药理学---第22章 抗心律失常药
- 格式:ppt
- 大小:3.34 MB
- 文档页数:68
第四篇心血管系统药理第二十章抗心律失常药本章要点:1、掌握奎尼丁、利多卡因、普罗帕酮、普萘洛尔、胺碘酮、维拉帕米的药理作用、药动学特点、临床应用及主要不良反应。
2、熟悉其他抗心律失常药的药理作用特点。
3、了解心律失常的电生理基础及抗心律失常药的分类。
一、心律失常的电生理学基础(一)、正常心肌电生理1、心肌细胞膜电位2、快反应和慢反应电活动3、膜反应性和传导速度4、有效不应期(二)、心律失常的发生机制1、冲动形成障碍(自律性增高、后除极与触发活动)2、冲动传导障碍(单向传导障碍和折返激动)二、抗心律失常药的基本电生理作用1、降低自律性2、减少后除极与触发活动3、改变膜反应性及传导性而消除折返4、改变有效不应期(ERP)及动作电位时程(ADP)而减少折返三、抗心律失常药物的分类Ⅰ类钠通道阻滞药:①ⅠA类适度阻滞心肌细胞钠通道的药物(奎尼丁)②ⅠB类轻度阻滞心肌细胞钠通道(利多卡因)③ⅠC类明显阻滞心肌细胞钠通道(氟卡尼)Ⅱ类β受体阻断药(普萘洛尔)Ⅲ类延长动作电位时程药(胺碘酮)Ⅳ类钙通道阻滞药(维拉帕米)四、常用抗心律失常药物(一)、Ⅰ类钠通道阻滞药1、ⅠA类奎尼丁quinidine【药动学】口服吸收良好,生物利用度约80%,血浆蛋白结合率80~90%,心肌中浓度约为血浆浓度的10倍。
主要经肝代谢,仅少量原型药物经肾排泄,酸化尿液排泄加快。
t1/26~8 h,肝、肾功能不全者t1/2延长,并易出现毒性反应。
【药理作用】与胞浆钠通道蛋白结合,阻滞钠通道,适度抑制Na+内流。
1、降低自律性:可减慢Na+内流,使动作电位4相坡度减小,自律性降低。
抑制心房异位起搏点,对正常窦房结影响较小。
2、减慢传导速度:抑制0相Na+内流,降低0期去极化速度和幅度,减慢传导。
3、延长有效不应期:减慢3相K+外流和2相Ca2+离子内流,延长APD和ERP,其中ERP延长更明显,有利于消除折返。
4、其他:阻断α受体和抗胆碱作用,使外周血管扩张,血压下降而反射性兴奋交感神经。
掌握奎尼丁、利多卡因、普罗帕酮、普萘洛尔、胺碘酮、维拉帕⽶的药理作⽤、药动学特点、临床应⽤及主要不良反应。
熟悉其他抗⼼律失常药的药理作⽤特点。
了解⼼律失常的电⽣理基础及抗⼼律失常药的分类。
⼼律失常有快速型和缓慢型两类。
缓慢型⼼律失常常见的有房室传导阻滞、窦性⼼动过缓,治疗药物有异丙肾上腺素或阿托品。
本章主要讨论快速型⼼律失常的产⽣机理及治疗快速⼼律失常的药物。
抗⼼律失常药对⼼肌电⽣理的影响 ⼀、正常⼼肌电⽣理 ⼼肌细胞内外离⼦分布不同,其静息电位为膜内负于膜外,约-90mv,当⼼肌细胞受到刺激(或⾃发的)发⽣兴奋,出现除极化,继后复极化,构成动作电位。
动作电位分为5个时相,其中与本章要介绍的抗⼼律失常药关系最密切的是0相、3相、4相。
⾃律性细胞(窦房结):ca++内流引起。
0相:⾮⾃律性细胞(⼼室肌):na+内流引起。
3相: k+外流。
:k+外流,电位下降,最后完成复极化过程,如某药能抑制该时相k+外流,则可延长动作电位时程和有不应期,相反则缩短动作电位时程和有效不应期。
4相:⾮⾃律性⼼肌细胞(如⼼室肌、⼼房肌):4相是维持静息电位。
有⾃律性细胞(如窦房结,浦⽒纤维);达到舒张电位(静息电位)后,便⾃动除极化(称为舒张期⾃动除极化)即负值逐渐减少,曲线上升,形成⼀坡度,当升⾄域电位时,即触发⼀新的动作电位。
但是由于⾃发性细胞的不同,其4相的离⼦转运有不同特点。
a、慢反应细胞(窦房结):ca++内流⼤于k+外流。
b、快反应细胞(浦⽒纤维):na+内流⼤于k+外流。
可见,如能抑制na+内流或ca++内流则可降低⾃律性。
⼆、抗⼼律失常药的基本电⽣理作⽤(作⽤机制) 1、减慢4相⾃动除极化速率⽽降低⾃律性对快反应细胞:主要促进度4相k+外流或抑制na+内流对慢反应细胞:抑制4相ca++内流。
2、消除折返冲动 ①改变传导性改善传导,取消单向传导阻滞;减慢传导,使单向传导阻滞变为双向传导阻滞 ②绝对或相对地延长有效不应期:动作电位0相3相的时程称为动作电位过程(apd),从0相⾄复极⾄-60 ~ -50mv时程称为不应期(erp)。
Ⅰa类药奎尼丁(quinidine) 1918年用于临床,为金鸡纳树皮的生物碱,是奎宁的右旋体。
一、药理作用 1.奎尼丁与心肌细胞膜Na+通道蛋白结合,阻滞Na+内流①降低自律性(↓4相除极速度,↑阈电位)②减慢传导(↓0相Na+内流,↑0相上升速度、幅度)③延长ERP 2.抑制Ca2+内流——负性肌力作用 3阻滞K+通道,减少K+外流——延长APD 和ERP4.阻断α受体和M受体(静注引起低血压和心动过速)二、体内过程吸收:生物利用度70%?80% 分布:心肌>血浆10?20倍;血浆蛋白结合率80% 代谢:肝氧化(羟基化物仍有活性)排泄:肾原型10%?25% t1/2:6h,心衰、肝肾疾病延长三、临床应用广谱抗心律失常药 1.预防和转复心律(心房颤动、心房扑动、室上性和室性心动过速) 2.治疗频发性室上性和室性早博四、不良反应:安全范围小,个体差异大,不良反应多 1.金鸡钠反应:恶心、呕吐、耳鸣、头昏 2.心血管:低血压、心力衰竭、传导阻滞、尖端扭转型室性心动过速(奎尼丁晕厥可致意识丧失,四肢抽搐、呼吸停止)心室颤动或停搏奎尼丁晕厥治疗:异丙肾上腺素或阿托品,心率>110次/分,补钾、镁,电复律四、药物相互作用苯巴比妥、苯妥英钠(药酶诱导)→加速奎尼丁代谢地高辛合用(降低地高辛清除率)普萘洛尔、维拉帕米、西米替丁(减慢奎尼丁肝代谢)双香豆素、华法林(竞争与血浆蛋白结合,增加血药浓度)普鲁卡因胺(procainamide) 一、药理作用(奎尼丁比较) 特点:1.作用弱于奎尼丁 2.电生理同奎尼丁,但代谢产物有明显的III类药物特性 3.对室性心律失常较好二、临床应用室性心律失常(早搏、心动过速等),快速静脉给药用于危急病例三、不良反应 1.心脏:可致窦性心动过缓、房室传导阻滞 2.胃肠道:恶心、厌食 3.过敏反应(皮疹、药热、WBC↓) 4.系统性红斑狼疮综合征(长期):出现关节痛、肌肉痛、胸膜炎、发热等,用皮质激素治疗。
第二十二章抗心律失常药心律失常主要是心动节律和频率异常。
心律正常时心脏协调而有规律地收缩、舒张,顺利地完成泵血功能。
心律失常时心脏泵血功能发生障碍,影响全身器官的供血。
第一节心律失常的电生理学基础一、正常心脏电生理特性正常的心脏冲动起自窦房结,顺序经过心房、房室结、房室束及浦肯野纤维,最后到达心室肌,引起心脏的节律性收缩。
心脏活动依赖于心肌正常电活动,而心肌细胞动作电位的整体协调平衡是心脏电活动正常的基础。
单个心肌细胞动作电位特性又取决于各种跨膜电流的平衡状态。
按动作电位特征可将心肌细胞分为快反应细胞和慢反应细胞两大类。
快反应细胞:快反应细胞包括心房肌细胞、心室肌细胞和希-浦细胞。
其动作电位0相除极由钠电流介导,除极速度快、振幅大。
多种内向和外向电流参与快反应细胞的动作电位整个时程。
慢反应细胞:慢反应细胞包括窦房结和房室结细胞。
其动作电位0相除极由L型钙电流介导,除极速度慢、振幅小。
慢反应细胞无内向整流钾电流(I K1)控制膜电位,其静息电位不稳定,容易去极化,故自律性高。
心脏的自律细胞主要有窦房结细胞、房室结细胞和希-浦细胞,可自动发生节律性兴奋。
自律性的产生源于自律细胞动作电位4相自动去极化:1.希-浦细胞4相自动去极化主要由I f决定;2.窦房结及房室结细胞4相自动去极化则由I K逐渐减小而I f、I Ca(T)、I Ca(L)逐渐增强所致。
动作电位4相去极速率、动作电位阈值、静息膜电位水平和动作电位时程的变化均可影响心肌自律性。
兴奋可沿心肌细胞膜扩布并向周围心肌细胞传导。
传导速度由动作电位0相去极化速率和幅度决定,因此I Na、I Ca(L)分别对快反应细胞和慢反应细胞的传导性起决定作用。
二、心律失常的发生机制冲动形成异常和(或)冲动传导异常均可导致心律失常发生。
1.折返定义:是指一次冲动下传后,又沿另一环形通路折回,再次兴奋已兴奋过的心肌,是引发快速型心律失常的重要机制之一。
原因:心肌传导功能障碍是诱发折返的重要原因。
中西医结合药理学-抗心律失常药讲义及练习考情分析要点:1 .抗心律失常药的分类及常用药2 .奎尼丁的作用、应用3 .利多卡因、苯妥英钠的作用、应用4 .普罗帕酮的作用、应用5 .普秦洛尔的作用、应用6 .胺碘酮的作用、应用7 .维拉帕米的作用、应用【心律失常的种类】心律失常是指心跳节律和频率的异常。
缓慢型一一窦性心动过缓、传导阻滞(治疗用:异丙肾上腺素、阿托品)快速型一一,心房纤颤、心房扑动、阵发性室上性心动过速、室性早搏、室性心动过速、心室颤动 (治疗用药物比较复杂)【抗心律失常药物的药理作用】【抗心律失常药物的分类及常用药】1. I 类一一钠通道阻滞药IA 类:适度阻滞钠通道,如奎尼丁,普鲁卡因胺IB 类:轻度阻滞钠通道,如利多卡因,苯妥英钠IC 类:明显阻滞钠通道,如普罗帕酮,氟卡尼2. 11类一一β肾上腺素受体阻断药:普蔡洛尔等。
3. HI 类一一延长动作电位时程药:胺碘酮.4. IV 类一一钙通道阻滞药:维拉帕米等。
奎尼丁的作用和应用【药理作用】奎尼丁为全心抑制剂一一抑制自律性、传导性、兴奋性和收缩性 1 .降低自律性 ♦降低自律性 ,减少迟后除极♦消除反折 ■►延长不应期能降低浦肯野纤维的自律性,对正常窦房结影响较小,对病窦综合征者则明显降低其自律性。
2.减慢传导能降低心房、心室、浦肯野纤维等的O相上升最大速率,因而减慢传导速度。
这种作用可使病理情况下的单向传导阻滞变为双向阻滞,从而取消折返。
3.延长不应期阻滞钾通道,减少K+外流,延长心房、心室、浦肯野纤维的ERP和APD,ERP的延长更为明显,因而可以取消折返。
【临床应用】◊广谱抗心律失常药,对房性、房室性和室性快速型心律失常都有效。
◊临床主要用于房颤、房扑及室上性心动过速的治疗。
◊对心房纤颤及心房扑动,目前虽多采用电转律术,但奎尼丁仍有应用价值,转律前合用强心音和奎尼丁可以减慢心室频率,转律后用奎尼丁维持窦性节律。
利多卡因的作用、应用【药理作用特点】—利多卡因对除极化组织(如缺血区、强心甘中毒)作用强。
药理学笔记:抗心律失常药掌握奎尼丁、利多卡因、普罗帕酮、普萘洛尔、胺碘酮、维拉帕米的药理作用、药动学特点、临床应用及主要不良反应。
熟悉其他抗心律失常药的药理作用特点。
了解心律失常的电生理基础及抗心律失常药的分类。
心律失常有快速型和缓慢型两类。
缓慢型心律失常常见的有房室传导阻滞、窦性心动过缓,治疗药物有异丙肾上腺素或阿托品。
本章主要讨论快速型心律失常的产生机理及治疗快速心律失常的药物。
抗心律失常药对心肌电生理的影响一、正常心肌电生理心肌细胞内外离子分布不同,其静息电位为膜内负于膜外,约-90mv,当心肌细胞受到刺激(或自发的)发生兴奋,出现除极化,继后复极化,构成动作电位。
动作电位分为5个时相,其中与本章要介绍的抗心律失常药关系最密切的是0相、3相、4相。
自律性细胞(窦房结):ca++内流引起。
0相:非自律性细胞(心室肌):na+内流引起。
3相: k+外流。
:k+外流,电位下降,最后完成复极化过程,如某药能抑制该时相k+外流,则可延长动作电位时程和有不应期,相反则缩短动作电位时程和有效不应期。
4相:非自律性心肌细胞(如心室肌、心房肌):4相是维持静息电位。
有自律性细胞(如窦房结,浦氏纤维);达到舒张电位(静息电位)后,便自动除极化(称为舒张期自动除极化)即负值逐渐减少,曲线上升,形成一坡度,当升至域电位时,即触发一新的动作电位。
但是由于自发性细胞的不同,其4相的离子转运有不同特点。
a、慢反应细胞(窦房结):ca++内流大于k+外流。
b、快反应细胞(浦氏纤维):na+内流大于k+外流。
可见,如能抑制na+内流或ca++内流则可降低自律性。
二、抗心律失常药的基本电生理作用(作用机制)1、减慢4相自动除极化速率而降低自律性对快反应细胞:主要促进度4相k+外流或抑制na+内流对慢反应细胞:抑制4相ca++内流。
2、消除折返冲动①改变传导性改善传导,取消单向传导阻滞;减慢传导,使单向传导阻滞变为双向传导阻滞②绝对或相对地延长有效不应期:动作电位0相3相的时程称为动作电位过程(apd),从0相至复极至-60 ~ -50mv时程称为不应期(erp)。