第八章 滑移线法
- 格式:pdf
- 大小:300.17 KB
- 文档页数:29
第8章 滑移线理论及应用§8. 1 平面应变问题和滑移线场滑移线理论是二十世纪20年代至40年代间,人们对金属塑性变形过程中,光滑试样表面出现 “滑移带”现象经过力学分析,而逐步形成的一种图形绘制与数值计算相结合的求解平面塑性流动问题变形力学问题的理论方法。
这里所谓“滑移线”是一个纯力学概念,它是塑性变形区内,最大剪切应力max (τ)等于材料屈服切应力(k )的轨迹线。
对于平面塑性流动问题,由于某一方向上的位移分量为零(设du Z =0),故只有三个应变分量(x d ε、y d ε、xy d γ),也称平面应变问题。
根据塑性流动法则,可知p m y x Z -==+==σσσσσ2/)(2 (8-1)式中,m σ为平均应力;p 称为静水压力。
根据塑性变形增量理论,平面塑性流动问题独立的应力分量也只有三个(x σ、y σ、xy τ)(见图8-1a ),于是平面应变问题的最大切应力为:2231max ]2/)[(2/)(xy y x τσσσστ+-=-= (8-2)可见,这是一个以max τ为半径的圆方程,这个圆便称为一点的应力状态的莫尔圆(见图8-1c )。
图中设x σ<y σ<0(即均为压应力,因塑性加工中多半以压应力为主)。
值得注意的是绘制莫尔圆时,习惯上规定:使体素顺时针旋转的切应力为正,反之为负。
因此图8-1c 中的yx τ为正值;而xy τ取负值。
根据平面流动的塑性条件,k =max τ(对Tresca 塑性条件2/T k σ=;对Mises 塑性条件3/T k σ=.于是,由图8-1(C)的几何关系可知,有 Φ--=2sin k p x σΦ+-=2sin k p y σ (8-3)Φ=2cos k xy τ式中,)2/)((y x m p σσσ+-=-=——静水压力Φ——定义为最大切应力)(max k =τ方向与坐标轴Ox 的夹角。
通常规定为Ox 轴正向为起始轴逆时针旋转构成的倾角Φ为正,顺时针旋转构成的倾角Φ为负(图8-1中所示Φ均为正)。
基本信息英文名:slip line中文名:滑移线隶属:塑性力学定义:试样表面出现的线纹时间:二十世纪20年代至40年代间简介材料在屈服时,试样表面出现的线纹称为滑移线。
滑移线理论是二十世纪20年代至40年代间,人们对金属塑性变形过程中,光滑试样表面出现"滑移带"现象经过力学分析,而逐步形成的一种图形绘制与数值计算相结合的求解平面塑性流动问题变形力学问题的理论方法.这里所谓"滑移线"是一个纯力学概念,它是塑性变形区内,最大剪切应力)等于材料屈服切应力(k)的轨迹线。
解释1、2节点相对位置判断构件接触碰撞点的轨迹称为滑移线.主节点所在的一侧称为主线主线上相邻节点之间的线段称为主段。
2、在塑性状态平面应变问题中,平面上每一点都存在两个相交的剪切破坏面,把各点的剪切破坏面连接起来,就可以得到两族相互正交曲线α和β,即称为滑移线。
3、0前言在塑性状态平面应变问题中,平面上每一点都存在两个相交的剪切破坏面,把各点的剪切破坏面连接起来,就可以得到两族相互正交曲线α和β,即称为滑移线.滑移线法按照其性质和边界条件,求出塑性区的应力和位移速度的分布,最后求出极限荷载。
4、滑移带晶体材料的滑移面与晶体表面的交线称为滑移线,滑移部分的晶体与晶体表面形成的台阶称为滑移台阶.由这些数目不等的滑移线或滑移台阶组成的条带称为滑移带。
5、塑料变形体内各点最大剪应力的轨迹称为滑移线.由于最大剪应力成对正交因此滑移线在变形体内成两族互相正交的线网组成所谓滑移线场。
6、这样的两组曲线在X、Y平面上形成一个曲线网称为滑移线.当物体处于屈服状态时,各点的最大剪应力达到K值,塑性变形就沿着这些曲线进行滑移。
第八章 滑移线法 返回目录本章内容:滑移线法原理及应用。
本章重点:滑移线场的合理建立。
滑移线: 塑性变形物体内各质点的最大切应力迹线特点: 滑移线(成对出现,相互正交)→滑移线场适用范围:理想刚塑性材料的平面变形问题,再适当推广满足条件:静力学+运动学(速度场条件) 第一节 基本概念 平面变形的应力状态⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⇒=+321200000031σσεσσ 231σσσ+=m 塑变屈服时()K =-=3121max σστ莫尔圆为:⎪⎩⎪⎨⎧±=+=-=ωτωσσωσσ2cos 2sin 2sin k k k xym y m x ⎪⎩⎪⎨⎧-==+==k k m mm σσσσσσω32145时第二节 最大切应力迹线——滑移线变形平面xoy ,取点P 1及邻近点P 2,P 3,……P 61τ为P 1点最大切应力方向 2τ为P 2(1τ为P 1P 2折线)当P 1P 2无限邻近时,曲线变为光滑曲线即滑移线。
α族,β族一 规定族线及转角ωβα.1)位于第一与第最大主应力族线构成右手坐标系,、1σβα 图7-3 2)逆时针方向线组成顺时针方向族线西侧的最大切应力,,.βα3)()同坐标轴逆时针正轴正向为起始顺时针负角以,ox ω二 滑移线方程()()⎪⎩⎪⎨⎧-=+==族族)βωωαωπctg tg tg dxdy dx dy 2(Hencky 方程:ωσ~m 平面应变应力平衡微分方程为:⎪⎩⎪⎨⎧=+=+∂∂∂∂∂∂∂∂00y x y x yy x x y xσττσ 将屈服准则式代入有()⎪⎪⎩⎪⎪⎨⎧=--∂∂=+-∂∂∂∂∂∂∂∂∂∂02cos 2sin 20)2sin 2(cos 2y x m y x m k yk x ωωωωωωσωωσ 未知数:m σ,ω,但难求。
变换坐标系:取滑移线本身作坐标轴轴轴βα,注意:此坐标系具有当沿α线运动时β值不变,即坐标系轴是弯曲的!在α点无限近处有:0=ω αs x d d = βs y d d =αs x ∂∂=∂∂ βs y ∂∂=∂∂ 0≠∂∂αωs 0≠∂∂βωs 因此变为:()线线βωσαωσββαα02)(02=∂∂+∂∂=∂∂-∂∂s k s s k s m m积分后得:()()⎩⎨⎧=+=-线线βηωσαξωσk k m m 22 此式即汉基应力方程(Hencky ) 第三节 滑移线特性 一 沿线特性沿α线:ωσ∆=∆k m 2 沿β线:ωσ∆-=∆k m 2 证:设一条α线上有a 、b 两点ξωσξωσ=-=-b mb a ma k k 22 ()02=---∴b a mb ma k ωωσσ ωσ∆=∆∴k m 2沿同一滑移线,平均应力的变化与角度的变化成正比二 跨线特性(汉基第一定律) ()()⎩⎨⎧∆=∆∆=∆C B m D A m BC AD ,σσωω, 证明:先沿1α线, A →B有B B m A mA k K ωσωσ22-=-沿2β线 B →C有:c mc B mB k k ωσωσ22+=+()c A B mA mc k ωωωσσ--=-∴22(a )再沿A →D (β1线)D mD A mA k k ωσωσ22+=+D →C (沿线2α)c mc D mD k k ωσωσ22-=-()D C A mA mc k ωωωσσ22-+=-∴ (b )由于(a ),(b )式相等B c A D ωωωω-=- 或A B DC ωωωω-=-∴ ⎪⎭⎪⎬⎫-=-∆=∆mB mC mA mD BC AD σσσσωω:同理可证即上式即汉基第一定理 同一族的一条滑移线转到另一条滑移线时,则沿另一族的任意一条滑移线角度的变化和平均应力的变化为常数。
1、何谓应力张量?若应力张量已知,如何确定应力偏张量、球张量?应力偏张量、球张量有何含义?2、何谓主平面和主应力?何谓应力张量不变量?3、什么是平面应力问题?什么是平面应变问题?4、如果一点的应力状态一定,当坐标系改变时,主应力的大小是否改变?主剪应力呢?5、何谓名义应变与真实应变?在什么情况下,两者的差异很小?6、何谓名义应力?何谓真实应力?7、为什么应力球张量只会引起材料的体积变化,不会使材料产生形状变化?8、什么是塑性变形体积不变条件?9、材料发生弹性变形时,其应力-应变关系有何种特征?10、弹性力学问题求解的主要方法有几种?简述位移法求解弹性力学问题的基本步骤。
11、利用应力法求解弹性力学问题时,是否需要利用变形协调方程?为什么?12、弹性力学问题求解的主要方法有几种?利用位移法求解弹性力学问题时,是否需要利用变形协调方程?为什么?13、平面应变情况下,物体内质点位移有何特点?14、何谓平衡微分方程?其本质意义是什么?15、压缩类变形只能在至少有一个压应力作用下才能发生,这种说法对吗?为什么?16、要使物体产生伸长变形,至少应有一个主应力是拉应力,这种说法对吗?为什么?17、何谓理想刚塑性材料模型?其应力-应变关系有何特征?18、什么是平面应力问题?弹性变形条件下,平面应力问题中主应力为0的方向的正应变是否也为0?为什么?(老师从这又起头后80道题)19、从材料屈服进入塑性状态的角度而言,同种材料挤压变形(三向压应力状态)与拉拔变形(一向拉二向压应力状态),哪个工艺所需的载荷大一些?20、屈服准则的实验验证方法,主要有哪两种实验?(提示:两种实验均采用薄壁圆管试验)21、对直径相同,高度尺寸不同的圆柱体工件在相同工艺条件下进行镦锻变形时影响变形载荷的主要因素是什么?22、为什么与平砧镦粗相比,“V”型凸砧镦粗时,可减少工件的鼓肚现象?23、塑性变形的应力应变顺序对应的规律理论基础是什么?适用范围是什么?24、按照塑性变形的应力应变顺序对应的规律,当中间主应力与平均应力相等时,材料塑性变形属于哪种类型?25、塑性力学问题的解析求解方法主要有哪几种?26、采用常用的解析方法求解塑性力学问题,能解决什么问题?有什么工程应用价值?27、在利用切块法求解塑性力学问题,应用屈服准则时,要做什么样的近似处理?28、简答主应力法求解塑性问题的要点29、何谓滑移线?30、何谓滑移线法?31、滑移线场有何特点?32、严格地讲,滑移线法求解塑性力学问题,只适用于平面应变问题,为什么?33、表示塑性变形应力-应变关系的全量理论,其适用条件是什么?34、塑性变形应力-应变关系的理论有几种?35、何谓塑形变形的增量理论?36、何谓塑性变形的全量理论?适用范围是什么?37、当物体分别在三向压应力和三向拉应力作用下发生塑性变形,其第一、第三主应变在性质上有无区别?38、无模胀球过程中,在球壳厚度不变的情况下,直径大的球壳容易胀形还是直径小的球壳容易胀形?(所需内压力P的大小)39、镦粗过程中,直径一定的坯料,高度大时所需载荷大,还是高度小时所需载荷大?40、塑性变形过程,应力与全量应变是否存在定量的规律性对应关系?41、塑性变形时,应力与全量应变是否存在线性关系?42、弹性变形时,应力—应变关系具有什么特点?43、固体现实应力空间中,为什么塑性变形区的空间在主应力空间等倾线负方向越来越大(即材料断裂罩呈钟罩形状)?44、简述圆柱体在平砧间镦粗变形过程发生鼓肚的原因。
理想刚塑性体的平面应变问题1金属塑性加工变形的特点:材料的塑性变形很大弹性变形可以忽略冲模对金属块状材料的作用(塑性成形)塑性极限状态的荷载理论分析方法:滑移线法213滑移线的几何性质当滑移线沿着与之相交的另一族滑移线过渡到同族的另一条滑移线时,和的变化为常量。
θσHencky 第一定理:沿滑移线性质:9沿着滑移线平均应力的变化与夹角的变化成比例θσ9当滑移线为直线,均沿着滑移线为常数θσ9在被两根滑移线所截的另一族滑移线中,若某一段为直线,则被截的所有滑移线段都为直线简单滑移线场1. 均匀滑移线场αβ和线为两族相互正交的直线,代表均匀应力状态2. 中心扇形滑移线场滑移线场为同心圆族和在圆心共点的直线族组成,代表简单应力状态18滑移线场求解问题的例题1. 刚性平冲头压入半平面的极限荷载2. 单边受压力的楔形体3. 两侧带缺口板条的拉伸19212. Geiringer 速度方程速度场满足的条件:0=⋅+⋅dy dv dx dv y x 沿线:αβ沿线:0tan =⋅+y x dv dv θ0cot =⋅−y x dv dv θ沿线:αβ沿线:0=⋅−θβαd v dv 0=⋅+θαβd v dv Geiringer 方程几何意义:沿滑移线方向线应变率为零23 应力场必须满足平衡条件塑性区的应力满足屈服条件;刚性区应力点不在屈服面之外 应力要满足应力边界条件¾塑性区速度和应变率是连续的, 而在刚性区应变率为零;¾体积不可压缩¾速度满足速度边界条件¾在力边界,速度使外力所做的功大于零塑性区应力和应变率满足Levy-Mises 方程解的性质。
屈服位移三种计算方法【原创版3篇】篇1 目录1.引言2.屈服位移的定义和重要性3.三种计算方法:屈服线法、滑移线法、有限元法3.1 屈服线法3.2 滑移线法3.3 有限元法4.结论篇1正文【引言】在材料力学领域,屈服位移是指材料在受到外力作用下,从最初的弹性状态转变为塑性状态的过程中,其应变或应变率的变化。
研究屈服位移对于了解材料的屈服特性和行为具有重要意义。
本文将介绍三种计算屈服位移的方法:屈服线法、滑移线法和有限元法。
【屈服位移的定义和重要性】屈服位移是指材料在受到外力作用下,其应变或应变率从弹性状态转变为塑性状态的过程中所发生的位移。
这一位移可以用来衡量材料的屈服特性,对于工程设计和材料选择具有重要参考价值。
屈服位移的计算方法主要包括屈服线法、滑移线法和有限元法。
【三种计算方法】【屈服线法】屈服线法是根据材料的屈服曲线(也称为应力 - 应变曲线或应力 -应变率曲线)来计算屈服位移的方法。
首先需要绘制材料的屈服曲线,然后在曲线上找到对应于所需应力或应变率的点,连接这些点可以得到屈服线。
最后,计算屈服线上的位移即可得到屈服位移。
【滑移线法】滑移线法是另一种计算屈服位移的方法,其核心思想是根据材料的滑移曲线来计算。
滑移曲线表示的是材料在滑动过程中,其应力 - 应变率关系的变化。
通过滑移曲线可以找到材料的屈服点,进而计算屈服位移。
【有限元法】有限元法是一种数值计算方法,其基本原理是将待解决的问题分解为多个子问题,然后通过求解这些子问题来得到最终的解。
在计算屈服位移时,可以将材料划分为多个有限元,然后通过求解有限元方程组来得到每个单元的应力和应变,最后计算出整个材料的屈服位移。
【结论】屈服位移是材料力学中一个重要的概念,对于研究材料的屈服特性和行为具有重要意义。
本文介绍了三种计算屈服位移的方法:屈服线法、滑移线法和有限元法。
篇2 目录1.引言2.屈服位移的定义3.三种计算方法3.1 简单拉伸试验法3.2 圆环拉伸试验法3.3 塑性应变比法4.计算方法的优缺点分析5.结论篇2正文一、引言屈服位移是指材料在受到外力作用下,从最初的弹性形变过渡到塑性形变的位移。