圆锥曲线与方程(复习)
- 格式:doc
- 大小:148.72 KB
- 文档页数:2
圆锥曲线方程小结与复习(一)·教案示例目的要求1.通过小结与复习,对全章基础知识进行总结,突出知识间的内在联系,在综合运用知识解决问题的能力上有进一步的提高.2.通过对全章知识内容的总结、例题的分析、讲解和讨论,进一步熟悉和掌握有关的数学思想方法.内容分析1.本章主要内容包括椭圆、双曲线、抛物线的定义、标准方程及其简单几何性质.(1)椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹.由这些条件可以求出它们的标准方程,通过分析标准方程可研究三种曲线的简单几何性质.对三种曲线的标准方程、图形及简单几何性质的复习,可采用教科书中的表格形式进行归纳总结.这样,可以使学生比较清楚地掌握三种曲线的特性及它们之间的区别与联系.(2)椭圆、双曲线、抛物线统称圆锥曲线,它们的统一性如下:a.从方程的形式看:在直角坐标系中,这几种曲线的方程都是二元二次的,所以,它们属于二次曲线.b.从点的集合(或轨迹)的观点看:它们都是与定点和定直线的距离之比是常数e的点的集合(或轨迹).这个定点是它们的焦点,定直线是它们的准线.只是由于离心率e取值范围的不同,而分为椭圆、双曲线和抛物线三种曲线.B.这三种曲线都可以看成是由平面截圆锥面得到的截线(见教科书章头图).因此,它们统称为圆锥曲线.(3)坐标法是研究曲线的一种重要方法.本章在第七章的基础上进一步学习了求曲线方程的一般方法,如何利用曲线的方程讨论曲线的简单几何性质,以及用坐标法证明简单的几何问题等.2.本课时安排的两个例题,对知识的覆盖面较大,突出了本章重点知识和基本方法.其中例1是一道探求轨迹方程问题,可以按求点的轨迹方程的一般方法来求解;也可以先分析几何图形特征,从中寻找解题思路.其中,前一种思路突出了通性通法,后一种思路可避免繁杂运算,对两种思路的分析,要根据学生的实际情况,进行启发、点拨.例2是一道利用方程研究曲线性质的证明题,可以通过解方程组求出交点坐标进行证明;也可以利用解析几何常用的“设而不求”的技巧来证明.对后一种思路的分析、讲解要详细,以便让学生掌握.两个例题包括了本章中“已知曲线求方程”和“已知方程研究曲线性质”两个训练重点.通过讲解这两个例题,可复习解析几何的基本方法.教学中,要充分利用好这两个例题,使本章主要知识内容得到较全面的复习和巩固.教学过程1.内容小结.对全章的基础知识内容,作一次小结.可让学生填表(教师按教科书中的项目先准备好表格,留空).在填完表格的基础上,教师订正或师生共同小结.然后,教师可对一些重点予以强调.比如三种曲线的统一性(方程形式、集合(或轨迹)观点等)以及坐标法的重要性.2.指出本章学习要求和需要注意的问题.可让学生先阅读教科书中相关内容.教师指出学习本章要充分利用“数形结合思想”,高考对本章知识内容的考查要求较高.学习不可能一步到位,而是要在理解基础知识、掌握基本方法的基础上,逐步提高自己分析问题、解决问题的能力.3.讲参考例题.例1:一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线.分析:解答本题可以按求轨迹方程的一般方法来进行.设动圆圆心为M(x,y),半径为R.设已知两圆的圆心分别为F1、F2,根据题意,有|MF |=R 2|MF |10R 12+,=-.⎧⎨⎩则 |MF1|+|MF2|=12.即.(x +3)=122++-+y x y 2223()化简整理,得 x y 223627+=1.所以,动圆圆心的轨迹是椭圆,它的中心是原点,长轴、短轴长分别是、,焦点在轴上.1263x注:解答本题也可以从几何条件入手,结合椭圆定义找到解题思路.由于|MF1|+|MF2|=12>|F1F2|=6,所以点M 的轨迹是以F1、F2为焦点,长轴长为12的椭圆.从而可得其标准方程.例2:直线y=x -2与抛物线y2=2x 相交于A 、B 两点,求证OA ⊥OB .分析1:由于直线与抛物线的方程为已知,故可通过解方程组来求点A 、B 的坐标.再结合斜率公式及两直线垂直的充要条件来进行证明.证法 1:将y =x -2代入y2=2x 中,整理,得x2-6x +4=0.解得±.则±. x =3 y =155不妨设点、的坐标分别为-,-、+,+.A B A(31)B(31)5555则,=.∴·×-.k =1k k k =1=1OA OB OA OB --++--++=--535153553515351595 ∴OA ⊥OB .分析2:设点A 、B 的坐标分别为A(x1,y1)、B(x2,y2),因为OA ⊥OB 成立的的充要条件是x1x2+y1y2=0.所以,可结合韦达定理进行证明.证法2:同证法1得方程x2-6x +4=0.设点A 、B 的坐标分别为A(x1,y1)、B(x2,y2),由一元二次方程根与系数的关系,可知x1+x2=6,x1x2=4.∵y1=x1-2,y2=x2-2,∴y1y2=(x1-2)(x2-2)=x1x2-2(x1+x2)+4=4-12+4=-4.∴x1x2+y1y2=0.∴OA ⊥OB .4.归纳小结.由于本课前半部分本身带有总结性质,这里可着重对两个例题的解题思路进行总结. 布置作业..复习参考题A 组第8、10、14题.。
数学选修2-1《圆锥曲线与方程》复习训练题一、 选择题:本大题共12小题,每小题5分,共60分。
1曲线 与曲线 (0 <k<9) 具有( ) A 、相等的长、短轴 B 、相等的焦距 C 、相等的离心率 D 、相同的准线2、若k 可以取任意实数,则方程x 2+ky 2=1所表示的曲线不可能是( )A.直线B.圆C.椭圆或双曲线D.抛物线 3、如果抛物线y 2= ax 的准线是直线x=-1,那么它的焦点坐标为( )A .(1, 0)B .(2, 0)C .(3, 0)D .(-1, 0) 4、平面内过点A (-2,0),且与直线x=2相切的动圆圆心的轨迹方程是 ( ) A . y 2=-2x B . y 2=-4x C .y 2=-8x D .y 2=-16x5、双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为 ( ) A .3 B .26 C .36 D .33 6、若椭圆的中心及两个焦点将两条准线之间的距离四等分,则椭圆的离心率为( )A 、B 、C 、D 、7、过点P (2,-2)且与22x -y 2=1有相同渐近线的双曲线方程是( )A .14222=-x yB .12422=-y xC .12422=-x yD .14222=-y x 8、抛物线214y x =关于直线0x y -=对称的抛物线的焦点坐标是( ) A 、(1,0) B 、1(,0)16 C 、(0,0) D 、1(0,)169、中心在原点,对称轴为坐标轴,离心率e =,一条准线方程为30x =的双曲线方程是( )(A )22134x y -= (B )22153y x -= (C )22124x y -= (D )22142y x -= 10、椭圆上一点P 到一个焦点的距离恰好等于短半轴的长b ,且它的离心率e =P 到另一焦点的对应准线的距离为 ( ) (A )6 (B )3 (C )2(D ) 11、已知双曲线 和椭圆 (a>0, m>b>0)的离心率互为 倒数,那么以a 、b 、m 为边长的三角形是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、等腰三角形12、过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2)两点,如果x 1+ x 2=6,那么|AB|= ( ) A .8 B .10 C .6 D .4二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中的横线上。
第二章 圆锥曲线与方程(复习A )1、过点(2,4)作直线,与抛物线y 2=8x 只有一个公共点的直线有( ) A 、1条 B 、2条 C 、3条 D 、4条2、双曲线x 2-y 2=1的左焦点为F ,点P 为左支下半支上任一点(异于顶点),则直线PF 的斜率的变化范围是( )A 、)0,(-∞B 、(1,+∞)C 、),1()0,(+∞⋃-∞D 、),1()1,(+∞⋃--∞3、已知(4,2)是直线l 被椭圆193622=+y x 截得的线段的中点,则l 的方程是( ) A 、x-2y=0 B 、x+2y-4=0 C 、2x+3y+4=0 D 、x+2y-8=0 4、抛物线x y 412=关于直线x-y=0对称的抛物线的焦点坐标是( )A 、(1,0)B 、(0,1)C 、(0,161)D 、(0,161)5、对于抛物线C :y 2=4x ,我们称满足0204x y <的点M (00,y x )在抛物线的内部。
若M (00,y x )在抛物线的内部,则直线)(2:00x x y y l +=与C ( ) A 、恰有一个公共点 B 、恰有两个公共点C 、可能有一个公共点,也可能有两个公共点D 、没有公共点6、直线y=x+3与曲线14||92=-y y x 的交点个数为( ) A 、0 B 、1 C 、2 D 、37、与直线2x-y+4=0平行的抛物线y= x 2的切线方程是 ( )A 、2x -y+3=0B 、2x -y -3=0C 、2x-y+1=0D 、2x-y-1=08、如果过两点)0,(a A 和),0(a B 的直线与抛物线322--=x x y 没有交点,那么实数a 的取值范围是( ) A 、(134, +∞) B 、(- ∞,134) C 、(- ∞,-134) D 、(-134 ,134) 9、若焦点是(0,25±)的椭圆截直线3x-y-2=0所得弦的中点的横坐标为1/2,则椭圆的方程是 . 10、设圆05422=--+x y x 的弦AB 的中点为P (3,1),则直线AB 的方程是 .11、如图,抛物线关于x 轴对称,它的顶点在坐标原点, 点P(1,2), A(x 1, y 1), B(x 2,y 2)均在直线上. (Ⅰ)写出该抛物线的方程及其准线方程;(Ⅱ)当PA 与PB 的斜率存在且倾角互补时,求21y y +的值及直线AB 的斜率.12、设椭圆方程为1422=+y x ,过点M (0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求:(Ⅰ)动点P 的轨迹方程; (Ⅱ)||的最小值与最大值.参考答案1、B (注意点在曲线上)2、C (利用数形结合)3、D (利用“点差法”求斜率)4、C5、D (直线l 过定点(0,0x -),斜率为2)6、B (先分类讨论去掉绝对值,再利用数形结合)7、D8、C9、利用“点差法”可求得1752522=+y x 10、x+y-4=0 11、解(Ⅰ)由已知条件,可设抛物线的方程为.22px y = ∵点P(1,2)在抛物线上,∴,1222⋅=p 得p =2.故所求抛物线的方程是,42x y =准线方程是x=--1. (Ⅱ) 设直线PA 的斜率为k PA ,直线PB 的斜率为k PB , ∵PA 与PB 的斜率存在且倾斜角互补,∴.PB PA k k -= 由A(x 1,y 1), B(x 2,y 2)在抛物线上,得,4121x y = ①,4222x y = ② ∴,14121412222211--=--y y y y∴ ),2(221+-=+y y ∴.421-=+y y由①-②得直线AB 的斜率).(144421211212x x y y x x y y k AB ≠-=-=+=--=12、(Ⅰ)解法一:直线l 过点M (0,1)设其斜率为k ,则l 的方程为.1+=kx y 记),(11y x A 、),,(22y x B 由题设可得点A 、B 的坐标),(11y x 、),(22y x 是方程组⎪⎩⎪⎨⎧=++=14122y x kx y 的解.将①代入②并化简得,032)4(22=-++kx x k ,所以 ⎪⎪⎩⎪⎪⎨⎧+=++-=+.48,42221221k y y k k x x 于是).44,4()2,2()(21222121k k k y y x x OB OA OP ++-=++=+= 设点P 的坐标为),,(y x 则⎪⎪⎩⎪⎪⎨⎧+=+-=.44,422k y k k x 消去参数k 得0422=-+y y x ③ 当k 不存在时,A 、B 中点为坐标原点(0,0),也满足方程③,所以点P 的轨迹方程为.0422=-+y y x解法二:设点P 的坐标为),(y x ,因),(11y x A 、),(22y x B 在椭圆上,所以,142121=+y x ④①②.142222=+y x ⑤. ④—⑤得0)(4122212221=-+-y y x x ,所以 .0))((41))((21212121=+-++-y y y y x x x x 当21x x ≠时,有.0)(4121212121=--⋅+++x x y y y y x x ⑥并且⎪⎪⎪⎩⎪⎪⎪⎨⎧--=-+=+=.1,2,221212121x x y y x y y y y x x x ⑦ 将⑦代入⑥并整理得 .0422=-+y y x ⑧. 当21x x =时,点A 、B 的坐标为(0,2)、(0,-2),这时点P 的坐标为(0,0)也满足⑧,所以点P 的轨迹方程为.141)21(16122=-+y x (Ⅱ)解:由点P 的轨迹方程知.4141,1612≤≤-≤x x 即所以 127)61(3441)21()21()21(||222222++-=-+-=-+-=x x x y x故当41=x ,||取得最小值,最小值为61;41-=x 当时,||取得最大值,最大值为.621。
《圆锥曲线与方程》知识系统整合规律方法收藏1.椭圆、双曲线、抛物线的定义、标准方程、几何性质椭圆双曲线抛物线定义平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|且大于零)的点的轨迹平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹标准方程x2a2+y2b2=1(a>b>0)x2a2-y2b2=1(a>0,b>0)y2=2px(p>0)关系式a2-b2=c2a2+b2=c2—图形封闭图形无限延展,但有渐近线无限延展,没有渐近线对称性对称中心为原点无对称中心两条对称轴一条对称轴顶点四个两个一个2.待定系数法求圆锥曲线的标准方程(1)椭圆、双曲线的标准方程求椭圆、双曲线的标准方程包括“定位”和“定量”两方面,一般先确定焦点的位置,再确定参数.当焦点位置不确定时,要分情况讨论,也可将方程设为一般形式:椭圆方程为Ax2+By2=1(A>0,B>0,A≠B),其中当1A>1B时,焦点在x轴上,当1A<1B时,焦点在y轴上;双曲线方程为Ax2+By2=1(AB<0),当A<0时,焦点在y轴上,当B<0时,焦点在x轴上.另外,在求双曲线的标准方程的过程中,根据不同的已知条件采取相应方法设方程,常常可以简化解题过程,避免出错.如:与已知双曲线x2a2-y2b2=1(a>0,b>0)共渐近线的双曲线方程可设为x2a2-y2b2=λ(λ≠0);已知所求双曲线为等轴双曲线,其方程可设为x2-y2=λ(λ≠0).(2)抛物线的标准方程求抛物线的标准方程时,先确定抛物线的方程类型,再由条件求出参数p的大小.当焦点位置不确定时,要分情况讨论,也可将焦点在x轴或y轴上的抛物线方程设为一般形式y2=2px(p≠0)或x2=2py(p≠0),然后建立方程求出参数p的值.3.求离心率的方法(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是在y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=ca.已知其中的任意两个参数,可以求其他的参数.这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率.这是求离心率的十分重要的思路及方法.(3)几何法:求与过焦点的三角形有关的离心率问题,根据平面几何性质以及椭圆(双曲线)的定义、几何性质,建立参数之间的关系,通过画出图形,观察线段之间的关系,使问题更形象、直观.4.直线与圆锥曲线的位置关系(1)直线与圆锥曲线问题,是高考对圆锥曲线考查的重点和难点,也是历年考查的热点,是每年高考试卷上都会出现的一个知识点.直线与圆锥曲线问题包括两大类:①直线与圆锥曲线位置关系的判定;②直线与圆锥曲线相交而产生的弦长问题、中点问题、范围问题、最值问题等.(2)直线与圆锥曲线问题往往综合性强,注重与一元二次方程中的根的判别式、根与系数的关系、函数的单调性、不等式、平面向量等知识综合.分析这类问题,往往利用“数形结合”的思想方法,或“设而不求”的方法求解.学科思想培优一、圆锥曲线的定义、方程及性质对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.如:(1)在求轨迹方程时,若所求轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的定义,写出所求的轨迹方程.(2)涉及椭圆、双曲线上的点与两个焦点构成的三角形问题时,常用定义结合解三角形的知识来解决.(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形,利用几何意义去解决.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用. [典例1] 已知抛物线C :y 2=2px (p >0)的焦点为F ,P (1,m )是抛物线C 上的一点,且|PF |=2.(1)若椭圆C ′:x 24+y 2n =1与抛物线C 有共同的焦点,求椭圆C ′的方程; (2)设抛物线C 与(1)中所求椭圆C ′的交点为A ,B ,求以OA 和OB 所在的直线为渐近线,且经过点P 的双曲线方程.解 (1)P 到焦点距离等于P 到准线距离,所以|PF |=1+p2=2,p =2, 故抛物线的方程为C :y 2=4x .又由椭圆C ′:x 24+y 2n =1,可知4-n =1,所以n =3,故所求椭圆的方程为x 24+y 23=1.(2)由⎩⎨⎧x 24+y 23=1,y 2=4x ,消去y 得到3x 2+16x -12=0,解得x 1=23,x 2=-6(舍去).所以A ⎝ ⎛⎭⎪⎫23,236,B ⎝ ⎛⎭⎪⎫23,-236,则双曲线的渐近线方程为y =±6x .由渐近线6x ±y =0,可设双曲线方程为6x 2-y 2=λ(λ≠0). 由点P (1,m )在抛物线C :y 2=4x 上, 解得m 2=4,P (1,±2),因为点P 在双曲线上,∴6-4=λ=2, 故所求双曲线方程为3x 2-y 22=1.拓展提升(1)圆锥曲线的定义是推导标准方程和几何性质的基础,也是解题的重要工具,灵活运用定义,可避免很多复杂的计算,提高解题效率,因此在解决圆锥曲线的有关问题时,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.(2)应用圆锥曲线的性质时,要注意与数形结合、方程等思想结合运用.二、直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系综合题,往往因综合性强,难度偏大,从而使很多同学遇到圆锥曲线题后感到无从下手,因此有些同学选择对其置之不理,先将其他题目完成后再做圆锥曲线题(考试过程中),这样一由于时间紧张,二由于无从下手,三由于运算量大,有些同学不得不放弃,从而造成遗憾.实际上直线与圆锥曲线综合题的求解是有一定的规律可循的,如下规律不妨试一试,共分六步,每步都有一定的步骤得分,因此要求步骤要全且规范,争取做到能得分且得分.(1)引参,设直线或圆锥曲线方程,并设直线与圆锥曲线交点坐标,如A (x 1,y 1),B (x 2,y 2).(2)将直线方程与圆锥曲线方程联立方程组,消去y (或x )得到关于x (或y )的方程f (x )=0(或f (y )=0).此方程可能是一元二次方程,也可能是二次项系数含参的一元二次方程(这种情况应注意对二次项系数的讨论),然后列出Δ>0及根与系数的关系.(3)试用A (x 1,y 1)与B (x 2,y 2)的坐标x 1,y 1,x 2,y 2表示题中条件,得条件式(*).(4)利用点A ,B 在直线上,将条件式(*)中坐标进行统一,都转化为关于x 1,x 2(或y 1,y 2)的条件式(*)′.(5)对第二步应用根与系数的关系整体代入条件(*)′,求参或其他. (6)与Δ>0联系验证求解结果或其他.[典例2] 设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,过点F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为45°,AF →=2FB →.(1)求椭圆C 的离心率;(2)如果|AB |=214,求椭圆C 的方程. 解 (1)设A (x 1,y 1),B (x 2,y 2),由直线l 的倾斜角为45°及AF →=2FB →,可知y 1<0,y 2>0.直线l 的方程为y =x -c ,其中c =a 2-b 2,联立⎩⎨⎧y =x -c ,x 2a 2+y 2b 2=1,得(a 2+b 2)y 2+2b 2cy -b 4=0, 解得y 1=-b 2(c +2a )a 2+b 2,y 2=-b 2(c -2a )a 2+b2. 因为AF →=2FB →,所以-y 1=2y 2, 即b 2(c +2a )a 2+b 2=2×-b 2(c -2a )a 2+b 2,求得离心率e =c a =23.(2)因为|AB |=2|y 2-y 1|,所以4ab 2a 2+b2=214, 由c a =23,得b =73a ,所以74a =214,得a =3,b =7, 所以椭圆C 的方程为x 29+y 27=1. 拓展提升直线与圆锥曲线的位置关系,涉及函数、方程、不等式、平面几何等诸多方面的知识,形成了求轨迹、最值、对称、取值范围、线段的长度等多种问题.解决此类问题应注意数形结合,以形辅数的方法;还要多结合圆锥曲线的定义,根与系数的关系以及“点差法”等.三、圆锥曲线中的定点与定值问题解决定点与定值问题应灵活应用已知条件巧设变量,在变形过程中要注意各变量之间的关系,善于捕捉题目信息,注意消元思想的应用.[典例3] 设抛物线y 2=2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A ,B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明:直线AC 经过原点O .证明 因为抛物线y 2=2px (p >0)的焦点为F ⎝ ⎛⎭⎪⎫p 2,0,所以经过点F 的直线AB的方程可设为x =my +p2,代入抛物线方程得y 2-2pmy -p 2=0.若记A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根,所以y 1y 2=-p 2. 因为BC ∥x 轴,且点C 在准线x =-p2上, 所以点C 的坐标为⎝ ⎛⎭⎪⎫-p 2,y 2,故直线CO 的斜率为k =y 2-p 2=2p y 1=y 1x 1, 即k 也是直线OA 的斜率,所以A ,O ,C 三点共线,所以直线AC 经过原点O .[典例4] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过A (2,0),B (0,1)两点. (1)求椭圆C 的方程及离心率;(2)设P 为第三象限内一点且在椭圆C 上,直线P A 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:四边形ABNM 的面积为定值.解 (1)由题意得,a =2,b =1. 所以椭圆C 的方程为x 24+y 2=1. 又c =a 2-b 2=3,所以离心率e =c a =32.(2)证明:设P (x 0,y 0)(x 0<0,y 0<0),则x 20+4y 20=4.又A (2,0),B (0,1), 所以直线P A 的方程为y =y 0x 0-2(x -2). 令x =0,得y M =-2y 0x 0-2,从而|BM |=1-y M =1+2y 0x 0-2.直线PB 的方程为y =y 0-1x 0x +1.令y =0,得x N =-x 0y 0-1,从而|AN |=2-x N =2+x 0y 0-1. 所以四边形ABNM 的面积 S =12|AN |·|BM |=12⎝⎛⎭⎪⎫2+x 0y 0-1⎝ ⎛⎭⎪⎫1+2y 0x 0-2 =x 20+4y 20+4x 0y 0-4x 0-8y 0+42(x 0y 0-x 0-2y 0+2)=2x 0y 0-2x 0-4y 0+4x 0y 0-x 0-2y 0+2=2.从而四边形ABNM 的面积为定值. 拓展提升圆锥曲线中的定点、定值问题往往与圆锥曲线中的“常数”有关,如椭圆的长轴、短轴,双曲线的虚轴、实轴,抛物线的焦点等,解决此类问题的主要方法是通过研究直线与曲线的位置关系,把所给问题进行化简,通过计算获得答案;或是从特殊位置出发,确定定值,然后给出一般情况的证明.四、圆锥曲线中的最值(或范围)问题 1.最值问题的求解方法(1)建立函数模型,利用二次函数、三角函数的有界性求最值或利用导数法求最值.(2)建立不等式模型,利用基本不等式求最值.(3)数形结合,利用相切、相交的几何性质求最值.2.求参数范围的常用方法[典例5]设圆x2+y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(2)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.解(1)圆A的方程整理可得(x+1)2+y2=16,点A坐标为(-1,0),如图.因为|AD|=|AC|,所以∠ACD=∠ADC.因为EB∥AC,所以∠EBD=∠ACD,故∠EBD=∠ACD=∠ADC.所以|EB|=|ED|,故|EA|+|EB|=|EA|+|ED|=|AD|.又圆A的标准方程为(x+1)2+y2=16,从而|AD|=4,所以|EA|+|EB|=4.+由题设得A(-1,0),B(1,0),|AB|=2,由椭圆定义可得点E的轨迹方程为x24y 23=1(y ≠0).(2)解法一:当l 与x 轴不垂直时,设l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎨⎧y =k (x -1),x 24+y 23=1得(4k 2+3)x 2-8k 2x +4k 2-12=0.则x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3,所以|MN |=1+k 2|x 1-x 2|=12(k 2+1)4k 2+3.过点B (1,0)且与l 垂直的直线m :y =-1k (x -1),A 到m 的距离为2k 2+1,所以|PQ |=242-⎝⎛⎭⎪⎫2k 2+12=44k 2+3k 2+1.故四边形MPNQ 的面积 S =12|MN ||PQ |=121+14k 2+3. 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为(12,83). 当l 与x 轴垂直时,其方程为x =1,|MN |=3,|PQ |=8,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为[12,83).解法二:设∠MBA =θ(θ∈(0,π)),则在△MAB 中运用余弦定理,有|MA |2=|MB |2+|AB |2-2·|MB |·|AB |·cos θ,结合|MA |+|MB |=4可解得|MB |=32-cos θ.同理可得|NB |=32+cos θ,从而|MN |=|MB |+|NB |=124-cos 2θ.此时直线PQ 的方程为x cos θ=y sin θ+cos θ. 于是圆的弦长|PQ |=242-⎝⎛⎭⎪⎫2cos θcos 2θ+sin 2θ2=44-cos 2θ.则四边形MPNQ 的面积S =12·|MN |·|PQ | =244-cos 2θ∈[12,83),故四边形MPNQ 面积的取值范围是[12,83). 拓展提升圆锥曲线中的最值问题,通常有两类:一类是有关长度、面积等最值问题;一类是圆锥曲线中有关几何元素的最值问题,这两类问题的解决往往通过回归定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,以及数形结合、设参、转化、代换等途径来解决.五、圆锥曲线中的存在性问题 1.解决存在性问题的关注点求解存在性问题,先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件. 2.存在性问题的解题步骤[典例6] 如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P ⎝ ⎛⎭⎪⎫1,32,离心率e =12,直线l 的方程为x =4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记P A ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.解 (1)由P ⎝ ⎛⎭⎪⎫1,32在椭圆上,得1a 2+94b 2=1,① 依题设知a =2c ,则b 2=3c 2,②②代入①,解得c 2=1,a 2=4,b 2=3.故椭圆C 的方程为x 24+y 23=1.(2)解法一:由题意可设AB 的斜率为k ,则直线AB 的方程为y =k (x -1),③代入椭圆方程3x 2+4y 2=12,并整理,得(4k 2+3)x 2-8k 2x +4(k 2-3)=0.设A (x 1,y 1),B (x 2,y 2),则有x 1+x 2=8k 24k 2+3,x 1x 2=4(k 2-3)4k 2+3,④ 在方程③中令x =4,得M 的坐标为(4,3k ).从而k 1=y 1-32x 1-1,k 2=y 2-32x 2-1,k 3=3k -324-1=k -12. 由于A ,F ,B 共线,则有k =k AF =k BF ,即有y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=y 1x 1-1+y 2x 2-1-32⎝ ⎛⎭⎪⎫1x 1-1+1x 2-1 =2k -32·x 1+x 2-2x 1x 2-(x 1+x 2)+1,⑤④代入⑤得k 1+k 2=2k -32·8k 24k 2+3-24(k 2-3)4k 2+3-8k 24k 2+3+1=2k -1, 又k 3=k -12,所以k 1+k 2=2k 3.故存在常数λ=2符合题意.解法二:设B (x 0,y 0)(x 0≠1),则直线FB 的方程为y =y 0x 0-1(x -1), 令x =4,求得M ⎝⎛⎭⎪⎫4,3y 0x 0-1, 从而直线PM 的斜率为k 3=2y 0-x 0+12(x 0-1), 联立⎩⎪⎨⎪⎧ y =y 0x 0-1(x -1),x 24+y 23=1,得A ⎝ ⎛⎭⎪⎪⎫5x 0-82x 0-5,3y 02x 0-5, 则直线P A 的斜率为k 1=2y 0-2x 0+52(x 0-1),直线PB 的斜率为k 2=2y 0-32(x 0-1), 所以k 1+k 2=2y 0-2x 0+52(x 0-1)+2y 0-32(x 0-1)=2y 0-x 0+1x 0-1=2k 3, 故存在常数λ=2符合题意.拓展提升存在性问题是一种具有开放性和发散性的问题,此类题目的条件和结论不完备,学生应结合已有的条件进行观察、分析、比较和概括,它对数学思想、数学意识有较高的要求.。
圆锥曲线与方程小结与复习二、复习引入:椭圆、双曲线、抛物线分别是满足某些条件的点的轨迹,由这些条件可以求出它们的标准方程,并通过分析标准方程研究这三种曲线的几何性质1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹2.椭圆的标准方程:12222=+by ax ,12222=+bx ay (0>>b a )3.椭圆的性质:由椭圆方程12222=+by ax (0>>b a )(1)范围: a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中.(2)对称性:图象关于y 轴对称.图象关于x 轴对称.图象关于原点对称原点叫椭圆的对称中心,简称中心.x 轴、y 轴叫椭圆的对称轴.从椭圆的方程中直接可以看出它的范围,对称的截距(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点椭圆共有四个顶点: )0,(),0,(2a A a A -,),0(),,0(2b B b B -加两焦点)0,(),0,(21c F c F -共有六个特殊点21A A 叫椭圆的长轴,21B B 叫椭圆的短轴.长分别为b a 2,2 b a ,分别为椭圆的长半轴长和短半轴长椭圆的顶点即为椭圆与对称轴的交点(4)离心率: 椭圆焦距与长轴长之比ac e =⇒2)(1ab e -=10<<e椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例4.双曲线的定义:平面内到两定点21,F F 的距离的差的绝对值为常数(小于21F F )的动点的轨迹叫双曲线 即a MF MF 221=- 这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距在同样的差下,两定点间距离较长,则所画出的双曲线的开口较开阔(→两条平行线)两定点间距离较短(大于定差),则所画出的双曲线的开口较狭窄(→两条射线)双曲线的形状与两定点间距离、定差有关 5.双曲线的标准方程及特点:(1)双曲线的标准方程有焦点在x 轴上和焦点y 轴上两种: 焦点在x 轴上时双曲线的标准方程为:12222=-b y a x (0>a ,0>b );焦点在y 轴上时双曲线的标准方程为:12222=-bx ay (0>a ,0>b )6.c b a ,,有关系式222b a c +=成立,且0,0,0>>>c b a 其中a 与b 的大小关系:可以为b a b a b a ><=,,7焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母2x 、2y 项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴而双曲线是根据项的正负来判断焦点所在的位置,即2x 项的系数是正的,那么焦点在x 轴上;2y 项的系数是正的,那么焦点在y 轴上8.双曲线的几何性质: (1)范围、对称性由标准方程12222=-by ax ,从横的方向来看,直线x=-a,x=a 之间没有图象,从纵的方向来看,随着x 的增大,y 的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线双曲线不封闭,但仍称其对称中心为双曲线的中心 (2)顶点顶点:()0,),0,(21a A a A -,特殊点:()b B b B -,0),,0(21实轴:21A A 长为2a, a 叫做半实轴长虚轴:21B B 长为2b ,b 叫做虚半轴长 双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异 (3)渐近线过双曲线12222=-by ax 的渐近线x ab y ±=(0=±by ax )(4)离心率双曲线的焦距与实轴长的比ac ac e ==22,叫做双曲线的离心率范围:1>e双曲线形状与e 的关系:1122222-=-=-==e ac aa c ab k ,e 越大,即渐近线的斜率的绝对值就大,这是双曲线的形状就从扁狭逐渐变得开阔由此可知,双曲线的离心率越大,它的开口就越阔9.等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线,这样的双曲线叫做等轴双曲线 等轴双曲线的性质:(1)渐近线方程为:x y ±=;(2)渐近线互相垂直;(3)离心率2=e14 抛物线定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线 15.抛物线的准线方程: (1))0(22>=p px y , 焦点:)0,2(p ,准线l :2p x -= (2))0(22>=p py x , 焦点:)2,0(p ,准线l :2p y -= (3))0(22>-=p px y , 焦点:)0,2(p -,准线l :2p x =(4) )0(22>-=p py x , 焦点:)2,0(p -,准线l :2p y =相同点:(1)抛物线都过原点;(2)对称轴为坐标轴;(3)准线都与对称轴垂直,垂足与焦点在对称轴上关于原点对称 它们到原点的距离都等于一次项系数绝对值的41,即242p p =不同点:(1)图形关于X 轴对称时,X 为一次项,Y 为二次项,方程右端为px 2±、左端为2y ;图形关于Y 轴对称时,X 为二次项,Y 为一次项,方程右端为py 2±,左端为2x (2)开口方向在X 轴(或Y 轴)正向时,焦点在X 轴(或Y 轴)的正半轴上,方程右端取正号;开口在X 轴(或Y 轴)负向时,焦点在X 轴(或Y 轴)负半轴时,方程右端取负号 16.抛物线的几何性质 (1)范围因为p >0,由方程()022>=p px y 可知,这条抛物线上的点M 的坐标(x ,y)满足不等式x≥0,所以这条抛物线在y 轴的右侧;当x 的值增大时,|y|也增大,这说明抛物线向右上方和右下方无限延伸. (2)对称性以-y 代y ,方程()022>=p px y 不变,所以这条抛物线关于x 轴对称,我们把抛物线的对称轴叫做抛物线的轴. (3)顶点抛物线和它的轴的交点叫做抛物线的顶点.在方程()022>=p px y 中,当y=0时,x=0,因此抛物线()022>=p px y 的顶点就是坐标原点.(4)离心率抛物线上的点M 与焦点的距离和它到准线的距离的比,叫做抛物线的离心率,用e 表示.由抛物线的定义可知,e=1. 18.直线与抛物线:(1)位置关系:相交(两个公共点或一个公共点);相离(无公共点);相切(一个公共点) 将b kx y l +=:代入0:22=++++F Ey Dx CyAx C ,消去y ,得到关于x 的二次方程02=++c bx ax (*) 若0>∆,相交;0=∆,相切;0<∆,相离 综上,得: 联立⎩⎨⎧=+=pxyb kx y 22,得关于x 的方程02=++c bx ax当0=a (二次项系数为零),唯一一个公共点(交点) 当0≠a ,则若0>∆,两个公共点(交点)0=∆,一个公共点(切点) 0<∆,无公共点 (相离)(2)相交弦长:弦长公式:21kad +∆=,(3)焦点弦公式:抛物线)0(22>=p px y , )(21x x p AB ++= 抛物线)0(22>-=p px y , )(21x x p AB +-= 抛物线)0(22>=p py x , )(21y y p AB ++= 抛物线)0(22>-=p py x ,)(21y y p AB +-= (4)通径:定义:过焦点且垂直于对称轴的相交弦 通径:p d 2= (5)若已知过焦点的直线倾斜角θ则⎪⎩⎪⎨⎧=-=px y p x k y 2)2(20222=--⇒p y k p y ⎪⎩⎪⎨⎧-==+⇒221212py y k p y y θsin 24422221p pkp y y =+=-⇒θθ221sin 2sin 1p y y AB =-=⇒(6)常用结论:⎪⎩⎪⎨⎧=-=pxy p x k y 2)2(20222=--⇒p y k p y 和04)2(22222=++-p k x p p k x k 221p y y -=⇒和421p x x =1.动点A 到定点F 1(0, -2)和F 2(0, 2)的距离的和为4,则动点A 的轨迹为 ( B )A. 椭圆B. 线段C. 无图形D. 两条射线;2.动点P 到定点F 1(1, 0)的距离比它到定点F 2(3, 0)的距离小2,则点P 的轨迹是 ( C ) A .双曲线 B .双曲线的一支 C .一条射线 D .两条射线。
第二章圆锥曲线与方程(复习)【使用说明】
1、课前完成预习学案,掌握基本题型;
2、认真限时规范书写,课上小组合作探讨,答疑解惑。
3、A、B层全部掌握,C层选做。
【学习目标】
1.掌握椭圆、双曲线、抛物线的定义及标准方程;
2.掌握椭圆、双曲线、抛物线的几何性质;
3.能解决直线与圆锥曲线的一些问题.
【问题导学】
(预习教材理P78~ P81,文P66~ P69找出疑惑之处)
复习1:完成下列表格:
椭圆双曲线抛物线
定义
图形
标准方程
顶点坐标
对称轴
焦点坐标
离心率
(以上每类选取一种情形填写)
复习2:
①若椭圆221
x my
+=的离心率为
3
2
,则它的长半轴长为__________;
②双曲线的渐近线方程为20
x y
±=,焦距为10,则双曲线的方程为;
③以椭圆
22
1
2516
x y
+=的右焦点为焦点的抛物线方程为.
我的疑惑:记录下你的疑惑,让我们在课堂上共同解决。
【深化提高】
例1 当α从0 到180 变化时,方程
22cos1
x yα
+=表示的曲线的形状怎样变化?
变式:若曲线
22
1
1
x y
k k
+=
+
表示椭圆,则k的取值范围是.
小结:掌握好每类标准方程的形式.
例2设
1
F,
2
F分别为椭圆C:
22
22
x y
a b
+=1
(0)
a b
>>的左、右两个焦点.
⑴若椭圆C上的点A(1,
3
2
)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;
⑵设点K是(1)中所得椭圆上的动点,求线段
1
F K的中点的轨迹方程.
变式:双曲线与椭圆
22
1
2736
x y
+=有相同焦点,且经过点(15,4),求双曲线的方程.
学案编号:B51 第1 页共2 页
成功的秘诀公式是
A x y z =++其中A 代表成功,x 代表艰苦的劳动,y 代表正确的方法,z 代表少说空话. ——爱因斯坦
第 2 页 共 2 页
※ 动手试试
练1.已知ABC ∆的两个顶点A ,B 坐标分别是(5,0)-,(5,0),且AC ,BC 所在直线的斜率之积等于m (0)m ≠,试探求顶点C 的轨迹.
练2.斜率为2的直线l 与双曲线22
132
x y -=交于A ,B 两点,且4AB =,求直线l 的方程.
【当堂检测】
1.曲线221259x y +=与曲线22
1259x y k k
+=--(9)k <的( )
. A .长轴长相等 B .短轴长相等 C .离心率相等 D .焦距相等
2.与圆221x y +=及圆228120x y x +-+=都外切的圆的圆心在( ) . A .一个椭圆上 B .双曲线的一支上 C .一条抛物线上 D .一个圆上 3.过抛物线28y x =的焦点作直线l ,交抛物线于A ,B 两点,若线段AB 中点的横坐标为3,则AB
等于( ).
A .10
B .8
C .6
D .4
4.直线1y kx =-与双曲线224x y -=没有公共点,则k 的取值范围 . 5.到直线3y x =+的距离最短的抛物线24y x =上的点的坐标是 . 【小结】
(1)知识与方法方面 。
(2)数学思想及方法方面 。