圆锥曲线与方程
- 格式:ppt
- 大小:274.00 KB
- 文档页数:62
圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。
双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。
抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。
二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。
以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。
双曲线和抛物线的参数方程也可以类似地表示。
三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。
以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。
双曲线和抛物线的极坐标方程也可以类似地表示。
四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。
2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。
圆锥曲线与方程1. 已知动抛物线的准线为x 轴,且经过点(0,2),求抛物线的顶点轨迹方程。
解:设抛物线的顶点坐标为)2,(),,(y x y x 则焦点坐标为, ……………………3分由题意得4)22(22=-+y x , ………………6分即顶点的轨迹方程为.1)1(422=-+y x ………………8分 2.动点P 在x 轴与直线l :y =3之间的区域(含边界)上运动,且到点F (0,1)和直线l的距离之和为4.(1)求点P 的轨迹C 的方程;(2)过点(0,1)Q -作曲线C 的切线,求所作的切线与曲线C 所围成区域的面积. 【解】(1)设P (x ,y )+3-y =4,化简,得y =14x 2(y ≤3).…………………4分(2)设过Q 的直线方程为y =kx -1,代入抛物线方程,整理得x 2-4kx +4=0. 由△=16k 2-16=0.解得k =±1.于是所求切线方程为y =±x -1(亦可用导数求得切线方程). 切点的坐标为(2,1),(-2,1).由对称性知所求的区域的面积为S =220132(1)d .44x x x ⎡⎤--=⎢⎥⎣⎦⎰ ………………… 10分 3.已知圆F 1:(x +1)2+y 2=16,定点F 2(1,0).动圆M 过点F 2,且与圆F 1相内切.(1)求点M 的轨迹C 的方程;(2)若过原点的直线l 与(1)中的曲线C 交于A ,B 两点,且△ABF 1的面积为32,求直线l 的方程.解:(方法一)(1)设圆M 的半径为r . 因为圆M 与圆F 1相内切,所以MF 1=4-r . 因为圆M 过点F 2,所以MF 2=r .所以MF 1=4-MF 2,即MF 1+MF 2=4.………2分 所以点M 的轨迹C 是以F 1,F 2为焦点的椭圆.………且此椭圆的方程形式为x 2a 2+y 2b2=1(a >b >0).其中2a =4,c =1,所以a =2,b =3.……………4分所以曲线C 的方程x 24+y 23=1.……………5分(方法二)设M (x ,y),由MF 1+MF 2=4得4= ……3分化简得x 24+y 23=1,所以曲线C 的方程x 24+y 23=1.…5分(2)(方法一)当直线l 的斜率不存在时, A ,B 两点的坐标分别是(0,3),(0,-3),此时S △ABF 1=3≠32,不合题意.………………………………………………………6分设直线l 的方程为y =kx (k ≠0),代入椭圆方程x 24+y 23=1,得y 1=12k 23+4k 2,y 2=-12k 23+4k 2.所以S △ABF 1=S △AOF 1+S △BOF 1=12OF 1⋅∣y 1∣+12OF 1⋅∣y 2∣=12OF 1⋅(y 1-y 2)=12k 23+4k 2.……………………………………………7分因为S △ABF 1=32,所以12k 23+4k2=32.解得k =±12. …………………………8分 故所求直线l 的方程为x ±2y =0.……………………………………………………10分 (方法二)因为直线l 过椭圆的中心,由椭圆的对称性可知,S △ABF 1=2S AOF 1.因为S △ABF 1=32,所以S AOF 1=34. ………………………………6分 不妨设点A (x 1,y 1)在x 轴上方,则S AOF 1=12⋅OF 1⋅y 1=34.所以y 1=32,x 1=±3,即点A 的坐标为(3,32)或(-3,32). (8)分所以直线l 的斜率为±12.故所求的直线l 的方程为x ±2y =0.…………………………………………………10分 4. 点(,)n n n P x y 在曲线:xC y e -=上,曲线C 在n P 处的切线n l 与x 轴相交于点1(,0)n n Q x +,直线1n t +:1n x x +=与曲线C 相交于点111(,)n n n P x y +++,(1,2,3,n =L ).由曲线C 和直线n l ,1n t +围成的图形面积记为n S ,已知11x =.(1)证明:11n n x x +=+; (2)求n S 关于n 的表达式;(3)若数列{}n S 的前n 项之和为n T ,求证:11n n n nT x T x ++<(1,2,3,n =L ).解(Ⅰ)证明:因为x y e -=,所以xy e -'=-,则切线n l 的斜率nx n k e -=-,所以切线n l 的方程为()nx n n y y ex x --=--,令0y =,得1n Q n x x =+,即11n n x x +=+·2分(Ⅱ)解:因为11x =,所以n x n =,所以11111(2)()()|222n nn x xx n n n n n n n x e e S e dx x x y e e e +---+-+-=--⋅=--⨯=⎰ ·5分(Ⅲ)证明:因为12(2)2()(1)22(1)n n n e e T e e e e e e e ------=++⋅⋅⋅+=--, 所以1111111111n n n n n n n T e e e T e e e e e --++-++---===+---,又1111n nx n x n n ++==+, 故要证11n n n n T x T x ++<,只要证111n e e e n+-<-,即要证1(1)n e e n e +>-+·7分下用数学归纳法(或用二项式定理,或利用函数的单调性)等方法来 证明1(1)n ee n e +>-+(略)·10分5.在平面直角坐标系xOy 中,抛物线C 的顶点在原点,焦点F 的坐标为(1,0). (1)求抛物线C 的标准方程;(2)设M 、N 是抛物线C 的准线上的两个动点,且它们的纵坐标之积为-4,直线MO ,NO 与抛物线C 的交点分别为点A 、B .求证:动直线AB 恒过一个定点.解:(1)设抛物线的标准方程为y 2=2px (p >0),则p2=1,p =2.所以抛物线C 的标准方程为y 2=4x .………………………………………………3分 (2)(方法一)抛物线C 的准线方程为x =-1,设M (-1,y 1)、N (-1,y 2), 其中y 1y 2=-4.则直线MO 的方程为:y =-y 1x . 将y =-y 1x 与y 2=4x 联立方程组.解得A 点坐标为(4y 21,-4y 1).同理可得B 点坐标为(4y 22,-4y 2).则直线AB 的方程为:y +4y 1-4y 2+4y 1=x -4y 214y 22-4y 21.整理,得(y 1+y 2)y -4x +4=0.由⎩⎨⎧y =0,-4x +4=0,解得⎩⎨⎧x =1,y =0.故动直线AB 恒过一个定点(1,0).………………10分(方法二)抛物线C 的准线方程为x =-1,设M (-1,y 1)、N (-1,y 2). 由于y 1y 2=-4,取y 1=2,则y 2=-2,可得M (-1,2)、N (-1,-2).此时直线MO 的方程分别为y =-2x ,由⎩⎨⎧y 2=4x ,y =-2x .解得A 点坐标为(1,-2).同理,可得B 点坐标为(1,2).则直线AB 的方程为l 1:x =1. 再取y 1=1,则y 2=-4,同理可得A (4,-4),B (14,1).此时直线AB 方程为l 2:4x +3y -4=0.于是可得l 1与l 2的交点为(1,0). 下面验证对任意的y 1,y 2,当y 1y 2=-4时,动直线AB 恒过一个定点(1,0). 直线MO 的方程为:y =-y 1x . 将y =-y 1x 与y 2=4x 联立方程组.解得A 点坐标为(4y 21,-4y 1).同理可得B 点坐标为(4y 22,-4y 2).则直线AB 的方程为:y +4y 1-4y 2+4y 1=x -4y 214y 22-4y 21.整理,得(y 1+y 2)y -4x +4=0. 可得点(1,0)在直线AB 上.所以动直线AB 恒过一个定点(1,0).………………………………………………10分 6.(本题满分10分)在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点(2,2)A ,其焦点F 在x 轴上。
第二章 圆锥曲线与方程基础知识点及典型例题:一、椭圆及性质:(定义:()21212F F a PF PF >=+) 注:222c b a +=例1、已知椭圆:1162522=+y x 则它的焦点坐标为:______________,顶点坐标为:_______________________,长轴长为:_________,短轴长为:_________,焦距为:________,离心率为:_________,若P 为椭圆上的一点,且==21,4PF PF 则_____________.(若椭圆的方程为:16410022=+x y 呢?) 例2、已知下列条件求椭圆的标准方程: ① 已知椭圆的一个焦点为(3,0),且它的长轴长为10; ② 焦点在y 轴上,焦距为4,离心率为32; ③ 已知椭圆的焦点坐标为(-2,0),(2,0),且经过点⎪⎭⎫⎝⎛-23,25;④ 长轴长为20,离心率为53; ⑤ 长轴长是短轴长的3倍,且经过点()0,3P .二、双曲线及性质:(定义:)(2||2121F F a PF PF <=+) 注:222b a c +=例3、已知双曲线:14491622=-y x ,则它的焦点坐标为:____________,它的顶点坐标为:___________,实轴长为:_________,虚轴长为:__________,焦距为:_______,离心率为:______,渐近线的方程为:_______________;若P 为双曲线上的一点,且==21,4PF PF 则________.(若81=PF 呢?)例4、已知下列条件求双曲线的标准方程: ① 焦点在x 轴上3,4==b a ;② 焦点为(0,-6),(0,6),且经过点(2,-5); ③ 顶点在x 轴上,两顶点间的距离为8,且45=e ; ④ 焦距是10,虚轴长是8;⑤ 焦点在x 轴上,渐近线为,34x y ±=实轴长为12; 三、抛物线及性质:(定义:d PF =||)例5、抛物线x y 82=的焦点F 的坐标为:_________,准线方程为:_____________,焦点到准线的距离为_________.若该抛物线上的一点M 到焦点F 的距离为5,则M 到准线的距离为:____,M 点的坐标为:__________.(若抛物线为y x 42-=呢?) 6、已知下列条件求抛物线的标准方程: ① 焦点为F (3,0); ② 准线方程为21-=x ; ③ 焦点到准线的距离为2;四、直线与曲线的位置关系:(联立直线与曲线方程消去y 得:02=++C Bx Ax )1、相交:两个交点0>∆⇔;(交点坐标为对应方程组的解!)2、相切:一个交点0=∆⇔;3、相离:无交点0<∆⇔。
2.5 圆锥曲线与方程1.曲线的方程和方程的曲线的概念:在直角坐标系中,如果某曲线C上的点与一个二元方程 f(x,y)=0的实数解满足下列关系:(1) 曲线上的点的坐标都是这个方程的解;(2) 以这个方程的解为坐标的点都在曲线上.这个方程叫做曲线的方程;这个曲线叫做方程的曲线.说明:(1)曲线的方程—反映的是图形所满足的数量关系;方程的曲线—反映的是数量关系所表示的图形.(2)“曲线上的点的坐标都是这个方程的解”,阐明曲线上没有坐标不满足方程的点,也就是说曲线上所有的点都符合这个条件而毫无例外.(纯粹性)(3)“以这个方程的解为坐标的点都在曲线上”,阐明符合条件的所有点都在曲线上而毫无遗漏.(完备性)由曲线的方程的定义可知:如果曲线C的方程是 f(x,y)=0,那么点P0(x0 ,y0)在曲线 C 上的充要条件是f(x0 ,y0)=02.求曲线方程的一般步骤:(1)建系:建立适当的坐标系,用 M(x,y) 表示曲线上任意一点;(2)几何列式:写出满足条件的点M的集合{M/P(M) };(3)代数方程:将M点坐标(x,y)代入几何条件,列出方程 f (x,y) =0;(4)化简:化方程为最简形式;(5)证明:验证化简过的方程所表示的曲线是否是已知点的轨迹。
圆锥曲线的综合问题包括:解析法的应用,数形结合的思想,与圆锥曲线有关的定值、最值等问题,主要沿着两条主线,即圆锥曲线科内综合与代数间的科间综合,灵活运用解析几何的常用方法,解决圆锥曲线的综合问题;通过问题的解决,进一步掌握函数与方程、等价转化、分类讨论等数学思想.4.解析几何与坐标法:我们把借助于坐标系研究几何图形的方法叫做坐标法. 在数学中,用坐标法研究几何图形的知识形成了一门叫解析几何的学科.因此,解析几何是用代数方法研究几何问题的一门数学学科.5.平面解析几何研究的主要问题:(1)根据已知条件,求出表示平面曲线的方程;(2)通过方程,研究平面曲线的性质.6.求曲线(图形)的方程,一般有下面几个步骤:(1)建系设点:建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标;(2)列式:写出适合条件p的点M集合P={M|p(M)}(3)代换:用坐标表示条件p(M),列出方程f(x,y)=0;(4)化简:化方程f(x,y)=0为最简形式;(5)审查:说明以化简后的方程的解为坐标的点都在曲线上.说明:一般情况下,化简前后方程的解集是相同的,步骤(5)可以省略不写,如有特殊情况,可适当予以说明.另外,根据情况,也可以省略步骤(2),直接列出曲线方程.7.求轨迹方程的常见方法:①直接法②定义法③代入法④参数法(1)直接法: 求轨迹方程最基本的方法, 直接通过建立x, y之间的关系, 构成 F(x, y)=0 即可.(2)定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可用曲线定义写出方程。
圆锥曲线与方程知识点详细-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN椭圆1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。
.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形. 2、椭圆的标准方程1).当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=;2).当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1 。
3、椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。
③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。