C.3 D.3(二)、填空题1、(2018烟台)如图,点O为正六边形ABCDEF的中心,点M为AF中点,以点O为圆心,以OM的长为半径画弧得到扇形MON,点N在BC上;以点E为圆心,以DE的长为半径画弧得到扇形DEF,把扇形MON 的两条半径OM,ON重合,围成圆锥,将此圆锥的底面半径记为r1;将扇形DEF以同样方法围成的圆锥的底面半径记为r2,则r1:r2=.1题图2题图3题图7题图8题图2、(2018徐州)如图,扇形的半径为6,圆心角θ为120°,用这个扇形围成一个圆锥的侧面,所得圆锥的底面半径为.3、(2018•郴州)如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)4、(2018•聊城)用一块圆心角为216°的扇形铁皮,做一个高为40cm的圆锥形工件(接缝忽略不计),那么这个扇形铁皮的半径是cm.5、(2018•黑龙江)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.6、(2018•扬州)用半径为10cm ,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为cm.7、(2018•苏州)如图,8×8的正方形网格纸上有扇形OAB和扇形OCD,点O,A,B,C,D 均在格点上.若用扇形OAB围成一个圆锥的侧面,记这个圆锥的底面半径为r1;若用扇形OCD围成另个圆锥的侧面,记这个圆锥的底面半径为r2,则12rr的值为8、(2019聊城)如图是一个圆锥的主视图,根据图中标出的数据(单位:cm),计算这个圆锥侧面展开图圆心角的度数为.9.(2019无锡市)已知圆锥的母线成为5cm,侧面积为15πcm 2,则这个圆锥的底面圆半径为cm .答案与提示:一、弧长计算(一)、选择题1、D2、D3、A4、B5、B6、B7、D8、C1、解:如图,连接CO,∵∠BAC=50°,AO=CO=3,∴∠ACO=50°,∴∠AOC=80°,∴劣弧AC的长为=,故选:D.1题图2题图3题图6题图8题图2、解:连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.3、解:连接OA、OB,∵正方形ABCD内接于O,∴AB=BC=DC=AD,∴===,∴∠AOB=×360°=90°,在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2,∴的长为=π,故选:A.4、BC=AB=AC=1,∠BCB′=120°,∴B点从开始至结束所走过的路径长度为2×弧BB′=2×12014=1803ππ⨯故选B.5、连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧长为6011= 1803ππ⨯.6、解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.7、解:连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACD+∠BCE=90°,∵AD⊥DE,BE⊥DE,∴∠DAC+∠ACD=90°,∴∠DAC=∠ECB,∵∠ADC=∠CEB=90°,∴△ADC∽△CEB,∴=,即=,∵tan∠ABC==,∴∠ABC=30°,∴AB=2AC,∠AOC=60°,∵直线DE与⊙O相切于点C,∴∠ACD=∠ABC=30°∴AC=2AD=2,∴AB=4,∴⊙O的半径为2,∴的长为:=π,故选:D.8、解:连接OA.OB,作OC⊥AB于C,由题意得,OC=OA,∴∠OAC=30°,∵OA=OB,∴∠OBA=∠OAC=30°,∴∠AOB=120°,∴的长==2π,故选:C.(二)、填空题1、201923π2、2π3、24π4、83π5、26、67、πa8、6π1、解:直线y=x,点A1坐标为(2,0),过点A1作x轴的垂线交直线于点B1可知B1点的坐标为(2,2),以原O为圆心,OB1长为半径画弧x轴于点A2,OA2=OB1,OA2==4,点A2的坐标为(4,0),这种方法可求得B2的坐标为(4,4),故点A3的坐标为(8,0),B3(8,8)以此类推便可求出点A2019的坐标为(22019,0),则的长是=.故答案为:.2、1203=2 180ππ⨯3、解:∵点A(1,1),∴OA==,点A在第一象限的角平分线上,∵以点O为旋转中心,将点A逆时针旋转到点B的位置,∴∠AOB=45°,∴的长为=.故答案为.4、解:由图1得:的长+的长=的长 ∵半径OA=2cm ,∠AOB=120°则图2的周长为:=故答案为:.5、连接OB.OC ,由∠BAC=60°得∠BOC=120°,1204=1803r ππ⨯ 得:r=26、解:设半径为r ,60=2180rππ⨯,解得:r=6,故答案为:6 7、解:如图.∵△ABC 是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a , ∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa .故答案为πa .(三)、解答题1、证明:(1)∵AB 是⊙O 的直径,∴∠ADB=90°, ∵OC ∥BD ,∴∠AEO=∠ADB=90°,即OC ⊥AD ,∴AE=ED ; (2)∵OC ⊥AD ,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.二、有关扇形面积计算1、A2、C3、C4、A5、C6、A7、D8、C9、C 10、A 11、A 12、A 13、A 1、解:连接AC ,∵从一块直径为2m 的圆形铁皮上剪出一个圆心角为90°的扇形,即∠ABC=90°, ∴AC 为直径,即AC=2m ,AB=BC ,∵AB 2+BC 2=22,∴AB=BC=m ,∴阴影部分的面积是=(m 2),故选:A .2、解:连接OB 和AC 交于点D ,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC 是菱形,∴OB ⊥AC ,OD=OB=1, 在Rt △COD 中利用勾股定理可知:CD==,AC=2CD=2,∵sin ∠COD==,∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =OB ×AC=×2×2=2,S 扇形AOC ==,则图中阴影部分面积为S 菱形ABCO ﹣S 扇形AOC =π﹣2,故选:C .1题图 2题图 5题图 7题图 8题图3、解:∵在□ABCD 中,∠B=60°,⊙C 的半径为3,∴∠C=120°, ∴图中阴影部分的面积是:=3π,故选:C .4、解:设底面圆的半径为R ,则πR 2=25π,解得R=5, 圆锥的母线长==,所以圆锥的侧面积=•2π•5•=5π;圆柱的侧面积=2π•5•3=30π,所以需要毛毡的面积=(30π+5π)m 2.故选:A .5、解:如图,连接OD ,AD ,∵点C 为OA 的中点,∴OC=OA=OD , ∵CD ⊥OA ,∴∠CDO=30°,∠DOC=60°,∴△ADO 为等边三角形,OD=OA=12,OC=CA=6,∴CD=,6,∴S 扇形AOD ==24π,∴S 阴影=S 扇形AOB ﹣S 扇形COE ﹣(S 扇形AOD ﹣S △COD )=﹣﹣(24π﹣×6×6)=18+6π.故选:C .6、解:利用对称性可知:阴影部分的面积=扇形AEF 的面积﹣△ABD 的面积=﹣×4×2=4π﹣4,故选:A . 7、解:过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°, ∵AD ⊥BC ,∴BD=CD=1,AD=BD=, ∴△ABC 的面积为=,S 扇形BAC ==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D .8、解:作FH ⊥BC 于H ,连接FH ,如图,∵点E 为BC 的中点,点F 为半圆的中点,∴BE=CE=CH=FH=6, 226+125Rt △ABE ≌△EHF ,∴∠AEB=∠EFH , 而∠EFH+∠FEH=90°,∴∠AEB+∠FEH=90°,∴∠AEF=90°,∴图中阴影部分的面积=S正方形ABCD +S半圆﹣S△ABE﹣S△AEF=12×12+12•π•62﹣12×12×6﹣12•65×65 =18+18π.故选:C.9、解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,故选:C.10、解:∵=,∴AB=AC,∵∠ACB=75°,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,作AD⊥BC,∵AB=AC,∴BD=CD,∴AD经过圆心O,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+π,故选:A.12.连接OA、OB,则S阴=S扇形OAB=2606360π⨯=6π故选A13、圆所扫过的图形面积=长方形的面积+圆的面积=2π×2+π=5π二、填空题1、734-23π2、4π3、40π4、14π5、43π﹣36、8﹣2π7、6﹣π8、3 9、6π10、2.5π 11、34π 12、 13、25 14、233π+解:∵∠B=90°,∠C=30°,∴∠A=60°,∵OA=OF,∴△AOF是等边三角形,∴∠COF=120°,∵OA=2,∴扇形OGF的面积为:=∵OA为半径的圆与CB相切于点E,∴∠OEC=90°,∴OC=2OE=4,∴AC=OC+OA=6,∴AB=AC=3,∴由勾股定理可知:BC=3∴△ABC的面积为:×3×3=∵△OAF的面积为:×2×=,∴阴影部分面积为:﹣﹣π=﹣π故答案为:﹣π1题图 3题图 8题图2、解:∵∠BOC=60°,△B′OC′是△BOC 绕圆心O 逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O ,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°, ∵AB=2cm ,∴OB=1cm ,OC′=,∴B′C′=,∴S 扇形B′OB ==π,S 扇形C′OC ==,∴阴影部分面积=S 扇形B′OB +S △B′C′O ﹣S △BCO ﹣S 扇形C′OC =S 扇形B′OB ﹣S 扇形C′OC =π﹣=π;3、解:连接OE 、AE ,∵AB 是⊙O 的直径,∴∠AEB=90°,∵四边形ABCD 是平行四边形,∴AB=CD=4,∠B=∠D=30°,∴AE=AB=2,BE==2,∵OA=OB=OE ,∴∠B=∠OEB=30°,∴∠BOE=120°,∴S 阴影=S 扇形OBE ﹣S △BOE ,=﹣×,=﹣,=﹣,4、解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π,故答案为8﹣2π.5、解:∵矩形ABCD ,∴AD=2,∴S 阴影=S 矩形﹣S 四分之一圆=2×3﹣π×22=6﹣π,6、解:∵在⊙O 上,∠ACB=40°,∴∠AOB=2∠ACB=80°, ∴此扇形的半径为:=3.故答案为:3.7、解:设扇形的半径为Rcm ,∵扇形的圆心角为135°,弧长为3πcm , ∴=3π,解得:R=4,所以此扇形的面积为=6π(cm 2),故答案为:6π.8.解:作DF ⊥y 轴于点D ,EG ⊥x 轴于G ,∴△GEM ∽△DNF ,∵NF =4EM ,∴==4,设GM =t ,则DF =4t ,∴A (4t ,),由AC =AF ,AE =AB ,∴AF =4t ,AE =,EG =, ∵△AEF ∽△GME ,∴AF :EG =AE :GM ,即4t :=:t ,即4t 2=,∴t 2=,图中阴影部分的面积=+=2π+π=2.5π,11、解:连接OC ,作CH ⊥OB 于H ,∵∠AOB =90°,∠B =30°,∴∠OAB =60°,AB =2OA =6, 由勾股定理得,OB ==3,∵OA =OC ,∠OAB =60°,∴△AOC 为等边三角形,∴∠AOC =60°,∴∠COB =30°, ∴CO =CB ,CH =OC =, ∴阴影都分的面积=﹣×3×3×+×3×﹣=π,故答案为:π.11题图12题图 13题图解:在Rt △ABC 中,∵BC =,AC =3.∴AB ==2,∵BC ⊥OC ,∴BC 是圆的切线,∵⊙O 与斜边AB 相切于点D ,∴BD =BC ,∴AD =AB ﹣BD =2﹣=,在Rt △ABC 中,∵sinA ===,∴∠A =30°,∵⊙O 与斜边AB 相切于点D ,∴OD ⊥AB ,∴∠AOD =90°﹣∠A =60°, ∵=tanA =tan30°,∴=,∴OD =1,∴S 阴影==.故答案是:.13、如图,圆心O 在△ABC 内所能到达的区域是△O 1O 2O 3,∵△O 1O 2O 3三边向外扩大1得到△ACB ,∴它的三边之比也是5∶12∶13, ∵△O 1O 2O 3的面积=103,∴O 1O 2=53,O 2O 3=4,O 1O 3=133,连接AO 1 与CO 2,并延长相交于I ,过I 作ID ⊥AC 于D ,交O 1O 2于E ,过I 作IG ⊥BC 于G 交O 3O 2于F ,则I 是Rt △ABC 与Rt△O 1O 2O 3的公共内心,四边形IEO 2F 四边形IDCG 都是正方形,∴IE =IF = 1223122313O O O O O O O O O O ⨯++ =23,ED =1,∴ID =IE +ED =53,设△ACB 的三边分别为5m 、12m 、13m ,则有ID =AC BC AC BC AB ⨯++=2m =53,解得m =56,△ABC 的周长=30m =25.14、连接OE,则S 阴=S 扇形OEC +S △OED =260212123336023ππ⨯+⨯⨯=(三)、解答题 1、(1)证明:连接OC .∵AC =CD ,∠ACD =120°∴∠A =∠D =30°.∵OA =OC ,∴∠ACO =∠A =30°.∴∠OCD =∠ACD ﹣∠ACO =90°.即OC ⊥CD ,∴CD 是⊙O 的切线. (2)解:∵∠A =30°,∴∠COB =2∠A =60°.∴S 扇形BOC =,在Rt △OCD 中,CD =OC ,∴,∴,∴图中阴影部分的面积为.2、作MN ⊥OB,垂足为N,连接OM,则MN=12OA=3,OA=6 ,A(-6,0)由sin ∠ABO 3则∠A=60°tan ∠BAO=OBOA∴3 ∴B (0,3)设直线AB:y=kx+b,将A,B 点的坐标代入得:3,b=3∴3x+3 S 阴=S 扇形MAO -S △MAO 2120(23)1634332ππ⨯-⨯-3、证明:(1)如图1,连接OD ,OC ,OE .∵AD ,BC ,CD 是⊙O 的切线, ∴OA ⊥AD ,OB ⊥BC ,OE ⊥CD ,AD =ED ,BC =EC ,∠ODE =12∠ADC ,∠OCE =12∠BCD ∴AD //BC ,∴∠ODE +∠OCE =12(∠ADC +∠BCD )=90°, ∵∠ODE +∠DOE =90°,∴∠DOE =∠OCE . 又∵∠OED =∠CEO =90°,∴△ODE ∽△COE .∴OE ECED OE=,OE 2=ED ·EC ∴4OE 2=4AD ·BC ,∴AB 2=4AD ·BC (2)解:如图2,由(1)知∠ADE =∠BOE ,∵∠ADE =2∠OFC ,∠BOE =∠2COF ,∴∠COF =∠OFC ,∴△COF 等腰三角形。
圆的弧长与扇形面积计算圆是数学中的一个基本几何形状,具有许多重要的性质和特点。
其中,圆的弧长和扇形面积是圆的两个重要计算问题。
本文将介绍如何计算圆的弧长和扇形面积,并给出相应的计算公式和实例。
一、圆的弧长计算圆的弧长是圆上两个点之间的路径长度。
具体来说,弧长是从圆心沿圆周到达弧上某一点的路径长度。
我们可以通过圆的半径、直径或角度来计算圆的弧长。
1.1 通过半径计算假设半径为r的圆,要计算圆的弧长,可以使用以下公式:弧长= 2πr1.2 通过直径计算如果已知圆的直径d,可以通过以下公式计算圆的弧长:弧长= πd1.3 通过角度计算当我们知道圆心角的度数时,可以使用以下公式计算圆的弧长:弧长 = (θ/360)× 2πr其中,θ代表圆心角的度数。
下面举一个例子来说明如何计算圆的弧长:假设有一个半径为6cm的圆,我们要计算圆的1/4弧长,即圆心角为90度的弧长。
根据公式,弧长 = (90/360)× 2π × 6 = 3π ≈ 9.42cm二、扇形面积计算扇形是指由圆心、圆周上的两点以及与两点相连并且在圆上的弧段围成的封闭图形。
计算扇形的面积需要知道圆的半径和扇形对应的圆心角。
2.1 扇形面积的计算公式对于一个半径为r的扇形,其面积可以通过以下公式计算:扇形面积 = (θ/360)× πr²其中,θ代表扇形对应的圆心角的度数。
2.2 扇形面积的实例计算假设有一个半径为8cm的扇形,圆心角的度数为60度,我们可以使用公式计算扇形的面积:扇形面积 = (60/360)× π × 8² ≈ 33.51cm²通过上述计算,我们得到了由一个半径为8cm的扇形所围成的面积为约33.51平方厘米。
综上所述,我们介绍了圆的弧长和扇形面积的计算方法及相应的公式,并举例说明了如何应用这些公式进行具体计算。
掌握了这些计算方法,我们可以更好地理解和应用圆的相关性质,并在实际问题中灵活运用。
圆的弧长与扇形面积圆是几何学中最简单的形状之一,它具有许多特性和属性。
其中,圆的弧长和扇形面积是我们经常研究和计算的两个重要方面。
本文将就圆的弧长和扇形面积进行详细的解析和计算。
1. 圆的弧长:圆的弧长是指任意两个点在圆上的弧所对应的弧长。
在计算弧长时,需要知道圆的半径和所对应的圆心角。
弧长的计算公式如下:弧长 = 半径 ×圆心角(弧度制)根据这个公式,我们可以计算出任意圆的弧长。
下面通过一个示例进行计算。
示例1:假设一个圆的半径为5cm,圆心角为60°,我们来计算这个圆的弧长。
解:首先需要将圆心角转换为弧度制。
1° = π/180,因此60°转换为弧度为60° × π/180 = π/3。
弧长= 5cm × π/3 ≈ 5.24cm因此,这个圆的弧长约为5.24cm。
2. 扇形的面积:扇形是由圆心和圆上的两个点所构成的区域。
在计算扇形的面积时,需要知道扇形的圆心角和圆的半径。
扇形的面积计算公式如下:面积 = 1/2 ×半径² ×圆心角(弧度制)下面通过一个示例来计算扇形的面积。
示例2:假设一个扇形的半径为8cm,圆心角为45°,我们来计算这个扇形的面积。
解:首先需要将圆心角转换为弧度制。
1° = π/180,因此45°转换为弧度为45° × π/180 = π/4。
面积= 1/2 × 8cm² × π/4 ≈ 12.57cm²因此,这个扇形的面积约为12.57cm²。
通过以上的计算示例,我们可以看出,圆的弧长和扇形面积的计算都与圆心角息息相关。
圆心角的大小决定了弧长和扇形面积的大小。
需要注意的是,在计算圆的弧长和扇形面积时,弧度制是常用的单位制。
对于给定的角度,可以使用以下公式进行转换:弧度 = 角度× π/180综上所述,通过掌握圆的弧长和扇形面积的计算方法,我们可以更好地理解和应用圆的特性,为解决实际问题提供便利。
弧长和扇形面积及圆锥的计算一、弧长和扇形面积的计算1.弧长的计算弧长是圆弧上的一段弧线的长度,计算弧长的公式是:L=2πr*(θ/360°),其中L表示弧长,r表示圆的半径,θ表示圆心角的度数。
假设圆的半径为2cm,圆心角为60°,则计算弧长的公式为:L = 2π*2 * (60/360) = 2π cm。
可以看出,在半径一定的情况下,圆心角越大,弧长也会越大,反之亦然。
2.扇形面积的计算扇形是由圆弧和两条半径构成的图形。
计算扇形面积的公式是:A=(πr²*θ)/360°,其中A表示扇形的面积,r表示圆的半径,θ表示圆心角的度数。
假设圆的半径为3cm,圆心角为90°,则计算扇形面积的公式为:A = (π*3² * 90) / 360 = π cm²。
可以看出,在半径一定的情况下,圆心角越大,扇形的面积也会越大,反之亦然。
二、圆锥的体积和表面积的计算1.圆锥的体积的计算圆锥是由一个圆形底面和一个顶点连接圆周形成的图形。
计算圆锥的体积的公式是:V=(1/3)*πr²h,其中V表示圆锥的体积,r表示圆锥底面的半径,h表示圆锥的高。
假设圆锥的底面半径为4cm,高为6cm,则计算圆锥的体积的公式为:V = (1/3) * π*4² * 6 = 32π cm³。
2.圆锥的表面积的计算圆锥的表面积包括底面积和侧面积两部分。
底面积的计算公式和圆的面积计算方法相同,即:A底=πr²,其中A底表示底面积。
圆锥的侧面积的计算公式是:A侧= πrl,其中l表示圆锥的母线,l的计算公式为:l = √(r² + h²),其中r表示圆锥底面的半径,h表示圆锥的高。
假设圆锥的底面半径为4cm,高为6cm,则计算圆锥的侧面积的公式为:l = √(4² + 6²) = √52 cm,A侧= π*4*√52 = 20π cm²。
弧度制的弧长公式和扇形面积公式好的,以下是为您生成的文章:咱们来聊聊弧度制里的弧长公式和扇形面积公式。
还记得我读高中那会,有一次数学老师在课堂上讲这部分内容,那场面可有意思啦。
当时天气特别热,教室里的风扇呼呼地转着,可大家还是热得有点蔫蔫的。
数学老师为了让我们打起精神,就拿了一把折扇走进教室。
老师先是扇了几下风,然后笑着说:“同学们,看看我这把扇子,这里面可藏着咱们今天要学的知识呢!”这一下子,大家的好奇心都被勾起来了。
咱们先来说说弧长公式。
弧长公式是l = α × r ,这里的 l 表示弧长,α 表示圆心角弧度数,r 表示圆的半径。
想象一下,一个圆就像一个大大的甜甜圈,圆心角就像是从这个甜甜圈上切下来的一块。
如果圆心角越大,那切下来的这一块就越长,对吧?比如说,一个半径为 5 厘米的圆,圆心角是 2 弧度,那弧长就是 2×5 = 10 厘米。
再说说扇形面积公式,扇形面积公式有两个,一个是 S = 1/2 × l × r ,另一个是S = 1/2 × α × r² 。
还是拿那个甜甜圈举例,要算扇形的面积,就像是算切下来那一块的大小。
如果知道弧长和半径,就用第一个公式,如果知道圆心角弧度数和半径,就用第二个公式。
就像那次课堂上,老师用那把折扇给我们比划。
他把折扇打开不同的角度,让我们直观地感受圆心角的变化以及对应的扇形面积的变化。
老师还举了个生活中的例子,说如果要给一个圆形的花坛围上一部分篱笆,已知圆心角和半径,怎么算篱笆的长度和围起来的面积,好决定买多少篱笆材料。
这一下就让我们明白了这些公式在实际生活中的用处。
回到学习上,要掌握好这两个公式,得多做练习题。
别觉得做题枯燥,每做对一道题,就像是解开了一个小谜团,特有成就感。
而且,当你在生活中看到圆形的东西,比如车轮、钟表,都可以在心里默默用这些公式算算弧长和扇形面积,这样能加深理解和记忆。
§3.7 弧长及扇形的面积
学习目标:
经历探索弧长计算公式及扇形面积计算公式的过程,了解弧长计算公式及扇形面积的计算公式,并会应用公式解决问题. 学习重点:
弧长计算公式及理解,弧长公式ι=
180R
n π,其中R 为圆的半径,n 为圆弧所对的圆心
角的度数,不带单位.由于整个圆周可看作360°的弧,而360°的圆心角所对的弧长为圆
周长C=2πR ,所以1°的圆心角所对的弧长是
3601×2πR ,即180R
π,可得半径为R 的圆中,
n °的圆心角所对的弧长ι=
180R
n π.
圆心角是1°的扇形的面积等于圆面积的
3601
,所以圆心角是n °的扇形面积是S
扇形
=360
n πR 2.要注意扇形面积公式与弧长公式的区别与联系(扇形面积公式中半径R 带平方,分母为360;而弧长公式中半径R 不带平方,分母是180).已知S 扇形、ι、n 、R 四量中任意两个量,都可以求出另外两个量.
扇形面积公式S 扇=2
1
ιR ,与三角形的面积公式有些类似.只要把扇形看成一个曲边三
角形,把弧长看作底,R 看作高就比较容易记了.
学习难点:
利用弧长公式时应注意的问题及扇形面积公式的灵活运用. 学习方法:
学生互相交流探索法. 学习过程:
一、例题讲解:
【例1】 一圆弧的圆心角为300°,它所对的弧长等于半径为6cm 的圆的周长,求该圆弧所在圆的半径.
【例2】 如图,在半径为3的⊙O 和半径为1的⊙O ′中,它们外切于B ,∠AOB=40°.AO ∥CO ′,求曲线ABC 的长.
【例3】 扇形面积为300π,圆心角为30°,求扇形半径.
【例4】 如图,正三角形ABC 内接于⊙O ,边长为4cm ,求图中阴影部分的面积.
【例5】 如图,等腰直角三角形ABC 的斜边AB=4,O 是AB 的中点,以O 为圆心的半圆分别与两直角边相切于点D 、E ,求图中阴影部分的面积.
【例6】 半径为3cm ,圆心角为120°的扇形的面积为( ) A .6πcm 2
B .5πcm 2
C .4πcm 2
D .3πcm 2
【例7】 如图,在两个同心圆中,两圆半径分别为2,1, ∠AOB=120°,则阴影部分面积是( ) A .4π
B .2π
C .3
4
π D .π
【例8】 如图,已知⊙O 的直径BD=6,AE 与⊙O 相切于E
点,过B 点作BC ⊥AE ,垂足为C ,连接BE 、DE .
(1)求证:∠1=∠2;
(2)若BC=4.5,求图中阴影部分的面积.(结果可保留π与根号)
【例9】 如图,△ABC 是正三角形,曲线CDEF …叫做“正三角形的渐开线”,其中⌒
CD 、
⌒DE 、⌒
EF 的圆心依次按A 、B 、C 循环,它们依次相连接.如果AB=1,求曲线CDEF 的长.
【例10】 如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们的半径都是1,顺次连接五个圆心得五边形ABCDE ,求图中五个扇形的面积之和(阴影部分).
【例11】 如图是赛跑跑道的一部分,它由两条直线和中间半圆形弯道组成的.若内外两条跑道的终点在一直线上,则外跑道起点往前移,才能使两跑道有相同的长度,如果跑道宽1.22米,则外跑道的起点应前移 米.(π取3.14,结果精确到0.01米) 二、课后练习
1.在半径为12的⊙O 中,150°的圆心角所对的弧长等于( ) A .24πcm
B .12πcm
C .10πcm
D .5πcm
2.如果一条弧长等于ι,它的半径等于R ,这条弧所对的圆心角增加1°,则它的弧
长增加( )
A .
n
1
B .
180R π
C .
R l π180
D .
3601
3.已知扇形的圆心角为60°,半径为5,则扇形有周长为( )
A .3
5π
B .3
5
π+10
C .6
5π
D .6
5
π+10
4.圆环的外圆周长为250cm ,内圆周长为150cm ,则圆环的宽度为( ) A .100cm
B .
π50
C .
π25
D .
π100
5.弧长等于半径的圆弧所对应的圆心角是( )
A .
π︒360 B .
π︒180 C .
π︒90 D .60°
6.正三角形ABC 内接于半径为2cm 的圆,则AB 所对弧的长为( )
A .
3
2π
B .
34π
C .
3
8π
D .
34π或3
8π
7.已知圆的周长是6π,那么60°的圆心角所对的弧长是( ) A .3
B .
3
π
C .6
D .π
8.如图1,正方形的边长为1cm ,以CD 为直径在正方形内画半圆,再以C 为圆心,1cm 为半径画弧⌒
BD ,则图中阴影部分的面积为( )
A .2
πcm 2
B .4
πcm 2
C .8
πcm 2
D .16
πcm 2
9.如图2,以边长为a 的正三角形的三个顶点为圆心,以边长一半为半径画弧,则三弧所围成的阴影部分的面积是( )
A .()
π-3282
a
B .()
π-3242
a
C .
4
82π
+a
D .24
3a 10.等边三角形的外接圆面积是内切圆面积的( ) A .2倍
B .3倍
C .4倍
D .5倍
11.如图3,一纸扇完全打开后,外侧两竹条AB 、AC 的夹角为120°,AB 长30cm ,贴纸部分BD 长为20cm ,贴纸部分的面积为( )
A .3
800πcm 2
B .
3500πcm 2
C .800πcm 2
D .500πcm 2
12.一条弧所对的圆心角为120°,半径为3,那么这条弧长为 .(结果用π表示)
13.已知⌒
CD 的长为20πcm ,⌒
CD 所对的圆心角为150°,那么⌒
CD 的半径是 .
14.半径为R 的圆弧⌒
AB 的长为
2R
π,则
⌒AB 所对的圆心角
为 ,弦AB 的长为 .
15.如图,⊙O 1的半径O 1A 是⊙O 2的直径,⊙O 1的半径O 1C 交⊙O 2于点B ,则⌒
AC 和⌒
AB 的长度的大小关系为 .
16.已知扇形的圆心角是150°,弧长为20πcm ,则扇形的面积为 .
17.已知弓形的弦长等于半径R ,则此弓形的面积为 .(劣弧为弓形的弧) 18.如图,一块边长为10cm 的正方形木板ABCD 在水平桌面上绕点D 按顺时针方向旋转到A ′B ′C ′D 的位置时,顶点B 从开始到结束所经过的路径长为( )
A .20cm
B .202cm
C .10πcm
D .5
2πcm
19如图,五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从点A 到
点B ,甲虫沿着⌒
1ADA 、⌒
21EA A 、⌒
32
FA A 、⌒
GB A 3路线爬行,乙虫沿着Unit 12 My favorite subject is science 曹毅.doc 路线爬行,则下列结论正确的是( )
A .甲先到
B 点 B .乙先到B 点
C .甲乙同时到达
D .无法确定。