神经网络算法完整版本
- 格式:ppt
- 大小:872.00 KB
- 文档页数:45
BP神经网络算法步骤
<br>一、概述
BP神经网络(Back Propagation Neural Network,BPNN)是一种经
典的人工神经网络,其发展始于上世纪80年代。
BP神经网络的原理是按
照误差反向传播算法,以及前馈神经网络的模型,利用反向传播方法来调
整网络各层的权值。
由于其具有自动学习和非线性特性,BP神经网络被
广泛应用在很多和人工智能、计算智能紧密相关的诸如计算机视觉、自然
语言处理、语音识别等领域。
<br>二、BP神经网络的结构
BP神经网络经常使用的是一种多层前馈结构,它可以由输入层,若
干隐藏层,以及输出层三部分组成。
其中,输入层是输入信号的正向传输
路径,将输入信号正向传送至隐藏层,在隐藏层中神经元以其中一种复杂
模式对输入信号进行处理,并将其正向传送至输出层,在输出层中将获得
的输出信号和设定的模式进行比较,以获得预期的输出结果。
<br>三、BP神经网络的学习过程
BP神经网络的学习过程包括正向传播和反向传播两个阶段。
其中,
正向传播是指从输入层到隐藏层和输出层,利用现有的训练数据,根据神
经网络结构,计算出网络每一层上各结点的的激活值,从而得到输出结果。
正向传播的过程是完全可以确定的。
BP神经网络算法一、算法原理在BP神经网络中,每个神经元都与上一层的所有神经元以及下一层的所有神经元相连。
每个连接都有一个权重,表示信息传递的强度或权重。
算法流程:1.初始化权重和阈值:通过随机初始化权重和阈值,为网络赋予初值。
2.前向传播:从输入层开始,通过激活函数计算每个神经元的输出值,并将输出传递到下一层。
重复该过程,直到达到输出层。
3.计算误差:将输出层的输出值与期望输出进行比较,计算输出误差。
4.反向传播:根据误差反向传播,调整网络参数。
通过链式求导法则,计算每层的误差并更新对应的权重和阈值。
5.重复训练:不断重复前向传播和反向传播的过程,直到达到预设的训练次数或误差限度。
优缺点:1.优点:(1)非线性建模能力强:BP神经网络能够很好地处理非线性问题,具有较强的拟合能力。
(2)自适应性:网络参数可以在训练过程中自动调整,逐渐逼近期望输出。
(3)灵活性:可以通过调整网络结构和参数来适应不同的问题和任务。
(4)并行计算:网络中的神经元之间存在并行计算的特点,能够提高训练速度。
2.缺点:(1)容易陷入局部最优点:由于BP神经网络使用梯度下降算法进行权重调整,容易陷入局部最优点,导致模型精度不高。
(2)训练耗时:BP神经网络的训练过程需要大量的计算资源和耗时,特别是对于较大规模的网络和复杂的输入数据。
(3)需要大量样本:BP神经网络对于训练样本的要求较高,需要足够多的训练样本以避免过拟合或欠拟合的情况。
三、应用领域1.模式识别:BP神经网络可以用于图像识别、手写字符识别、语音识别等方面,具有优秀的分类能力。
2.预测与回归:BP神经网络可以应用于股票预测、销量预测、房价预测等问题,进行趋势预测和数据拟合。
3.控制系统:BP神经网络可以用于自适应控制、智能控制、机器人运动控制等方面,提高系统的稳定性和精度。
4.数据挖掘:BP神经网络可以应用于聚类分析、异常检测、关联规则挖掘等方面,发现数据中的隐藏信息和规律。
神经⽹络(NeuralNetwork)⼀、激活函数激活函数也称为响应函数,⽤于处理神经元的输出,理想的激活函数如阶跃函数,Sigmoid函数也常常作为激活函数使⽤。
在阶跃函数中,1表⽰神经元处于兴奋状态,0表⽰神经元处于抑制状态。
⼆、感知机感知机是两层神经元组成的神经⽹络,感知机的权重调整⽅式如下所⽰:按照正常思路w i+△w i是正常y的取值,w i是y'的取值,所以两者做差,增减性应当同(y-y')x i⼀致。
参数η是⼀个取值区间在(0,1)的任意数,称为学习率。
如果预测正确,感知机不发⽣变化,否则会根据错误的程度进⾏调整。
不妨这样假设⼀下,预测值不准确,说明Δw有偏差,⽆理x正负与否,w的变化应当和(y-y')x i⼀致,分情况讨论⼀下即可,x为负数,当预测值增加的时候,权值应当也增加,⽤来降低预测值,当预测值减少的时候,权值应当也减少,⽤来提⾼预测值;x为正数,当预测值增加的时候,权值应当减少,⽤来降低预测值,反之亦然。
(y-y')是出现的误差,负数对应下调,正数对应上调,乘上基数就是调整情况,因为基数的正负不影响调整情况,毕竟负数上调需要减少w的值。
感知机只有输出层神经元进⾏激活函数处理,即只拥有⼀层功能的神经元,其学习能⼒可以说是⾮常有限了。
如果对于两参数据,他们是线性可分的,那么感知机的学习过程会逐步收敛,但是对于线性不可分的问题,学习过程将会产⽣震荡,不断地左右进⾏摇摆,⽽⽆法恒定在⼀个可靠地线性准则中。
三、多层⽹络使⽤多层感知机就能够解决线性不可分的问题,输出层和输⼊层之间的成为隐层/隐含层,它和输出层⼀样都是拥有激活函数的功能神经元。
神经元之间不存在同层连接,也不存在跨层连接,这种神经⽹络结构称为多层前馈神经⽹络。
换⾔之,神经⽹络的训练重点就是链接权值和阈值当中。
四、误差逆传播算法误差逆传播算法换⾔之BP(BackPropagation)算法,BP算法不仅可以⽤于多层前馈神经⽹络,还可以⽤于其他⽅⾯,但是单单提起BP算法,训练的⾃然是多层前馈神经⽹络。
BP神经网络算法BP神经网络算法(BackPropagation Neural Network)是一种基于梯度下降法训练的人工神经网络模型,广泛应用于分类、回归和模式识别等领域。
它通过多个神经元之间的连接和权重来模拟真实神经系统中的信息传递过程,从而实现复杂的非线性函数拟合和预测。
BP神经网络由输入层、隐含层和输出层组成,其中输入层接受外部输入的特征向量,隐含层负责进行特征的抽取和转换,输出层产生最终的预测结果。
每个神经元都与上一层的所有神经元相连,且每个连接都有一个权重,通过不断调整权重来优化神经网络的性能。
BP神经网络的训练过程主要包括前向传播和反向传播两个阶段。
在前向传播中,通过输入层将特征向量引入网络,逐层计算每个神经元的输出值,直至得到输出层的预测结果。
在反向传播中,通过计算输出层的误差,逐层地反向传播误差信号,并根据误差信号调整每个连接的权重值。
具体来说,在前向传播过程中,每个神经元的输出可以通过激活函数来计算。
常见的激活函数包括Sigmoid函数、ReLU函数等,用于引入非线性因素,增加模型的表达能力。
然后,根据权重和输入信号的乘积来计算每个神经元的加权和,并通过激活函数将其转化为输出。
在反向传播过程中,首先需要计算输出层的误差。
一般采用均方差损失函数,通过计算预测值与真实值之间的差异来衡量模型的性能。
然后,根据误差信号逐层传播,通过链式法则来计算每个神经元的局部梯度。
最后,根据梯度下降法则,更新每个连接的权重值,以减小误差并提高模型的拟合能力。
总结来说,BP神经网络算法是一种通过多层神经元之间的连接和权重来模拟信息传递的人工神经网络模型。
通过前向传播和反向传播两个阶段,通过不断调整权重来训练模型,并通过激活函数引入非线性因素。
BP 神经网络算法在分类、回归和模式识别等领域具有广泛的应用前景。
BP神经网络算法步骤
1.初始化神经网络参数
-设置网络的输入层、隐藏层和输出层的神经元数目。
-初始化权重和偏置参数,通常使用随机小值进行初始化。
2.前向传播计算输出
-将输入样本数据传入输入层神经元。
-根据权重和偏置参数,计算隐藏层和输出层神经元的输出。
- 使用激活函数(如Sigmoid函数)将输出映射到0到1之间。
3.计算误差
4.反向传播更新权重和偏置
-根据误差函数的值,逆向计算梯度,并将梯度传播回网络中。
-使用链式法则计算隐藏层和输出层的梯度。
-根据梯度和学习率参数,更新权重和偏置值。
5.重复迭代训练
-重复执行2-4步,直到网络输出误差满足预定的停止条件。
-在每次迭代中,使用不同的训练样本对网络进行训练,以提高泛化性能。
-可以设置训练轮数和学习率等参数来控制训练过程。
6.测试和应用网络
-使用测试集或新样本对训练好的网络进行测试。
-将测试样本输入网络,获取网络的输出结果。
-根据输出结果进行分类、回归等任务,评估网络的性能。
7.对网络进行优化
-根据网络在训练和测试中的性能,调整网络的结构和参数。
-可以增加隐藏层的数目,改变激活函数,调整学习率等参数,以提高网络的性能。
以上是BP神经网络算法的基本步骤。
在实际应用中,还可以对算法进行改进和扩展,如引入正则化技术、批量更新权重等。
同时,数据的预处理和特征选择也对网络的性能有着重要的影响。
在使用BP神经网络算法时,需要根据实际问题对网络参数和训练策略进行适当调整,以获得更好的结果。
神经网络算法神经网络算法是一种模拟人类神经系统运行的计算模型。
它由大量简单的神经元单元组成,通过相互连接来模拟信息传递和处理。
神经网络算法在模式识别、数据挖掘、图像处理等领域有着广泛的应用。
本文将介绍神经网络算法的基本原理、常见的神经网络结构以及在各个领域的应用案例。
一、神经网络算法的基本原理神经网络算法基于人工神经元的概念,通过模拟神经元之间的连接和信息传递来实现数据处理和决策。
神经网络算法的核心原理可以总结为以下几点:1. 激活函数:神经元单元通过激活函数将输入信号转换为输出信号。
常见的激活函数有sigmoid函数、ReLU函数等。
2. 权重和偏置:神经元单元之间的连接强度由权重来表示,而偏置则可以调整整个神经网络的激活水平。
3. 反向传播:通过误差的反向传播,神经网络可以不断调整权重和偏置,最小化预测输出与目标输出之间的差距。
二、常见的神经网络结构神经网络算法有多种不同的结构,根据问题的特点和数据的性质,选择合适的结构可以提高模型的性能。
下面介绍几种常见的神经网络结构:1. 前馈神经网络(Feedforward Neural Network):由输入层、隐藏层和输出层组成,信号只能从输入层流向输出层,没有反馈连接。
前馈神经网络适用于各类分类和回归问题。
2. 卷积神经网络(Convolutional Neural Network):主要用于图像处理和计算机视觉任务,通过卷积层、池化层和全连接层来提取和学习图像的特征。
3. 循环神经网络(Recurrent Neural Network):通过引入循环连接来建立内部记忆单元,可以处理序列数据和时间序列数据,适用于语言模型、机器翻译等领域。
4. 长短时记忆网络(Long Short-Term Memory Network):是一种特殊的循环神经网络,通过门控机制解决了传统循环神经网络中梯度消失和梯度爆炸的问题,可以更好地捕捉长期依赖关系。
三、神经网络算法的应用案例神经网络算法在各个领域都有广泛的应用,下面列举几个经典的案例:1. 图像分类:通过卷积神经网络处理图像数据,可以进行准确的图片分类和识别,例如人脸识别、猫狗识别等。
BP 神经网络算法 三层BP 神经网络如图:设网络的输入模式为Tn x x x x ),...,(21=,隐含层有h 个单元,隐含层的输出为Th y y y y ),...,(21=,输出层有m 个单元,他们的输出为Tm z z z z ),...,(21=,目标输出为Tm t t t t ),...,,(21=设隐含层到输出层的传递函数为f ,输出层的传递函数为g于是:)()(1∑∑===-=ni i ij ni iij j x w f xw f y θ:隐含层第j 个神经元的输出;其中1,00=-=x w j θ)(0∑==hj j jk k y w g z :输出层第k 个神经元的输出此时网络输出与目标输出的误差为∑=-=m k k k z t 12)(21ε,显然,它是jk ij w w 和的函数。
下面的步骤就是想办法调整权值,使ε减小。
由高等数学的知识知道:负梯度方向是函数值减小最快的方向因此,可以设定一个步长η,每次沿负梯度方向调整η个单位,即每次权值的调整为:pqpq w w ∂∂-=∆εη,η在神经网络中称为学习速率 可以证明:按这个方法调整,误差会逐渐减小。
隐含层,隐含层输出向量传递函数输入层,输入向量BP 神经网络(反向传播)的调整顺序为: 1)先调整隐含层到输出层的权值 设k v 为输出层第k 个神经元的输入∑==hj j jkk y wv 0-------复合函数偏导公式若取x e x f x g -+==11)()(,则)1()111(11)1()('2k k v v v v k z z ee e e u g kk k k -=+-+=+=---- 于是隐含层到输出层的权值调整迭代公式为: 2)从输入层到隐含层的权值调整迭代公式为: 其中j u 为隐含层第j 个神经元的输入:∑==ni i ijj x wu 0注意:隐含层第j 个神经元与输出层的各个神经元都有连接,即jy ∂∂ε涉及所有的权值ij w ,因此∑∑==--=∂∂∂∂∂-∂=∂∂m k jk k k k j k k k m k k k k j w u f z t y u u z z z t y 002)(')()(ε于是:因此从输入层到隐含层的权值调整迭代为公式为: 例:下表给出了某地区公路运力的历史统计数据,请建立相应的预测模型,并对给出的2010和2011年的数据,预测相应的公路客运量和货运量。