滑移线理论及应用
- 格式:ppt
- 大小:3.76 MB
- 文档页数:42
18.2 滑移线法slip field theory内容:滑移线法原理及应用。
重点:滑移线场slip field 的合理建立。
滑移线: 塑性变形物体内各质点的最大切应力迹线特点: 滑移线(成对出现,相互正交)→滑移线场适用范围:理想刚塑性材料的平面变形问题再适当推广满足条件:静力学+运动学(速度场条件)18.2.1 基本概念18.2.1.1 平面变形的应力⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⇒=+3212000000031σσεσσ231σσσ+=m塑变屈服时()K =-=3121max σστ莫尔圆为:⎪⎩⎪⎨⎧±=+=-=ωτωσσωσσ2cos 2sin 2sin k k k xym y m x ⎪⎩⎪⎨⎧-==+==k k m mm σσσσσσω32145时18.2.2 最大切应力迹线——滑移线变形平面xoy ,取点P 1及邻近点P 2,P 3,……P 61τ为P 1点最大切应力方向2τ为P 2点的(1τ为P 1P 2折线)当P 1P 2无限邻近时,曲线变为光滑曲线即滑移线。
α族,β族18.2.2.1 ωβα及.1)逆时针方向线组成顺时针方向族线西侧的最大切应力,.βα 图7-32)角方向成线为线4531σσβα3)()同坐标轴逆时针正轴正向为起始顺时针负角以,ox ω18.2.2.2 滑移线方程()()⎪⎩⎪⎨⎧-=+==族βωωωπctg tg tg dxdy dx dy 2Hencky 方程:ωσ~m平面应变应力平衡微分方程为:⎪⎩⎪⎨⎧=+=+∂∂∂∂∂∂∂∂00yxy x y y x x y xσττσ将屈服准则式代入有()⎪⎪⎩⎪⎪⎨⎧=--∂∂=+-∂∂∂∂∂∂∂∂∂∂02cos 2sin 20)2sin 2(cos 2yx m y x m k y k x ωωωωωωσωωσ 未知数:m σ,ω,但难求。
变换坐标系:取滑移线本身作坐标轴轴轴βα,注意:此坐标系具有当沿α线运动时β值不变,即坐标系轴是弯曲的!在α点无限近处有:0=ω αds dx = βds dy =αs x ∂∂=∂∂βs y ∂∂=∂∂0≠∂∂αωs 0≠∂∂βωs 因此变为:()线线βωσαωσββαα02)(02=∂∂+∂∂=∂∂-∂∂s k s s k s m m积分后得:()()⎩⎨⎧=+=-线线βηωσαξωσk k m m 22此式即汉基应力方程(Hencky )18.2.3 滑移线特性18.2.3.1 沿线特性沿α线:ωσ∆=∆k m 2 沿β线:ωσ∆-=∆k m 2证:设一条α线上有a 、b 两点ξωσξωσ=-=-b mb a ma k k 22 ()02=---∴b a mb ma k ωωσσωσ∆=∆∴k m 218.2.3.2 跨线特性()()⎩⎨⎧∆=∆∆=∆C B m D A m BC AD ,σσωω, 证明:先沿α线,A →B 有B B m A mA k K ωωσσ22-=-沿β线B →C 有:c mc B mB k k ωωσσ22+=+ ()c A B mA mc k ωωωσσ--=-∴22(a ) 再沿A →D (β1线)D mD A mA k k ωσσω22+=+D →C (沿线2α)c mc D mD k k ωωσσ22-=-()D C A mA mc k ωωωσσ22-+=-∴(b ) 由于a,b 式相等D B B A ωωωω+=+∴或:B c A D ωωωω-=-⎪⎭⎪⎬⎫-=-∆=∆mB mC mA mD BC AD σσσσωω:同理可证即上式即汉基第一定理即在滑移线网格中,若已知三个结点的m σ、ω值则第四个结点m σ、ω值可以求出。
滑移线名词解释滑移线是指在流体力学中,流体流动时,流体中的某一点随着时间的推移而发生位置变化的线。
这个概念在飞行器设计中非常重要,因为滑移线可以用来描述飞行器的稳定性和控制性能。
在本文中,我们将详细解释滑移线的概念、特性和应用。
一、滑移线的概念滑移线是在流体力学中用来描述流体流动的一种线。
在飞行器设计中,滑移线通常指飞行器中心重心和气动中心之间的一条线。
当飞行器受到外界扰动时,它会发生滑移和偏航运动,滑移线的位置和方向可以用来描述飞行器的运动状态。
二、滑移线的特性1. 滑移线的位置滑移线的位置取决于飞行器的气动特性和重心位置。
在大多数情况下,滑移线位于飞行器的重心前方,因为气动中心通常在重心前面。
滑移线的位置可以通过实验和计算得出,对于不同的飞行器来说,滑移线的位置也不同。
2. 滑移线的方向滑移线的方向取决于飞行器的气动特性和机翼的布局。
在大多数情况下,滑移线与机翼的平面垂直,因为机翼产生的升力和阻力一般都在机翼平面内。
然而,对于某些机翼布局不规则的飞行器,滑移线的方向可能会产生变化。
3. 滑移线的稳定性滑移线的稳定性是指飞行器在受到外界扰动时,滑移线的位置和方向是否会发生变化。
在理想情况下,飞行器应该具有稳定的滑移线,即受到扰动时滑移线的位置和方向不会发生明显变化。
如果滑移线不稳定,飞行器就会变得难以控制,甚至容易失控。
三、滑移线的应用1. 飞行器稳定性分析滑移线可以用来分析飞行器的稳定性和控制性能。
通过测量飞行器的滑移线位置和方向,可以判断飞行器的稳定性是否良好,以及是否需要进行调整。
2. 飞行器控制设计滑移线还可以用来设计飞行器的控制系统。
通过控制飞行器的滑移线位置和方向,可以使飞行器保持稳定,避免发生滑移和偏航运动,从而提高飞行器的控制性能。
3. 飞行器改进设计滑移线还可以用来指导飞行器的改进设计。
通过分析飞行器的滑移线位置和方向,可以发现飞行器存在的问题和缺陷,从而提出改进措施,使飞行器更加稳定和安全。
181第8章 滑移线理论及应用§8. 1 平面应变问题和滑移线场滑移线理论是二十世纪20年代至40年代间,人们对金属塑性变形过程中,光滑试样表面出现 “滑移带”现象经过力学分析,而逐步形成的一种图形绘制与数值计算相结合的求解平面塑性流动问题变形力学问题的理论方法。
这里所谓“滑移线”是一个纯力学概念,它是塑性变形区内,最大剪切应力max (τ)等于材料屈服切应力(k )的轨迹线。
对于平面塑性流动问题,由于某一方向上的位移分量为零(设du Z =0),故只有三个应变分量(x d ε、y d ε、xy d γ),也称平面应变问题。
根据塑性流动法则,可知p m y x Z -==+==σσσσσ2/)(2 (8-1)式中,m σ为平均应力;p 称为静水压力。
根据塑性变形增量理论,平面塑性流动问题独立的应力分量也只有三个(x σ、y σ、xy τ)(见图8-1a ),于是平面应变问题的最大切应力为:2231max ]2/)[(2/)(xyy x τσσσστ+-=-= (8-2) 可见,这是一个以max τ为半径的圆方程,这个圆便称为一点的应力状态的莫尔圆(见图8-1c )。
图中设x σ<y σ<0(即均为压应力,因塑性加工中多半以压应力为主)。
值得注意的是绘制莫尔圆时,习惯上规定:使体素顺时针旋转的切应力为正,反之为负。
因此图8-1c 中的yx τ为正值;而xy τ取负值。
根据平面流动的塑性条件,k =max τ(对Tresca 塑性条件2/T k σ=;对Mises 塑性条件3/T k σ=.于是,由图8-1(C)的几何关系可知,有 Φ--=2sin k p x σΦ+-=2sin k p y σ (8-3)Φ=2cos k xy τ式中,)2/)((y x m p σσσ+-=-=——静水压力182Φ——定义为最大切应力)(max k =τ方向与坐标轴Ox 的夹角。
通常规定为Ox 轴正向为起始轴逆时针旋转构成的倾角Φ为正,顺时针旋转构成的倾角Φ为负(图8-1中所示Φ均为正)。