银_聚吡咯纳米复合材料的制备与结构表征
- 格式:pdf
- 大小:404.67 KB
- 文档页数:4
银纳米线的溶剂热法制备及表征刘裕堃;曹峰;胡超;秦天柱;赵博为;何桂美;王娟【摘要】以硝酸银为银源、聚乙烯吡咯烷酮(K-30)为模板剂和包覆剂、葡萄糖为还原剂、乙二醇为溶剂,采用溶剂热法成功制备出银纳米线.采用X-射线衍射(XRD)、扫描电子显微镜(SEM)、紫外可见吸收光谱(UV-Vis)、热重(TG)等手段对银纳米线进行了表征.结果表明,在反应温度为160 ℃、反应时间为4 h、聚乙烯吡咯烷酮(K-30)与硝酸银物质的量比为5的条件下,制备出直径100~150 nm、长度10~20μm的银纳米线.XRD物相分析表明,产物为结晶度较高、具有面心立方结构的纯银纳米线.%Using silver nitrate as a silver source,poly-vinylpyrrolidone(K-30)as a template and a covered agent,glucose as a reducing agent,and ethylene glycol as a solvent,we prepared silver nanowires by a solvothermal method.We characterized the silver nanowires by X-ray diffraction(XRD),scanning electron microscope(SEM),ultraviolet-visible absorption spectrum(UV-Vis) and thermogravimetry(TG).Results show that we can prepare silver nanowires with diameter of 100~150 nm,and length of 10~20 μm under the conditions as follows:reaction temperature of160 ℃,reaction time of 4 h,and molar ratio of poly-vinylpyrrolidone(K-30) and silver nitrate of 5.XRD phase analysis shows that the prepared silver nanowires have a high degree of crystallization and face-centered cubic structure.【期刊名称】《化学与生物工程》【年(卷),期】2017(034)007【总页数】4页(P35-37,42)【关键词】银纳米线;溶剂热法;聚乙烯吡咯烷酮【作者】刘裕堃;曹峰;胡超;秦天柱;赵博为;何桂美;王娟【作者单位】湖北大学化学化工学院,湖北武汉430062;湖北大学化学化工学院,湖北武汉430062;湖北大学化学化工学院,湖北武汉430062;湖北大学化学化工学院,湖北武汉430062;湖北大学化学化工学院,湖北武汉430062;湖北大学化学化工学院,湖北武汉430062;湖北大学化学化工学院,湖北武汉430062【正文语种】中文【中图分类】TQ131.22纳米银是一种同时具有高比表面积和表面活性、强杀菌性能、优良导电性和稳定物理化学性质的金属银单质,已逐渐发展成为一种高效的功能材料,被广泛应用于催化材料[1]、低温超导材料[2]、生物传感材料[3-4]和无机抗菌材料等领域。
纳米银复合材料的制备及其生物活性研究近年来,纳米技术的发展已经在许多领域得到了广泛的应用,其中纳米材料的特殊物性使其成为研究热点。
其中,纳米银复合材料是一类具有良好生物活性的材料,在生物医学领域应用广泛。
本文将介绍纳米银复合材料的制备方法及其生物活性研究进展。
一、纳米银复合材料的制备方法目前,纳米银复合材料的制备方法有很多种,主要包括物理法、化学法和生物法三种。
其中,化学法制备的纳米银复合材料应用最为广泛。
1. 物理法物理法制备纳米银复合材料包括溅射法、磁控溅射法和高能球磨法。
这些方法制备的纳米银颗粒粒径一般在10~100 nm之间,具有很高的晶格度和稳定性。
而由于这些方法制备过程中需要高温、高能、真空等特殊条件,导致制备成本较高,且所得产物晶粒尺寸难以控制。
2. 化学法化学法制备纳米银复合材料包括溶胶凝胶法、沉淀法、还原法、微波合成法等。
其中,还原法是目前应用最为广泛的一种方法。
该方法通过还原银离子制备纳米银颗粒,可以在常温下制备,且使用简单、成本低廉。
同时,该方法也可制备出形貌和结构不同的纳米银颗粒,如球形、棒状、四面体等。
由于该方法不需要高温、高能等特殊制备条件,因此,制备成本也相对较低。
3. 生物法生物法制备纳米银复合材料包括细菌法、真菌法、酵母法等。
这些方法主要利用了特定微生物的代谢产物,如还原酶等,来制备纳米银颗粒。
这种方法不仅环保、低成本,而且易于控制纳米颗粒粒径和形态。
但是,使用这种方法需要建立稳定的微生物培养体系,制备过程比较繁琐。
二、纳米银复合材料的生物活性研究纳米银复合材料由于表面积大、反应活性高、生物相容性良好等特点,具有广泛的应用前景。
目前,纳米银复合材料在医学领域、食品安全、环境污染等方面得到了广泛研究和应用。
1. 抗菌性能纳米银复合材料具有优异的抗菌性能,可广泛应用于水净化、医疗器械、餐具等领域。
研究表明,纳米银颗粒能够与细菌细胞膜上的蛋白质、DNA等结合,引起其结构和功能的改变,导致细胞死亡或抑制细胞生长。
聚吡咯的表征方法-概述说明以及解释1.引言1.1 概述聚吡咯是一种重要的有机聚合物,具有多种独特的化学和物理性质,因此在许多领域具有广泛的应用前景。
为了深入了解和研究聚吡咯的特性和性能,需要使用各种表征方法对其进行分析和测试。
聚吡咯的表征方法主要包括物理性质测试、化学结构分析和合成方法验证等方面。
在物理性质测试方面,可以通过测量聚吡咯的电导率、热稳定性、光学性质等来评估其性能。
同时,聚吡咯的表面形貌和形态结构也可以通过扫描电子显微镜(SEM)和透射电子显微镜(TEM)等显微镜技术进行观察和分析。
化学结构分析是确定聚吡咯分子组成和结构的重要手段。
常用的方法包括核磁共振(NMR)和红外光谱(IR)等技术。
通过NMR技术可以确定聚吡咯分子中的官能团和基团的类型,从而了解其化学结构。
而红外光谱则可以提供聚吡咯的分子振动信息,帮助确定其分子链的构建。
此外,在聚吡咯的合成方法验证方面,需要使用一系列反应条件和催化剂来合成聚吡咯,并通过核磁共振、红外光谱等方法对其结构进行验证。
常用的合成方法包括电化学合成、化学氧化聚合和光化学反应等。
总之,聚吡咯的表征方法是对其特性和性能进行研究和分析的重要手段。
通过物理性质测试、化学结构分析和合成方法验证等方面的工作,可以更好地理解聚吡咯的性质,为其在材料科学、电化学和光电子学等领域的应用提供科学依据。
文章结构是指文章的组织框架,它包括了引言、正文和结论三个部分。
在这篇文章中,我们将按照以下结构进行写作:1. 引言1.1 概述在本节中,我们将简要介绍聚吡咯的背景和研究意义,以便读者了解这个主题的重要性。
1.2 文章结构本节将详细介绍文章的结构安排,以帮助读者更好地理解文章的内容和组织方式。
1.3 目的在本节中,我们将明确本篇文章的目的和研究方向,以便读者清楚地了解我们想要传达的信息和观点。
2. 正文2.1 聚吡咯的化学结构在本节中,我们将详细描述聚吡咯的化学结构,包括它的组成、性质等方面的内容,以便读者全面了解聚吡咯分子的基本特征。
溶剂热合成纳米银及其表征李海波;庄裕峰;魏彦;肖旺钏;赖文忠【摘要】The control over size and morphology is important for the synthesis of silver nanoparticles.In this study,silver nanoparticles stabilized by PVP were prepared by acetonitrile solvothermal.The particle size and morphology influenced by different reaction temperature and different concentration of PVP were preliminarily studied.The results indicate that higher temperature facilitates to the formation of single morphology nanoparticles and higher concentration of PVP produces smaller ones.%针对纳米银合成的关键,形貌和粒径大小的控制,研究了把硝酸银溶解在乙腈中,以聚乙烯吡咯烷酮(PVP)为稳定剂,在溶剂热条件下反应制备纳米银。
初步研究了不同反应温度(100、120、140℃)和不同PVP浓度对纳米银粒径大小和形貌的影响。
初步结果表明反应温度升高,得到的纳米银趋向于单形貌;PVP浓度增加,纳米银粒径减小。
【期刊名称】《三明学院学报》【年(卷),期】2012(029)002【总页数】4页(P76-79)【关键词】纳米银;溶剂热;合成【作者】李海波;庄裕峰;魏彦;肖旺钏;赖文忠【作者单位】三明学院化学与生物工程学院,福建三明365004;三明学院化学与生物工程学院,福建三明365004;三明学院化学与生物工程学院,福建三明365004;三明学院化学与生物工程学院,福建三明365004;三明学院化学与生物工程学院,福建三明365004【正文语种】中文【中图分类】O614.122贵金属的光、电、磁和化学等性质与其尺寸、形貌和成分等有很大的关系[1],因而对它们的合成研究主要集中在尺寸、形貌、成分等的控制[2]。
聚吡咯的表征方法全文共四篇示例,供读者参考第一篇示例:聚吡咯是一种具有广泛应用前景的功能性高分子材料,具有优异的导电性、光电性、吸湿性等特点。
对聚吡咯的表征方法至关重要,能够帮助研究人员深入了解其结构和性能,为其在导电材料、传感器、柔性电子器件等领域的应用提供技术支持。
一、物理性质表征方法1.红外光谱分析红外光谱是一种用于检测分子结构的有效方法,对于聚吡咯的结构表征尤为重要。
通过红外光谱分析,可以确定聚吡咯分子中吡咯环的对称伸缩振动、吡啶环的振动等特征峰,从而确定其结构。
2.核磁共振核磁共振是另一种常用的物理性质表征方法,通过核磁共振技术可以确定聚吡咯分子中各个原子的化学环境和相对位置关系,从而揭示其分子结构。
3.扫描电子显微镜扫描电子显微镜是一种高分辨率的表征方法,通过扫描电子显微镜观察聚吡咯的表面形貌和结构特征,可以帮助研究人员了解其微观结构和形貌特征。
1.电导率测量电导率是聚吡咯最重要的电学性质之一,通过电导率的测量可以评估聚吡咯材料的导电性能。
通常采用四探针法或四电极法来测量聚吡咯样品的电导率。
2.循环伏安法循环伏安法是一种用于研究电化学行为的方法,通过测量电压随时间的变化,可以获得聚吡咯的电化学稳定性、氧化还原反应过程等信息。
1.紫外-可见光吸收光谱紫外-可见光吸收光谱是研究聚吡咯光学性质的重要方法,可以通过测量聚吡咯在不同波长下的吸收光谱,评估其光学特性和能带结构。
光电导率是聚吡咯在受光激发下的导电性能,通过测量聚吡咯在不同光强下的电导率变化,可以评估其光电传输性能。
1.热重分析2.差示扫描量热分析差示扫描量热分析是另一种常用的热性质表征方法,通过测量聚吡咯在升温过程中的热容量变化,可以揭示其热稳定性和热分解动力学特性。
对聚吡咯的表征方法涵盖了物理性质、电学性质、光电性质和热性质的多个方面,通过综合运用这些表征方法,可以全面了解聚吡咯的结构和性能,为其在各个领域的应用提供技术支持和指导。
聚吡咯的合成及其电学性能付长璟;李爽;赵伟玲;张佳【摘要】为了改善和提高聚吡咯的溶解性和导电性能,利用化学氧化聚合法设计实验,制备聚吡咯.采用木质素磺酸钠、十二烷基磺酸钠和对甲苯磺酸三种掺杂剂,通过改变掺杂剂的种类、掺杂剂的掺杂量、氧化剂的掺杂量、氧化反应时间、氧化温度等反应参数来优化聚吡咯的制备工艺.采用XRD、FTIR、SEM和四探针电导率测试仪等对产物的组成、结构和导电性能进行表征.结果表明:三种掺杂剂均可以成功制备聚吡咯,有效地改善聚吡咯的水溶性能,其中木质素磺酸钠掺杂的聚吡咯性能最佳,当木质素磺酸钠取0.002 mol、n(Py)∶n(FeCl3·6H2O)=1∶1.2、反应在0℃下进行16 h时,电导率最高能达到0.818 S/cm.【期刊名称】《黑龙江科技大学学报》【年(卷),期】2014(000)006【总页数】5页(P612-616)【关键词】聚吡咯;合成;掺杂;导电性【作者】付长璟;李爽;赵伟玲;张佳【作者单位】【正文语种】中文【中图分类】O632.6自从导电聚合物被发现以来,因为其优异的电学性能、光学性能和机械性能而备受瞩目。
导电聚合物具有半导体的特性,在传感器、电致变色技术、电子器件、二次电池上前景看好。
其中聚吡咯具有易制备、生物相容性好、环境无毒性、防腐性能强、良好的空气稳定性、可逆的氧化还原性、较高的导电性和磁性等特点[1一5],受到研究者们的关注。
由于导电高分子本身分子的刚性链和链间的相互作用较强,所以聚吡咯又具有不溶于有机溶剂、难熔融、难加工等不足,因此,它在应用领域受到一定的限制。
研究发现,聚吡咯通过掺杂剂掺杂或者取代等修饰的方式可以在一定程度上改善它的性能,但是会使其电导率有一定的下降[6一10]。
在以往的研究中,G.Zotti制备了1一、3一、4一全被取代的吡咯衍生聚合物,其电导率为1×10一3S/cm,可以很好地溶于有机溶剂。
Chang Enchung等[11]将磺酸基作为掺杂剂,与吡咯单体共聚,制备电导率为5.5×10一6S/cm 的水溶性聚吡咯。
银纳米线的合成与表征近年来,随着纳米技术的不断发展,纳米材料应用领域也不断扩展。
其中,银纳米线因为其具有优异的导电性和透明性,被广泛应用于透明电极、柔性传感器、光电器件等领域。
本文将探讨银纳米线的合成方法及表征技术。
一、银纳米线的合成方法目前,合成银纳米线的主要方法有:物理方法、化学还原法、电化学合成法、模板法和绿色合成法等。
1. 物理方法物理方法主要是利用高温高压等物理条件,在惰性气体环境下将银原子通过气相沉积而成。
其优点是纳米线的单晶性好,但是制备成本较高。
2. 化学还原法化学还原法是利用还原剂还原含银离子的溶液,在溶液中发生置换反应生成纳米线。
这是最常用的方法之一,成本较低,而且可以控制纳米线的直径和长度。
3. 电化学合成法电化学合成法是在电解质溶液中,利用极化作用合成纳米线。
与其他方法相比,其制备过程较简单,且成本较低。
但是,电化学合成法的条件比较苛刻,需要控制好电位、电流等参数。
4. 模板法模板法是将纳米线沿着模板(如氧化铝模板等)生长,然后将模板去除得到纳米线。
模板法合成的纳米线通常具有一定的排列性和单一的直径,但是得到的纳米线长度较短。
5. 绿色合成法绿色合成法是在无机盐、有机物或变性蛋白质等天然原料中,利用植物提取物、微生物等生物体代替传统还原剂,使银离子在温和的条件下还原生成纳米线。
这种方法获得的纳米线通常具有良好的生物相容性,但是纯度比较难控制。
二、银纳米线的表征技术银纳米线的合成成本相对较低,但是由于其直径小于100 nm,传统的物理、化学分析方法很难对其进行表征。
因此,需要运用现代表征技术对银纳米线进行研究。
1. 电子显微镜电子显微镜对于纳米材料的表征至关重要。
透射电子显微镜(TEM)可以观察单个纳米线的形态和尺寸分布,而扫描电子显微镜(SEM)则可以观察纳米线的表面形貌和分布情况。
2. 傅里叶变换红外光谱仪为了对银纳米线的有机功能化进行评价,可以使用傅里叶变换红外光谱仪(FTIR)进行表征。