数学公式大全
- 格式:docx
- 大小:157.41 KB
- 文档页数:29
数学算法公式大全一、代数部分。
1. 一元二次方程求根公式(对于方程ax^2+bx + c = 0,a≠0)- 判别式Δ=b^2-4ac- 当Δ≥0时,x=frac{-b±√(b^2) - 4ac}{2a}2. 完全平方公式。
- (a + b)^2=a^2+2ab + b^2- (a - b)^2=a^2-2ab + b^23. 平方差公式。
- a^2-b^2=(a + b)(a - b)4. 立方和公式。
- a^3+b^3=(a + b)(a^2-ab + b^2)5. 立方差公式。
- a^3-b^3=(a - b)(a^2+ab + b^2)6. 韦达定理(对于一元二次方程ax^2+bx + c = 0,a≠0,两根x_1,x_2) - x_1+x_2=-(b)/(a)- x_1x_2=(c)/(a)二、几何部分。
1. 三角形面积公式。
- 已知底a和高h,S=(1)/(2)ah- 已知三角形三边a,b,c,半周长p=(a + b + c)/(2),则S=√(p(p - a)(p - b)(p -c))(海伦公式)2. 勾股定理(直角三角形,直角边a、b,斜边c)- a^2+b^2=c^23. 圆的周长公式。
- C = 2π r(r为半径)4. 圆的面积公式。
- S=π r^25. 扇形面积公式(半径r,圆心角n^∘)- S=frac{nπ r^2}{360}- 若弧长为l,则S=(1)/(2)lr6. 棱柱体积公式(底面积S,高h)- V=Sh7. 棱锥体积公式(底面积S,高h)- V=(1)/(3)Sh8. 圆柱体积公式(底面半径r,高h)- V=π r^2h9. 圆锥体积公式(底面半径r,高h)- V=(1)/(3)π r^2h三、函数部分。
1. 一次函数y = kx + b(k为斜率,b为截距)- 斜率k=frac{y_2-y_1}{x_2-x_1}((x_1,y_1),(x_2,y_2)为直线上两点)2. 二次函数y=ax^2+bx + c(a≠0)的顶点坐标公式。
数学计算公式大全1.代数:- 二次方程求根公式: $x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$ -平方差公式:$(a-b)(a+b)=a^2-b^2$- 平方和公式: $(a+b)^2 = a^2 + 2ab + b^2$-余式定理:当整数a被整数b除时,余数等于被除数a与除数b的最小公倍数2.几何:- 三角形周长公式: $Perimeter = a + b + c$,其中a,b,c为三角形的三边长度3.概率与统计:-加法原理:如果两个事件A与B互斥,则它们同时发生的概率等于各自发生的概率之和-乘法原理:如果事件A与B相互独立,则它们同时发生的概率等于各自发生的概率的乘积- 排列公式: $P(n,r) = \frac{n!}{(n-r)!}$,其中n为总数,r为选取的数目,!表示阶乘- 组合公式: $C(n,r) = \frac{n!}{r!(n-r)!}$,其中n为总数,r 为选取的数目- 期望值计算公式: $E(X) = \sum x \cdot P(x)$,其中X为随机变量,x为可能的取值,P(x)为随机变量X取值为x的概率4.微积分:- 导数公式: $\frac{d}{dx} (x^n) = n \cdot x^{n-1}$,其中n为常数,x为变量- 积分公式: $\int x^n \,dx = \frac{1}{n+1} \cdot x^{n+1} +C$,其中n为常数,C为常数项- 微分公式: $\frac{d}{dx} (f(g(x))) = f'(g(x)) \cdot g'(x)$,其中f(x)和g(x)为函数,f'(x)和g'(x)为它们的导数- 牛顿-莱布尼兹公式: $\int_a^b f(x) \,dx = F(b) - F(a)$,其中F(x)为f(x)的不定积分- 泰勒展开公式: $f(x) = f(a) + \frac{f'(a)}{1!}(x-a) +\frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots$,用于近似计算函数在特定点的值这只是数学计算公式中的一小部分,数学是一个广泛的学科,涉及到更多的公式和定理。
数学所有的公式大全
以下是一些数学公式:
1. 加法公式:加数+加数=和,和-一个加数=另一个加数。
2. 减法公式:被减数-减数=差,被减数-差=减数,差+减数=被减数。
3. 乘法公式:每份数×份数=总数,总数÷每份数=份数,总数÷份数=每份数。
4. 除法公式:被除数÷除数=商,被除数÷商=除数,商×除数=被除数。
5. 正方体体积和表面积公式:体积V=棱长^3,表面积S=6×棱长^2。
6. 三角形面积公式:面积S=底×高÷2。
7. 圆柱体体积公式:体积V=底面积S×高h。
8. 圆柱体表面积公式:表面积S=2πr^2+2πrh(其中r是底面半径,h是高)。
9. 圆周长公式:周长C=2πr(其中r是半径)。
10. 圆面积公式:面积S=πr^2(其中r是半径)。
11. 指数公式:a^n=b(其中a是底数,n是指数,b是结果)。
12. 对数公式:log_a(b)=n(其中a是底数,b是对数,n是指数)。
13. 三角函数公式:sin(A+B)=sinAcosB+cosAsinB,
cos(A+B)=cosAcosB-sinAsinB等。
14. 代数公式:x^2-bx+c=0(其中x是未知数,b和c是常数)。
15. 几何公式:平行四边形面积S=底×高,梯形面积S=(上底+下底)×高÷2等。
以上是一些常见的数学公式,它们在数学和科学领域中有着广泛的应用。
1.三角形的面积=底×高÷2。
公式S= a×h÷22.正方形的面积=边长×边长公式S= a×a3.长方形的面积=长×宽公式S= a×b4.平行四边形的面积=底×高公式S= a×h5.梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷26.内角和:三角形的内角和=180度。
7.长方体的体积=长×宽×高公式:V=abh8.长方体(或正方体)的体积=底面积×高公式:V=abh9.正方体的体积=棱长×棱长×棱长公式:V=aaa10.圆的周长=直径×π公式:L=πd=2πr11.圆的面积=半径×半径×π公式:S=πr212.圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh13.圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。
公式:S=ch+2s=ch+2πr214.圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh15.圆锥的体积=1/3底面×积高。
公式:V=1/3Sh16.分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
17.分数的乘法则:用分子的积做分子,用分母的积做分母。
18.分数的除法则:除以一个数等于乘以这个数的倒数。
19.读懂理解会应用以下定义定理性质公式20.一、算术方面21.1、加法交换律:两数相加交换加数的位置,和不变。
22.2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
23.3、乘法交换律:两数相乘,交换因数的位置,积不变。
24.4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
数学计算公式表大全一、小学数学计算公式。
1. 加法交换律。
- 公式:a + b=b + a- 示例:3+5 = 5+3=82. 加法结合律。
- 公式:(a + b)+c=a+(b + c)- 示例:(2 + 3)+4=2+(3 + 4)=93. 乘法交换律。
- 公式:a× b = b× a- 示例:2×3=3×2 = 64. 乘法结合律。
- 公式:(a× b)× c=a×(b× c)- 示例:(2×3)×4=2×(3×4)=245. 乘法分配律。
- 公式:a×(b + c)=a× b+a× c- 示例:2×(3 + 4)=2×3+2×4 = 6 + 8=146. 减法的性质。
- 公式:a - b - c=a-(b + c)- 示例:10-3 - 2=10-(3 + 2)=57. 除法的性质。
- 公式:a÷ b÷ c=a÷(b× c)(b≠0,c≠0)- 示例:12÷2÷3 = 12÷(2×3)=28. 长方形的周长公式。
- 公式:C=(a + b)×2(a为长,b为宽)- 示例:长为5厘米,宽为3厘米的长方形,周长C=(5 + 3)×2=16厘米。
9. 长方形的面积公式。
- 公式:S = a× b- 示例:长为6厘米,宽为4厘米的长方形,面积S=6×4 = 24平方厘米。
10. 正方形的周长公式。
- 公式:C = 4× a(a为边长)- 示例:边长为5厘米的正方形,周长C=4×5=20厘米。
11. 正方形的面积公式。
- 公式:S=a^2- 示例:边长为4厘米的正方形,面积S = 4^2=16平方厘米。
常见数学公式大全一、代数公式1. 二次方程求根公式对于一元二次方程$ax^2+bx+c=0$,求解公式为:$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$2. 双曲函数公式对于双曲正弦函数$\sinh(x)$和双曲余弦函数$\cosh(x)$,它们之间的关系为:$$\cosh^2(x)-\sinh^2(x)=1$$3. 指数函数公式对于指数函数$e^x$,其级数展开式为:$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots =\sum_{n=0}^{\infty}\frac{x^n}{n!}$$二、几何公式1. 三角函数公式对于角度为$\theta$的直角三角形,其三角函数关系如下:- 正弦函数:$\sin(\theta) = \frac{\text{对边}}{\text{斜边}}$ - 余弦函数:$\cos(\theta) = \frac{\text{邻边}}{\text{斜边}}$ - 正切函数:$\tan(\theta) = \frac{\text{对边}}{\text{邻边}}$2. 球体体积公式对于半径为$r$的球体,其体积公式为:$$V = \frac{4}{3}\pi r^3$$三、微积分公式1. 导数定义函数$f(x)$在点$x=a$处的导数定义为:$$f'(a) = \lim_{h\to0}\frac{f(a+h)-f(a)}{h}$$2. 积分基本公式对于函数$f(x)$,其在区间$[a,b]$上的定积分为:$$\int_{a}^{b}f(x)dx$$四、概率统计公式1. 期望值公式随机变量$X$的期望值计算公式为:$$E(X) = \sum{X \cdot P(X)}$$2. 方差公式随机变量$X$的方差计算公式为:$$Var(X) = E(X^2) - [E(X)]^2$$以上是常见数学公式的一部分,仅供参考。
数学运算常用公式大全1.加法和减法公式:-加法交换律:a+b=b+a-加法结合律:(a+b)+c=a+(b+c)-加法逆元(减法):a+(-a)=0-加法消去律:a+b=a+c,则b=c2.乘法和除法公式:-乘法交换律:a×b=b×a-乘法结合律:(a×b)×c=a×(b×c)-乘法逆元(倒数):a×(1/a)=1,其中a≠0-乘法消去律:a×b=a×c,则b=c3.指数公式:-幂的乘法:a^m×a^n=a^(m+n)-幂的除法:a^m÷a^n=a^(m-n)-幂的乘方:(a^m)^n=a^(m×n)-幂的零次方:a^0=1,其中a≠04.对数公式:- 对数的乘法:loga (xy) = loga x + loga y- 对数的除法:loga (x/y) = loga x - loga y- 对数的幂:loga (x^n) = n loga x5.三角函数公式:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:a^2 = b^2 + c^2 - 2bc cosA- 正切定理:tanA = sinA/cosA- 和差化积公式:sin(A ± B) = sinA cosB ± cosA sinB6.二次方程公式:- 一元二次方程:ax^2 + bx + c = 0,其中a≠0- 解的公式:x = (-b ± √(b^2 - 4ac)) / 2a- 判别式:Δ = b^2 - 4ac,若Δ > 0,则有两个不相等的实根;若Δ = 0,则有两个相等的实根;若Δ < 0,则没有实根。
7.统计学公式:-平均数:平均数=总和/数据个数-中位数:将数据从小到大排列,如果数据个数为奇数,中位数为中间的那个数;如果数据个数为偶数,中位数为中间两个数的平均数。
世界上所有的数学公式大全01工作效率×工作时间=工作总量工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作效率=工作效率02单价×数量=总价通过单价×数量=总价,我们可以将数学中的计算公式应用到实际问题中。
03速度×时间=路程速度×时间=路程÷速度=时间路程÷时间=速度04被减数-减数=差被减数-减数=差,即被减数和减数分别相减,得到差。
05被除数÷除数=商被除数÷除数=商06一元一次方程式一元一次方程式是指含有一个未知数,并且未知数的次数是一次的等式。
例如,ax+by+cz=d,其中a、b、c为已知数,x、y、z为未知数,且满足a+bx=d。
07V=ShV=Sh是圆柱的体积的计算公式,其中底面面积和体积是圆柱的侧面积和底面高。
通过将底面面积乘以高,可以得到圆柱的总体积。
这个公式可以用来计算圆柱的体积。
08S=a×a长方体的体积=长×宽×高公式:V=abh 长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa 圆的周长=直径×π公式:L=πd=2πr 圆的面积=半径×半径×π公式:S=πr209S=ch=πdh=2πrh圆柱的表面积等于底面的周长乘以高再加上两头的圆的面积。
表面积等于底面的周长乘以高,再加上两头的圆的面积。
10带分数带分数是指将假分数写成整数和真分数的形式。
通过将分数的分母化为相同的数位,然后对分子进行约分,可以得到带分数。
11V=abh长方体的体积=长×宽×高。
在这个公式中,长方体的长度和宽度分别表示长和宽的长度,高度表示长的高度。
长方体的体积可以通过将底面积乘以高来计算。
12V=aaaV=aaa是长方体的体积公式,其中a表示长方体的长度,b表示宽,高表示长方体的宽度和高度。
数学必背公式大全1.代数公式:- 二次方程的根公式:对于ax² + bx + c = 0,其中a ≠ 0,方程的根可以通过公式 x = (-b ± √(b² - 4ac))/(2a) 来求解。
- 一元二次不等式:对于ax² + bx + c > 0,其中 a > 0,可以通过求解二次方程ax² + bx + c = 0 的根,然后确定其在数轴上的位置,从而确定其解。
- 平方差公式:(a ± b)² = a² ± 2ab + b²。
- 和差化积公式:sin(A ± B) = sin A cos B ± cos A sin B,cos(A ± B) = cos A cos B ∓ sin A sin B。
-高斯消元法:通过初等变换将线性方程组化为上三角矩阵以便求解。
-等差数列求和公式:Sn=(a₁+aₙ)n/2,其中a₁是首项,aₙ是末项,n是项数,Sₙ是和。
2.几何公式:-三角形面积公式:对于已知三角形的底和高,面积可以通过S=1/2×底×高来计算。
-直角三角形的勾股定理:对于直角三角形,两条直角边的平方和等于斜边的平方,即a²+b²=c²。
- 正弦定理:对于三角形 ABC,边长分别为 a, b, c,对应的角度为A, B, C,则有 a/sin A = b/sin B = c/sin C。
- 余弦定理:对于三角形 ABC,边长分别为 a, b, c,对应的角度为A, B, C,则有c² = a² + b² - 2ab cos C。
-圆的周长公式:C=2πr,其中C是周长,r是半径。
-圆的面积公式:A=πr²,其中A是面积,r是半径。
-球的表面积公式:A=4πr²,其中A是表面积,r是半径。
精心整理数学公式大全小学部分:1.长方形的周长=(长+宽)×2 C=(a+b)×22.正方形的周长=边长×4 C=4a3.长方形的面积=长×宽S=ab4.正方形的面积=边长×边长S=a.a= a25.三角形的面积=底×高÷2 S=ah÷26.平行四边形的面积=底×高S=ah7.梯形的面积=(上底+下底)×高÷2 S=(a+b)h÷2 8.直径=半径×2 d=2r 半径=直径÷2 r= d÷29.圆的周长=圆周率×直径=圆周率×半径×2 c=πd =2πr 10.圆的面积=圆周率×半径×半径?=πr11.长方体的表面积=(长×宽+长×高+宽×高)×2 12.长方体的体积=长×宽×高V =abh13.正方体的表面积=棱长×棱长×6 S =6a14.正方体的体积=棱长×棱长×棱长V=a.a.a= a 15.圆柱的侧面积=底面圆的周长×高S=ch16.圆柱的表面积=上下底面面积+侧面积S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 17.圆柱的体积=底面积×高V=ShV=πr h=π(d÷2) h=π(C÷2÷π) h18.圆锥的体积=底面积×高÷3V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3 19.每份数×份数=总数总数÷每份数=份数总数÷份数=每份数20.1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数21.速度×时间=路程路程÷速度=时间路程÷时间=速度22.单价×数量=总价总价÷单价=数量总价÷数量=单价23.工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率24.加数+加数=和和-一个加数=另一个加数25.被减数-减数=差被减数-差=减数差+减数=被减数26.因数×因数=积积÷一个因数=另一个因数27.被除数÷除数=商被除数÷商=除数商×除数=被除数28.和差问题(和+差)÷2=大数(和-差)÷2=小数29.和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)30.差倍问题差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)31.植树问题31.1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)31.2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数32.盈亏问题(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数33.相遇问题相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间34.追及问题追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间35.流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷236.浓度问题溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量37.利润与折扣问题利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)38.单位换算时间:1世纪=100年1年=12月大月(31天)有:1\3\5\7\8\10\12月小月(30天)的有:4\6\9\11月平年2月28天, 闰年2月29天平年全年365天, 闰年全年366天1日=24小时1时=60分1分=60秒1时=3600秒积=底面积×高V=Sh面积和体积:(1)1公里=1千米1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米(2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米(3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米(4)1公顷=10000平方米1亩=666.666平方米(5)1升=1立方分米=1000毫升1毫升=1立方厘米重量:1吨=1000 千克1千克=1000克1千克=1公斤人民币单位:1元=10角1角=10分1元=100分39.加法交换律:两数相加交换加数的位置,和不变。
数学总结—公式大全1.代数方面的公式1.1 一次方程:ax + b = 0,其中a≠0。
1.2 二次方程:ax² + bx + c = 0,其中a≠0。
1.3 一元二次不等式:ax² + bx + c > 0或ax² + bx + c < 0。
1.4勾股定理:a²+b²=c²,其中a、b为直角三角形的两条直角边,c 为斜边。
1.5 二项式定理:(a + b)ⁿ = C(n,0)aⁿ + C(n,1)aⁿ⁻¹b + ... +C(n,n-1)abⁿ⁻¹ + C(n,n)bⁿ,其中C(n,k)表示组合数。
1.6四则运算规则:加法:a+b=b+a,乘法:a×b=b×a。
2.几何方面的公式2.1 三角形面积公式:S = 1/2bh,其中S表示三角形的面积,b表示底边的长度,h表示高。
2.2直角三角形三边关系:a²+b²=c²,其中a、b为直角三角形的两条直角边,c为斜边。
2.3 正弦定理:a/sinA = b/sinB = c/sinC = 2R,其中a、b、c为三角形的边长,A、B、C为对应的内角,R为三角形外接圆的半径。
2.4 余弦定理:c² = a² + b² - 2abcosC,其中a、b、c为三角形的边长,C为对应的内角。
2.5 面积公式:三角形面积S = 1/2absinC,其中a、b为三角形的两条边,C为对应的夹角。
2.6弧长公式:L=rθ,其中L表示弧长,r表示弧的半径,θ表示圆心角的度数。
3.微积分方面的公式3.1 导数定义:f'(x) = lim (f(x + h) - f(x))/h,其中f'(x)表示函数f(x)在x处的导数。
3.2导数的基本运算法则:常数法则、乘法法则、除法法则、链式法则等。
3.3反函数导数:(f⁻¹)'(y)=1/f'(x),其中f⁻¹表示f的反函数。
高等数学公式手册一些初等函数:两个重要极限:三角函数公式: ·诱导公式:函数 角A sin cos tg ctg -α -sinα cosα -tgα -ctgα 90°-α cosα sinαctgαtgα 90°+α cosα -sinα -ctgα -tgα 180°-α sinα-cosα -tgα-ctgα 180°+α -sinα -cosα tgα ctgα 270°-α -cosα -sinα ctg α tgα 270°+α -cosα sinα -ctgα -tgα360°-α -sinα cosα -tgα -ctgα 360°+α sinα cosα tgα ctgα·和差角公式:·和差化积公式:·倍角公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ导数公式:基本积分表:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a²+b²=c²47勾股定理的逆定理如果三角形的三边长a、b、c有关系a²+b²=c²,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理 等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形 77对角线相等的梯形是等腰梯形78平行线等分线段定理 如果一组平行线在一条直线上截得的线段 相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第 三边81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它 的一半82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的 一半 L=(a+b )÷2 ,S=L×h83 (1)比例的基本性质 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质 如果b a =d c ,那么dd c b b ±=±a 85 (3)等比性质 如果b a =d c =…=)(0...b nm ≠+++n d , 那么ba n db =++++⋯++)...(m)c (a 86 平行线分线段成比例定理 三条平行线截两条直线,所得的对应 线段成比例87 推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
数学公式大全1.代数运算法则- 交换律:a + b = b + a, ab = ba- 结合律:(a + b) + c = a + (b + c), (ab)c = a(bc)- 分配律:a(b + c) = ab + ac- 幂运算:a^m * a^n = a^(m+n), (a^m)^n = a^(mn), (ab)^n =a^n * b^n2.一次方程- 一次方程的一般形式:ax + b = 0, 其中a和b为常数,x为未知数-一次方程解的唯一性:如果a不等于零,则方程有唯一的解x=-b/a3.二次方程- 二次方程的一般形式:ax^2 + bx + c = 0, 其中a、b和c为常数,a不等于零,x为未知数- 二次方程的求解公式:x = (-b ± √(b^2 - 4ac)) / 2a4.三角函数- 正弦函数的定义:sinθ = 对边/斜边- 余弦函数的定义:cosθ = 邻边/斜边- 正切函数的定义:tanθ = 对边/邻边- 余切函数的定义:cotθ = 邻边/对边- 正割函数的定义:secθ = 斜边/邻边- 余割函数的定义:cscθ = 斜边/对边5.三角恒等式- 余弦定理:c^2 = a^2 + b^2 - 2abcosC- 正弦定理:sinA/a = sinB/b = sinC/c- 三角和差公式:sin(A ± B) = sinAcosB ± cosAsinB, cos(A ± B) = cosAcosB ∓ sinAsinB- 两角和差公式:cos(A - B) = cosAcosB + sinAsinB, cos(A + B) = cosAcosB - sinAsinB6.指数与对数函数- 指数函数的性质:a^m * a^n = a^(m+n), (a^m)^n = a^(mn), (ab)^m = a^m * b^m- 对数函数的性质:log_a(m * n) = log_a(m) + log_a(n),log_a(m^n) = n * log_a(m), log_a(1) = 0, log_a(a) = 17.概率-加法原理:对于两个互斥事件A和B,P(A∪B)=P(A)+P(B)-乘法原理:对于两个相互独立的事件A和B,P(A∩B)=P(A)*P(B)-条件概率:P(A,B)=P(A∩B)/P(B)-全概率公式:P(A)=P(A,B)*P(B)+P(A,C)*P(C)+...-贝叶斯定理:P(B,A)=P(A,B)*P(B)/P(A)8.微积分-连续与导数:f(x)在[x,x+h]范围内连续,则f(x)在x处可导- 导数的定义:f'(x) = lim(h→0)(f(x+h) - f(x))/h-链式法则:(f(g(x)))'=f'(g(x))*g'(x)9.矩阵-矩阵乘法:若A是一个m行n列的矩阵,B是一个n行p列的矩阵,则AB是一个m行p列的矩阵-矩阵转置:矩阵A的转置记作A^T,其中A^T的第i行第j列的元素是A的第j行第i列的元素-行列式:行列式代表了方阵的一些性质,如行列式为零表示矩阵不可逆。
数学公式大全一、代数公式1. 一次方程的解:对于方程ax + b = 0,其解为x = -b/a。
2. 二次方程的解:对于方程ax² + bx + c = 0,其解为x = (-b ± √(b² - 4ac)) / (2a)。
3.二次根式的求和与差:a) √a ± √b = (√2 ± 1) * √(a ± √ab + b)b)√a±√b=(√a+√b)*(√a-√b)二、几何公式1.周长和面积:a) 矩形:周长P = 2(l + w),面积A = lwb)正方形:周长P=4s,面积A=s²c)圆:周长C=2πr,面积A=πr²d)三角形:周长P=a+b+c,海伦公式:A=√(s(s-a)(s-b)(s-c)),其中s=(a+b+c)/2为半周长e)梯形:面积A=(a+b)h/2,其中a和b为上下底边长,h为高f) 平行四边形:面积A = bh,其中b为底边长,h为高2.三角函数:a) 正弦定理:a/sinA = b/sinB = c/sinCb) 余弦定理:c² = a² + b² - 2ab*cosCc) 正弦、余弦和正切值:sin²θ+ cos²θ = 1,tanθ =sinθ/cosθ三、微积分公式1.导数与微分:a)基本导数:-常数函数:(c)'=0- 幂函数:(x^n)' = nx^(n-1)-指数函数:(e^x)'=e^x- 对数函数:(lnx)' = 1/xb)基本微分:- 常数函数积分:∫c dx = cx + C- 幂函数积分:∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1- e^x函数积分:∫e^x dx = e^x + C- 对数函数积分:∫1/x dx = ln,x, + C2.积分法则:a) 线性法则:∫(cf(x) + dg(x)) dx = c∫f(x) dx + d∫g(x) dxb) 乘法法则:∫(f(x)*g'(x)) dx = f(x)*g(x) - ∫(f'(x)*g(x)) dxc) 代换法则:∫f(g(x))g'(x) dx = ∫f(u) du,其中u = g(x)四、概率与统计公式1.排列组合:a)排列公式:An=n!b)组合公式:C(n,r)=n!/[(n-r)!r!]2.期望与方差:a)期望:E(X)=∑(xP(x)),其中x为随机变量的取值,P(x)为该取值发生的概率b) 方差:Var(X) = ∑((x-E(X))²P(x))以上是一些常见的数学公式,在数学的各个领域中都有广泛的应用。
数学的计算公式大全一、算术运算。
1. 加法。
- 整数加法:a + b=c,例如3+5 = 8。
- 小数加法:把小数点对齐,然后按照整数加法的法则进行计算。
例如2.3+1.2 =3.5。
- 分数加法。
- 同分母分数相加:(a)/(b)+(c)/(b)=(a + c)/(b),如(1)/(5)+(2)/(5)=(3)/(5)。
- 异分母分数相加:先通分,化为同分母分数再相加。
例如(1)/(2)+(1)/(3)=(3)/(6)+(2)/(6)=(5)/(6)。
2. 减法。
- 整数减法:a - b = c,如7-3=4。
- 小数减法:把小数点对齐,然后按照整数减法的法则进行计算。
例如3.5 - 1.2=2.3。
- 分数减法。
- 同分母分数相减:(a)/(b)-(c)/(b)=(a - c)/(b),如(3)/(5)-(1)/(5)=(2)/(5)。
- 异分母分数相减:先通分,化为同分母分数再相减。
例如(1)/(2)-(1)/(3)=(3)/(6)-(2)/(6)=(1)/(6)。
3. 乘法。
- 整数乘法:a× b = c,如3×5 = 15。
- 小数乘法:先按照整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
例如2.5×1.2 = 3.0。
- 分数乘法。
- 分数乘整数:(a)/(b)× c=(a× c)/(b),如(1)/(3)×3 = 1。
- 分数乘分数:(a)/(b)×(c)/(d)=(a× c)/(b× d),如(1)/(2)×(2)/(3)=(1×2)/(2×3)=(1)/(3)。
4. 除法。
- 整数除法:a÷ b = c(b≠0),如15÷3 = 5。
- 小数除法。
- 除数是整数的小数除法:按照整数除法的法则去除,商的小数点要和被除数的小数点对齐。
数学必背公式大全1.代数公式:- 二次方程的解:对于 ax^2 + bx + c = 0,解为 x = (-b±√(b^2-4ac))/(2a)- 一元一次方程:ax + b = 0,解为 x = -b/a-二项式展开:(a+b)^n=Σ(C(n,k)*a^(n-k)*b^k),其中C(n,k)表示从n个物品中选取k个物品的组合数-两个平方差的因式分解:a^2-b^2=(a+b)(a-b)- 三角函数公式:sin^2(x) + cos^2(x) = 1;tan(x) =sin(x)/cos(x);sec(x) = 1/cos(x);csc(x) = 1/sin(x);cot(x) =1/tan(x)2.几何公式:-三角形面积:S=1/2*底*高- 三角形的边长关系:a/sin(A) = b/sin(B) = c/sin(C),其中 A、B、C 分别表示三个角的度数,a、b、c 分别表示对应的边长-直角三角形斜边关系:对于直角三角形ABC,AB^2+BC^2=AC^2,其中AB表示直角边的长度,AC表示斜边的长度-圆的面积公式:A=πr^2,其中r表示半径-球体积公式:V=(4/3)πr^3,其中r表示半径3.微积分公式:- 导数(求导)公式:(a^k)' = ka^(k-1),其中 a 和 k 分别表示常数和指数-函数求导法则:-常数法则:(c)'=0,其中c表示常数- 幂法则:(x^n)' = nx^(n-1),其中 x 和 n 分别表示变量和指数-和法则:(f+g)'=f'+g',其中f和g分别表示函数-积法则:(f*g)'=f'*g+g'*f,其中f和g分别表示函数-商法则:(f/g)'=(f'*g-g'*f)/g^2,其中f和g分别表示函数-积分法则:- 幂法则:∫x^n dx = (x^(n+1))/(n+1) + C,其中 n 表示指数,C 表示常数- 换元积分法:若∫f(g(x))g'(x) dx = F(g(x)) + C,则∫f(u) du = ∫f(g(x))g'(x) dx,其中 u=g(x)4.概率与统计公式:-排列组合公式:-组合数公式:C(n,k)=n!/(k!(n-k)!),其中n表示元素个数,k表示选取的个数-排列数公式:A(n,k)=n!/((n-k)!),其中n表示元素个数,k表示选取的个数-期望公式:E(x)=Σ(x*p(x)),其中x表示随机变量,p(x)表示对应的概率- 方差公式:Var(x) = Σ((x-E(x))^2*p(x)),其中 x 表示随机变量,E(x) 表示期望,p(x) 表示对应的概率以上只是数学中的一部分公式,还有很多其他公式需要掌握。
代数部分一、数1、正数和负数:正数大于0;负数小于0;2、0既不是正数,也不是负数;正数大于负数;3、整数包括:正整数,0和负整数;4、分数包括:正分数和负分数;5、有理数包括:整数和分数(有限小数,无限循环小数);6、数轴:在直线上取一点表示0(原点),选取单位长度,规定直线上向右的方向为正方向,这样的一条直线叫数轴;7、任何一个有理数(实数)都可以用数轴上的一个点表示,数轴上的每一个点都表示一个实数,即数轴上的点和实数是一一对应的;8、相反数:两个数只有符号不同,则其中一个数是另一个的相反数;两个互为相反数的数相加得0;0的相反数是09、在数轴上,表示互为相反数的两个点,位于原点两侧,且与原点距离相等;10、数轴上的两个点表示的数,右边的总比左边的大;11、绝对值:数轴上,所对应的点与原点的距离;12、正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0;13、两个负数比较大小,绝对值大的反而小;14、有理数加法法则:同号相加,符号不变,绝对值相加;异号相加,绝对值相等的得0;绝对值不等的,符号和绝对值大的相同,然后绝对值相减;15、一个数加0,仍是这个数;16、加法交换律:A+B=B+A17、加法结合律:(A+B)+C=A + (B+C)18、有理数减法法则:减去一个数,等于加上这个数的相反数;19、有理数乘法法则:两数相乘,同号得正,异号得负,绝对值相乘;任何数与0相乘,积为0;20、乘积为1的两个有理数互为倒数;0没有倒数21、乘法交换律:AB=BA22、乘法结合律:(AB)C=A (BC)23、乘法分配律:A (B+C) =AB+AC24、有理数除法法则:两个有理数相除,同号得正,异号得负,绝对值相除;25、0除以任何非0的数都得0;0不能做除数26、乘方:求n个相同因数a的积的运算叫乘方,结果叫幂;a是底数;n是指数;n a读作a的n次幂;27、有理数混和运算法则:先乘方,再乘除,后加减;有括号的先算括号里面的;28、无理数:无限不循环小数。
有正负之分;π是无理数;29、算数平方根:一个正数x的平方等于a,即2x=a,则x是a的算数平方根,记作x=a”30、0的算数平方根是031、平方根:一个数x的平方等于a,即2x=a,则x是a的平方根(又叫:二次方根),记作x=32、一个正数有两个平方根,且互为相反数;0只有一个,是它本身;负数没有平方根33、开平方:求一个数的平方根的运算;a叫做被开方数34、立方根:一个数x的立方等于a,即3x=a,则x是a的立方根(又叫:三次方根),x=35、每个数只有一个立方根,正数的立方根是正数;0的立方根是0;负数的立方根是负数;36、开立方:求一个数的立方根的运算;a叫做被开方数37、实数:有理数和无理数的统称。
其相反数、倒数、绝对值的意义等都和有理数的相同。
实数的运算法则和有理数相同。
计算后出现带根号的无理数要化简,使被开方数不含分母和开得尽的因数正整数整数 0负整数有理数正分数实数分数负分数无理数(无限不循环小数)二、式1、代数式:用基本运算符号连接数字或字母的式子;单独的数字或字母也是代数式2、单项式:数字和字母的积;单独的数字或字母也是单项式;数字因数叫做单项式的系数3、多项式:几个单项式的和;每个单项式叫做多项式的项,不含字母的叫常数项4、单项式的次数:一个单项式中,所有字母的指数和;单独的一个非零数的次数是05、多项式的次数:次数最高的项的次数6、同类项:所含字母相同,并且相同字母的指数也相同的项7、合并同类项:把同类项合并成一项;合并同类项时,系数相加,字母和字母的指数不变8、去括号法则:括号前面是加号,去括号运算符号不变;括号前面是减号,去括号(一级运算)运算符号变;多重括号,由里面的括号开始去;9、整式:单项式和多项式的统称10、整式加减运算:先去括号,再合并同类项,直到式子最简11、同底数幂的乘法:同底数幂相乘,底数不变,指数相加,如m naa a=m n (m、n为正整数)12、幂的乘方:幂的乘方,底数不变,指数相乘,如()m na=mna(m、n为正整数)13、积的乘方:积的乘方等于积中每个因数乘方的积,如()nab=n na b(n为正整数)14、同底数幂的除法:同底数幂相除,底数不变,指数相减,如m na a÷=m na-(m、n为正整数,a≠0,且m>n);0a=1(a≠0);pa-=1pa(a≠0,p是正整数)15、单项式乘以单项式:把系数相乘,相同字母的指数分别相加,其余字母连同其指数不变,作为积的因式16、单项式乘以多项式:根据分配律用单项式去乘多项式的每一项,再把积相加17、多项式乘以多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把积相加18、平方差公式:两数和与这两数差的积,等于它们的平方差22()()a b a b a b+-=-19、完全平方公式:222()2a b a ab b±=±+20、整式的除法:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式21、多项式除以单项式,先把多项式的每一项分别除以单项式,再把所得商相加22、分解因式:把一个多项式化成几个整式的积的形式23、公因式:多项式中各项都含有的相同因式24、完全平方式:形如222a ab b ±+的式子25、因式分解的方法:(1)提公因式:多项式的各项含有公因式,把这个公因式提出来,将多项式化成两个因式的乘积(2)运用公式法:把乘法公式反过来,用来把某些多项式分解因式(3)十字相乘法:(4)公式法:若一元二次方程20ax bx c ++=的两个根分别为12x x 和,那么二次三项式2ax bx c ++分解因式得2ax bx c ++=12()()a x x x x --26、分式:整式A 除以整式B ,表示成A B。
A 为分式的分子;B 为分式的分母(B ≠0)27、分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于0的整式,分式的值不变28、约分:把一个分式的分子和分母的公因式约去的变形29、最简分式:分子和分母没有公因式的分式30、分式乘除法法则:分式相乘,分子相乘作分子,分母相乘作分母31、分式相除,把除式的分子和分母颠倒位置后再与被除式相乘32、分式加减法则:同分母分式相加减,分母不变,分子相加;异分式先通分,再加减33、通分:根据分式的基本性质,异分母分式化为同分母分式的过程;通分时常取最简公分母34、分式方程:分母中含有未知数的方程35、增根:使原分式方程的分母为0的方程的根;解分式方程必须检验三、方程(组)1、等式:用等号表示相等关系的式子;等式具有传递性2、方程:含有未知数的等式3、一元一次方程:一个方程中,只含一个未知数(元),且未知数的次数为1(次)的方程4、等式性质:等式两边同时加上(或减去)同一个代数式,结果还是等式5、等式两边同时乘以同一个数(或除以同一个不为0的数),结果还是等式6、移项:从方程一边移到另一边的变形,移项要变号;7、二元一次方程:含有两个未知数,且所含未知数的项数的次数都是1的方程8、二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程9、二元一次方程的一个解:适合一个二元一次方程的一组未知数的值10、二元一次方程组的解:二元一次方程组中各个方程的公共解;它们成对出现11、二元一次方程组的解法:(1)代入消元法:简称“代入法”,将其中一个方程的某未知数用含有另一个未知数的代数式表示,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程的方法(2)加减消元法:简称“加减法”,通过两式相加(减)消去其中一个未知数的方法(3)图像法:根据二元一次方程的解和一次函数图像的关系,找出两直线的交点坐标求解的方法12、整式方程:等号两边都是关于未知数的整式方程13、一元二次方程:只含有一个未知数的整式方程,化成20++=(a≠ax bx c0,a,b,c为常数)14、一元二次方程的解法:(1)直接开平方法;(2)配方法:通过配成完全平方式的方法得到一元二次方程的根的方法(3)公式法:对于20x ax b c ++=(a ≠0,a,b,c 为常数),当24b ac -≥0时(当24b ac -<0时,方程无解),可用一元二次方程的求根公式求解的方法(4)分解因式法:又称“十字相乘法”,当一元二次方程的一边为0,另一边能分解成两个一次因式的乘积时,求方程的根的方法四、不等式(组)1、不大于:等于或小于,符号“≤”,读作“小于等于”2、不小于:大于或大于,符号“≥”,读作“大于等于”3、不等式:用符号“<”(或“≤”),“>”(或“≥”)连接的式子;不等式具有传递性(除“≠”外)4、不等式基本性质:不等式两边加上(或减去)同一个整式,不等号方向不变5、不等式两边乘以(或除以)同一个正数,不等号方向不变6、不等式两边乘以(或除以)同一个负数,不等号方向改变7、不等式的解:能使不等式成立的未知数的值8、解集:一个含有未知数的不等式的所有解的统称9、解不等式:求不等式解集的过程10、一元一次不等式:不等式的左右两边是整式,只含有一个未知数,且未知数的最高次数是1的不等式11、一元一次不等式组:由关于同一未知数的几个一元一次不等式合在一起组成12、一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分13、解不等式组:求不等式解集的过程14、一元一次不等式组的解集:同大取大,同小取小,相向取中间,相背则无解;五、函数1、函数:有两个变量x和y,给定x值就对应找到唯一一个y值2、函数图像:把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系里描出它的对应点,所有点组成的图像3、变量包括:自变量(x)和因变量(y)4、函数的表示方法:(1)解析式:表示变量之间关系的方法,根据任何一个自变量的值求出相应的因变量的值(2)列表法:表示因变量随自变量的变化而变化的情况(3)图像法:表示变量之间关系的方法,比较直观5、平面直角坐标系:在平面内,由两条互相垂直且有公共原点的数轴组成的;两条坐标轴把平面直角坐标系分成4部分:右上为第一象限,右下为第四象限,左上第二,左下第三6、坐标:过一点分别向x轴、y轴作垂线,垂足在x轴、y轴上所对应的数为a、b,则(a,b)7、坐标加减,图形大小和形状不变;坐标乘除,图形会变化8、一次函数:(1)定义:若两个变量x,y的关系能表示成y=kx+b(k,b为常数,k≠0)的形式(2)正比例函数:当y=kx+b(k,b为常数,k≠0),b=0的时候,即y=kx,其图像过原点(3)一次函数的图像是一条直线:当k>0时,直线向右上方;当k<0时,直线向右下方。