江苏省历年高等数学竞赛试题
- 格式:docx
- 大小:461.70 KB
- 文档页数:24
2010年江苏省《高等数学》竞赛试题(本科二级)一 填空题(每题4分,共32分) 1.0sin sin(sin )limsin x x x x→-=2.1y x =+,/y = 3.2cos y x =,()()n y x = 4.21xx e dx x-=⎰ 5.4211dx x+∞=-⎰6.圆222222042219x y z x y z x y z +-+=⎧⎪⎨++--+≤⎪⎩的面积为 7.(2,)xz f x y y=-,f 可微,//12(3,2)2,(3,2)3f f ==,则(,)(2,1)x y dz==8.级数11(1)!2!n nn n n ∞=+-∑的和为 . 二.(10分)设()f x 在[],a b 上连续,且()()bbaab f x dx xf x dx =⎰⎰,求证:存在点(),a b ξ∈,使得()0af x dx ξ=⎰.三.(10分)已知正方体1111ABCD A B C D -的边长为2,E 为11D C 的中点,F 为侧面正方形11BCC B 的中点,(1)试求过点1,,A E F 的平面与底面ABCD 所成二面角的值。
(2)试求过点1,,A E F 的平面截正方体所得到的截面的面积.四(12分)已知ABCD 是等腰梯形,//,8BC AD AB BC CD ++=,求,,AB BC AD 的长,使得梯形绕AD 旋转一周所得旋转体的体积最大。
五(12分)求二重积分()22cos sin Dx y dxdy +⎰⎰,其中22:1,0,0D x y x y +≤≥≥六、(12分)求()()21xx y e dx x y dy Γ++++⎰,其中Γ为曲线22201212x x x y x x ⎧≤≤⎨+=≤≤⎩从()0,0O 到()1,1A -.七.(12分)已知数列{}n a 单调增加,123111,2,5,,3n n n a a a a a a +-====-()2,3,,n =记1n n x a =,判别级数1n n x ∞=∑的敛散性.2010年江苏省《高等数学》竞赛试题(本科三级)一 填空题(每题4分,共32分) 1.0sin sin(sin )limsin x x x x→-=2.2arctan tan x y x e x =+,/y =3.设由y x x y =确定()y y x =,则dydx= 4.2cos y x =,()()n y x = 5.21xx e dx x-=⎰6.(2,)xz f x y y=-,f 可微,//12(3,2)2,(3,2)3f f ==,则(,)(2,1)x y dz==7设(),f u v 可微,由()22,0F x z y z ++=确定(),z z x y =,则z z x y∂∂+=∂∂8.设22:2,0D x y x y +≤≥,则D=二.(10分)设a 为正常数,使得2ax x e ≤对一切正数x 成立,求常数a 的最小值三.(10分)设()f x 在[]0,1上连续,且11()()f x dx xf x dx =⎰⎰,求证:存在点()0,1ξ∈,使得0()0f x dx ξ=⎰.四.(12分)求广义积分4211dx x +∞-⎰五.(12分)过原点()0,0作曲线ln y x =-的切线,求该切线、曲线ln y x =-与x轴所围成的图形绕x 轴旋转一周所得的旋转体的体积.六、(12分)已知ABCD 是等腰梯形,//,8BC AD AB BC CD ++=,求,,AB BC AD 的长,使得梯形绕AD 旋转一周所得旋转体的体积最大。
2010年江苏省《高等数学》竞赛试题(民办本科)一 填空题(每题4分,共32分) 1.0sin sin(sin )limsin x x x x→-=2.2arctan tan x y x e x =+,/y =3.设由y x x y =确定()y y x =,则dydx= 4.2cos y x =,()()n y x = 5.21xx e dx x -=⎰ 6.214arctan 1x x dx x =+⎰7.圆222222042219x y z x y z x y z +-+=⎧⎪⎨++--+≤⎪⎩的面积为 8.(2,)xz f x y y=-,f 可微,//12(3,2)2,(3,2)3f f ==,则(,)(2,1)x y dz==二.(10分)设a 为正常数,使得2ax x e ≤对一切正数x 成立,求常数a 的最小值三.(10分)设()f x 在[]0,1上连续,且11()()f x dx xf x dx =⎰⎰,求证:存在点()0,1ξ∈,使得0()0f x dx ξ=⎰.四. (12分)过原点()0,0作曲线ln y x =-的切线,求该切线、曲线ln y x =-与x 轴所围成的图形绕x 轴旋转一周所得的旋转体的体积.五.(12分)已知正方体1111ABCD A BC D -的边长为2,E 为11D C 的中点,F 为侧面正方形11BCC B 的中点,(1)试求过点1,,A E F 的平面与底面ABCD 所成二面角的值。
(2)试求过点1,,A E F 的平面截正方体所得到的截面的面积.六、(12分)已知ABCD 是等腰梯形,//,8BC AD AB BC CD ++=,求,,AB BC AD 的长,使得梯形绕AD 旋转一周所得旋转体的体积最大。
七(12分)求二重积分()22cos sin Dx y dxdy +⎰⎰,其中22:1,0,0D x y x y +≤≥≥2006年江苏省高等数学竞赛试题(本科三级、民办本科)一.填空(每题5分,共40分)1.22232323212lim 12n n n n n n →∞⎛⎫+++= ⎪+++⎝⎭2. ()2301lim 1xt x e dt x -→-=⎰ 3. ()2lim320x x x ax b →+∞++++=,则,a b =4.()()()2sin 1,0x f x x x e f ''=++=5. 设由y z x ze +=确定(,)z z x y =,则(),0e dz=6.函数()()2,x f x y e ax b y -=+-中常数,a b 满足条件 时,()1,0f -为其极大值. 7.交换二次积分的次序()211,x e exdx f x y dy -=⎰⎰ .8.设22:2,02D x x y y x ≤+≤≤≤,则221Ddxdy x y=+⎰⎰二.(8分)设()()2sin 0ln 10ax b x cx f x x x ⎧++≤⎪=⎨+>⎪⎩,试问,,a b c 为何值时,()f x 在0x =处一阶导数连续,但二阶导数不存在.三.(9分)过点()1,5作曲线3:y x Γ=的切线L ,(1)求L 的方程;(2)求Γ与L 所围成平面图形D 的面积;(3)求图形D 的0x ≥部分绕x 轴旋转一周所得立体的体积.四(8分)设()f x 在(),-∞+∞上是导数连续的函数,()00f =,()()1f x f x '-≤, 求证:()[)1.0,x f x e x ≤-∈+∞ 五(8分)求()12arctan 1xdx x +⎰六(9分)本科三级做:设()()()()()()2222tan ,0,0,0,0,0x y x y x y x yf x y x y -⎧+≠⎪+=⎨⎪=⎩,证明(),f x y 在点()0,0处可微,并求()()0,0,df x y民办本科做:设圆柱面221(0)x y z +=≥被柱面222z x x =++截下的有限部分为∑.为计算曲面∑的面积,用薄铁片制作∑的模型,()(1,0,5),(1,0,1),1,0,0A B C --为∑上的三点,将∑沿线段BC 剪开并展成平面图形D ,建立平面在极坐标系,使D 位于x 轴正上方,点A 坐标为()0,5,写出D 的边界的方程,并求D 的面积. 七(9分)本科一级考生做:用拉格朗日乘数法求函数()22,22f x y x xy y =++在区域2224x y +≤上的最大值与最小值. 八(9分)设D 为,,02y x x y π===所围成的平面图形,求()cos Dx y dxdy +⎰⎰.2004年江苏省高等数学竞赛试题(本科三级)一.填空(每题5分,共40分)1. ()f x 是周期为π的奇函数,且在0x =处有定义,当0,2x π⎛⎫∈ ⎪⎝⎭时,()sin cos 2f x x x =-+,求当,2x ππ⎛⎤∈ ⎥⎝⎦时,()f x 的表达式.2. 0x →时,sin cos x x x -⋅与k cx 为等价无穷小,则c =3.()2tan 2lim sin xx x π→=4. 2222lim 14n nn n n n n n →∞⎛⎫+++= ⎪+++⎝⎭5. ()()2ln 1,2f x x x n =->时()()0n f =6.()()21x x e x dx x e -=-⎰7. ()1,1arctan ,x z dzy-== .8. 设()()01x x f x g x ≤≤⎧==⎨⎩其他,D 为,x y -∞<<+∞-∞<<+∞,则()()Df y f x y dxdy +=⎰⎰ .二.(10分)设()f x 在[],a b 上连续,()f x 在(),a b 内可导,(),f a a =,()()2212baf x dx b a =-⎰,求证: (),a b 内至少存在一点ξ使得()()1f f ξξξ'=-+ 三.(10分)设22:4,,24D y x y x x y -≤≥≤+≤,在D 的边界y x =上任取点P ,设P 到原点距离为t ,作PQ 垂直于y x =,交D 的边界224y x -=于Q 1)试将,P Q 的距离PQ 表示为t 的函数; 2)求D 饶y x =旋转一周的旋转体的体积四(10分)设()f x 在(),-∞+∞上有定义,()f x 在0x =处连续,且对一切实数12,x x 有()()()1212f x x f x f x +=+,求证:()f x 在(),-∞+∞上处处连续。
江苏省历届高等数学竞赛试卷(1991-2010)江苏省第一届(1991年)高等数学竞赛本科竞赛试题(有改动)一、填空题(每小题5分,共50分)1.函数sin sin y x x=(其中2x π≤)的反函数为________________________。
2.当0→x 时,34sin sin cos x x x x -+x 与nx 为同阶无穷小,则n =____________。
3.在1x =时有极大值6,在3x =时有极小值2的最低幂次多项式的表达式是_____________________________________。
4.设(1)()n m nn d x p x dx -=,n m ,是正整数,则(1)p =________________。
5.222[cos()]sin x x xdx ππ-+=?_______________________________。
6. 若函数)(t x x =由=--xt dt e t 12所确定的隐函数,则==022t dt xd 。
7.已知微分方程()y y y x x ?'=+有特解ln x y x =,则()x ?=________________________。
8.直线21x zy =??=?绕z 轴旋转,得到的旋转面的方程为_______________________________。
9.已知a 为单位向量,b a 3+垂直于b a 57-,b a 4-垂直于b a 27-,则向量b a、的夹角为____________。
10.=?????????? ??+???? ?+???? ??+∞→nn n n n n 122222212111lim 。
二、(7分)设数列{}n a 满足1,2,21≥+=->+n a a a n n n ,求nn a ∞→lim 。
三、(7分)求c 的值,使?=++bac x c x 0)cos()(,其中a b >。
第十届专科竞赛题与评分标准一、填空题(每小题4分,共32分) 1) ()3sin sin sin limx x x x→- =16.2)()2arctan e tan ,x y x x y '=+=则()242etan sec 1xx x x x +++.3) 设由yxx y =确定(),y y x =d d y x=则()()()()22ln ln 1ln ln 1.y x y y yx x y x x x y ----或4)()2cos ,n y x y==则 12cos 22n n x π-⎛⎫+⎪⎝⎭5) 21e d xx x x-=⎰exC x-+6) ()214arctan d 1x xx x =+⎰264π.7) 圆 222222042219x y z x y z x y z +-+=⎧⎨++--+≤⎩,的面积为 16π8) 级数 ()111!2!nnn n n ∞=+-∑的和为 4e .3-二、(10分)设a 为正常数,使得 2e axx ≤ 对一切正数x 成立,求常数a 的最小值。
22ln e2ln ,axx x x ax a x≤⇔≤⇔≥解(3分)要求a 的最小值,只要求 ()2ln x f x x=的最大值。
(2分)令()()221ln 0x f x x-'== 得e,x = (2分)由于()()0e 0,e 0,x f x x f x ''<<><<时时()2e ef =所以为其最大值, (2分)故a 的最小值为 2e。
(1分)三、(10分)设()f x 在[]01, 上连续,且()()110d d f x x x f x x =⎰⎰,求证:存在 ()01,ξ∈,使得 ()0d 0.f x x ξ=⎰证法1:令()()()0d ,xF x x t f t t =-⎰ (3分) 则()()()()()()1110=0,11d d d 0,F F t f t t f t t t f t t =-=-=⎰⎰⎰应用罗尔定理,()01,ξ∃∈,使得()0,F ξ'= (4分) ()()()()()0d d ,xxF x f t t x f x x f x f t t '=+-=⎰⎰而于是 ()()()0d d 0.F f t t f x x ξξξ'===⎰⎰(3分)证法2 ()()()()()0d ,00,,xF x fx x F F x fx '===⎰令则 (3分)()()()()()1110011d d d 0F fx x x F x x x F x F x x'∴===-⎰⎰⎰()()()1101d ,d 0,F F x x F x x =-⇒=⎰⎰(3分)应用积分中值定理,存在 ()0,1,ξ∈ 使得()()()()1d 10,F x x F F ξξ=-=⎰于是 ()()0d 0.F f x x ξξ==⎰(4分)四、(12分)求广义积分 421d .1x x+∞-⎰22221111d d 2121x x xx+∞+∞=++-⎰⎰解原式 (4分)111arctan ln22241x x x+∞+∞+=+- (4分)11arctan 2ln 3.424π=-- (4分)五、(12分)过原点()0,0作曲线ln y x =-的切线。
江苏省高校历届专科类高等数学竞赛试题第五届(2000年)专科类高等数学竞赛试题一、填空题(每小题3分,共15分) 1.已知21()d f x dx x ⎡⎤=⎣⎦,则()f x '= . 2.1ln 0lim (tan )xx x +→= .3.= .4.若级数11(2)66n n nn n a n -∞=-+∑收敛,则a 的取值为 . 5.[()()]sin aaf x f x xdx -+-=⎰.二、选择题(每小题3分,共15分)1.函数21()(1)x e f x x x -=-的可去间断点为( ).A .0,1x =B .1x =C .0x =D . 无可去间断点 2.设21()sin,()sin f x x g x x x==,则当0x →时,()f x 是()g x 的( ). A .同阶无穷小但不等价 B .低阶无穷小 C .高阶无穷小 D .等价无穷小3.设常数0k >,函数()ln xf x x k e=-+在(0,)+∞内零点个数为( ). A .3 B .2 C .1 D . 04.设()y f x =对一切x 满足240y y y '''--=,若0()0f x >且0()0f x '=,则函数()f x 在点0x ( ).A .取得极大值B .取得极大值C .某个邻域内单调增加D .某个邻域内单调减少 5.过点(2,0,3)-且与直线2470,35210x y z x y z -+-=⎧⎨+-+=⎩ 垂直的平面方程是( ).A .16(2)1411(3)0x y z --+++=B .(2)24(3)0x y z --++=C .3(2)52(3)0x y z -+-+=D .16(2)1411(3)0x y z -+++-=三、(8分)设2220ln(1)()lim (ln )e x x ax bx dx x x x +∞→+-+=⎰,求常数,a b .四、(6分)已知函数()y y x =由方程组(1)0,10y x t t te y +-=⎧⎨++=⎩ 确定,求220t d ydx =.五、(6分)设(),()f x g x 在[,]a b 上连续,在(,)a b 内可导,且对于(,)a b 内的一切x 均有()()()()0f x g x f x g x ''-≠,证明:若()f x 在(,)a b 内有两个零点,则介于这两个零点之间,()g x 至少有一个零点.六、(6分)设12()sin sin 2sin n f x a x a x a nx =+++,其中12,,,n a a a 是实数,且|()||sin |f x x ≤,试证:12|2|1n a a na +++≤七、(6分)过抛物线2y x =上一点2(,)a a 作切线,问a 为何值时所作切线与抛物线241y x x =-+-所围成的图形面积最小?八、(6分)当0x →时,220()()()xF x x t f t dt '=-⎰的导数与2x 为等价无穷小,求(0)f '.九、(8分)求级数21(21)n n n x∞+=+∑的收敛域及和函数.十、(8分)将1()arctan1xf x x+=-展为x 的幂级数,并指明收敛域. 十一、(6分)求581x xdx x -+⎰. 十二、(8分)设可微函数()f x 在0x >上有定义,其反函数为()g x ,且满足3()211()(8)3f xg x dxx x =-⎰,试求()f x .第六届(2002年)专科类高等数学竞赛试题一、填空题(每小题5分,共40分)1.40ln(1)lim1cos(1cos )x x x →-=-- . 2.设0lim(0)x kx e c c x +→-=≠,则k = ,c = .3.设()f x 在[1,)+∞上可导,下列结论中成立的是 . A .若lim ()0x f x →+∞'=,则()f x 在[1,)+∞上有界B .若lim ()0x f x →+∞'≠,则()f x 在[1,)+∞上无界C .若lim ()1x f x →+∞'=,则()f x 在[1,)+∞上无界4.设2ln(1),arctan x t y t t =+=+,则22d ydx= .5.设由()1yex y x x -+-=+确定()y y x =,则(0)y ''= .6.(arcsin arccos )x x dx -=⎰. 7.4+∞=⎰.8. 幂级数11112n n x n ∞=⎛⎫+++ ⎪⎝⎭∑的收敛域为 . 二、(8分)设()f x 在[0,)+∞上连续且单调减少,0a b <<,求证:()()b aa f x dxb f x dx ≤⎰⎰.三、(9分)设()sin f x kx x =+.(1)若1k ≥,求证:()f x 在(,)-∞+∞上恰有一个零点;(2)若01k <<,且()f x 在(,)-∞+∞上恰有一个零点,求常数k 的取值范围.四、(8分)求2201tan 2xx e dx π⎛⎫+ ⎪⎝⎭⎰.五、(9分)设2224420,:22.x y z x y z x y z k ⎧+++-+=Γ⎨+-=⎩(1)当k 为何值时Γ为一圆? (2)当6k =时,求Γ的圆心和半径.六、(8分)求直线1211x y z-==-绕y 轴旋转一周的旋转曲面的方程,并求该曲面与0,2y y ==所包围的立体的体积.七、(9分)求2222123123lim 2222n n n →∞⎛⎫++++ ⎪⎝⎭.八、(9分)设k 为常数,试判别级数221(1)(ln )nk n n x ∞=-∑的敛散性,何时绝对收敛?何时条件收敛?何时发散?第七届(2004年)专科类高等数学竞赛试题一、填空题(每小题5分,共40分) 1.()f x 是周期为π的奇函数,当0,2x π⎛⎫∈ ⎪⎝⎭时,()sin cos 2f x x x =-+,则当,2x ππ⎛⎫∈ ⎪⎝⎭时,()f x = .2.当0x →时,sin cos x x x -与k cx 为等价无穷小,则k = ,c = .3.2tan2lim(sin )xx x π→= .4.2222lim 14n nn n n n n n →∞⎛⎫+++=⎪+++⎝⎭. 5.已知2()ln(1)f x x x =-,则当2n >时,()(0)n f = .6.2(1)(1)x x e x dx xe +=-⎰. 7.以直线x y z ==为对称轴,且半径1R =的圆柱面方程为 .8.1(1)2nn nn ∞==+∑ . 二、(10分)设()f x 在[,]a b 上连续,在(,)a b 内可导,()f a a =,221()()2baf x dx b a =-⎰,求证:在(,)a b 内至少有一点ξ,使得()()1f f ξξξ'=-+.三、(10分)设22{(,)|4,,2,4}D x y y x y x x y x y =-≤≥+≥+≤.在D 的边界y x =上任取一点P ,设P 到原点的距离为t ,作PQ 垂直于y x =,交D 的边界224y x -=于Q . (1)试将,P Q 的距离||PQ 表示为t 的函数;(2)求D 绕y x =旋转一周的旋转体体积.四、(10分)设()f x 在(,)-∞+∞上有定义,()f x 在0x =处连续,且对一切实数12,x x 有1212()()()f x x f x f x +=+,求证:()f x 在(,)-∞+∞上处处连续.五、(10分)设k 为常数,方程110kx x-+=在(0,)+∞上恰有一根,求k 的取值范围.六、(10分)已知点(1,0,1)P -与(3,1,2)Q ,在平面212x y z -+=上求一点M ,使得||||PM MQ +最小.七、(10分)求幂级数11(32)nn nn x n ∞=+∑收敛域第八届(2006年)专科类高等数学竞赛试题一、填空题(每小题5分,共40分)1.22232323212lim 12n n n n n n →∞⎛⎫+++= ⎪+++⎝⎭. 2.23001lim (1)xt x e dt x-→-=⎰.3.若lim )0x ax b →+∞+=,则a = ,b = .4.设2sin ()(1)xf x x x e =++,则(0)f ''= .5.设2ln(1),arctan x t y t =+=,则221t d ydx =-= .6.1ln[()()]()()x bx a x a x b dx x a x b +++⋅+=++⎰.7.,,,A B C D 为空间的4个定点,AB 与CD 的中点分别为,E F ,||EF a =(0a >为常数),P 为空间的任一点,则()()PA PB PC PD ++的最小值为 .8. 已知点(4,0,0),(0,2,0),(0,0,2),A B C O --为原点,则四面体OABC 的外接球面的方程为 .二、(8分)设2sin ,0()ln(1),0ax b x c x f x x x ⎧++≤=⎨+>⎩ ,试问:,,a b c 为何值时,()f x 在0x =处一阶导数连续,但二阶导数不存在.三、(9分)过点(1,5)作曲线3:y x Γ=的切线L .(1)求L 的方程;(2)求Γ与L 所围平面图形D 的面积;(3)求图形D 的0x ≥的部分绕x 轴旋转一周所得立体的体积.四、(8分)设()f x 在区间[0,)+∞上是导数连续的函数,(0)0,|()()|1f f x f x '=-≤,求证:|()|1,[0,)x f x e x ≤-∈+∞.五、(8分)求120arctan (1)xdx x +⎰.六、(9分)设圆柱面221(0)x y z +=≥被柱面222z x z =++截下的(有限)部分为∑.为计算曲面∑的面积,我们用薄铁片制作∑的模型,其中(1,0,5),(1,0,1),(1,0,0)A B C --为∑上三点,将∑沿线段BC 剪开并展成平面图形D .建立平面直角坐标系,使D 位于x 轴正上方,点A 的坐标为(0,5).试写出D 的边界的方程,并求D 的面积.七、(9分)对常数p,讨论级数1(1)n n ∞+=-∑何时绝对收敛?何时条件收敛?何时发散?八、(9分)求幂级数212nn n n x ∞=∑的收敛域与和函数.第九届(2008年)专科类高等数学竞赛试题一、填空题(每小题5分,共40分) 1.a = ,b = 时,2||lim arctan ||2x ax x x bx x π→∞+=--.2.11lim (2)nn k k k →∞==+∑ .3.设()(1)(2)(100)f x x x x x =---,则(100)f '= .4.当a = ,b = 时,2()1xf x ax x bx=+++在0x →时关于x 的无穷小的阶数最高. 5.2221(1)x dx x +∞=+⎰.6.点(2,1,1)-关于平面25x y z -+=的对称点的坐标为 .7.通过点(1,1,1)-与直线:,2,2x t y z t ===+的平面方程为 .8. 幂级数1nn nx∞=∑的和函数为 ,收敛域为 .二、(8分)设数列{}n x为111,(1,2,)n x x n +===,求证数列{}n x 收敛,并求其极限.三、(8分)设函数()f x 在[,]a b 上连续(0),()0baa f x dx >=⎰,求证:存在(,)a b ξ∈,使得()()af x dx f ξξξ=⎰.四、(8分)将xOy 平面上的曲线222()(0)x b y a a b -+=<<绕直线3x b =旋转一周得到旋转曲面,求此旋转曲面所围立体的体积.五、(8分)求20lim sin()tt tx dx +→⎰.六、(10分)在平面:220x y z ∏+-=内作一条直线Γ,使该直线经过另一直线221,:343x y z L x y z -+=⎧⎨+-=⎩与平面∏的交点,且Γ与L 垂直,求直线Γ的参数方程.七、(8分)判别级数)11(1)1n n ∞+=-∑的收敛性(包括绝对收敛、条件收敛、发散).八、(10分)求函数222()(1)(12)x f x x x +=-+的幂级数展开式,并指出其收敛域.第十届(2010年)专科类高等数学竞赛试题一、填空题(每小题4分,共32分)1. 30sin sin(sin )limx x x x →-= .2.2arctan()tan x y x e x =+,则y '= .3.设由y x x y =确定()y y x =,则dy dx= .4.2cos y x =,则()n y = .5.21x x e dx x -=⎰ .6.2140arctan()1x x dx x =+⎰ .7.圆2222220,42219x y z x y z x y z +-+=⎧⎨++--+≤⎩的面积为 . 8. 级数11(1)!2!n n n n n ∞=+-∑的和为 .二、(10分)设a 为正常数,使得2ax x e ≤对一切正数x 成立,求常数a 的最小值.三、(10分)设函数()f x 在[0,1]上连续,且1100()()f x dx xf x dx =⎰⎰,求证:存在(0,1)ξ∈,使得()0a f x dx ξ=⎰.四、(12分)求反常积分4211dx x +∞-⎰.五、(12分)过原点(0,0)作曲线ln y x =-的切线,求该切线、曲线ln y x =-与x 轴所围的图形绕x 轴旋转一周所得的旋转体的体积.六、(12分)已知正方体1111ABCD A B C D -的边长为2,E 为11D C 的中点,F 为侧面正方形11BCC B 的中心.(1)试求过点1,,A E F 的平面与底面ABCD 所成的二面角的值;(2)试求点D 到过点1,,A E F 的平面的距离.七、(12分)已知数列{}n a 单调增加,满足123111,2,5,,3n n n a a a a a a +-====-(2,3,)n =,记1n n x a =,判别级数1n n x ∞=∑的敛散性.第十一届(2012年)专科类高等数学竞赛试题一、填空题(每小题4分,共32分)1.x →= . 2.333412lim x n n →∞+++= . 3.30230sin lim sin x x t tdt x x →=⎰ .4.ln(1)y x =-,则()n y = .5.2arctan x xdx =⎰. 6.11arccos x dx x= . 7.点(2,1,3)-到直线13122x y z -+==-的距离为 . 8. 级数2(1)1knn n n ∞=--∑为条件收敛,则常数k 的取值范围是 . 二、(每小题6分,共12分)(1)求3322131lim ()n i n n n i →∞=⎛⎫- ⎪+⎝⎭∑.(2)设()f x 在0x =处可导,且(0)1,(0)2f f '==,求20(cos 1)1lim x f x x →--.三、(第(1)小题4分,第(2)小题6分,共10分)在下列两题中,分别指出满足条件的函数是否存在?若存在,举一例;若不存在,请给出证明.(1)函数()f x 在(,)δδ-上有定义(0δ>),当0x δ-<<时,()f x 严格增加,当0x δ<<时,()f x 严格减少,0lim ()x f x →存在,且(0)f 是()f x 的极小值.(2)函数()f x 在(,)δδ-上一阶可导(0δ>),(0)f 为极值,且(0,(0))f 为曲线()y f x =的拐点.四、(10分)求一个次数最低的多项式()P x ,使得它在1x =时取极大值13,在4x =时取极小值14-.五、(12分)过原点(0,0)作曲线:x y e -Γ=的切线L ,设D 是以曲线Γ、切线及x 轴为边界的无界区域.(1)求切线L 的方程;(2)求区域D 的面积;(3)求区域D 绕x 轴旋转一周所得旋转体的体积.六、(12分)点(1,2,1),(5,2,3)A B --在平面:223x y z ∏--=的两侧,过点,A B 作球面∑使其在平面∏上截得的圆Γ最小.(1)求直线AB 与平面∏的交点M 的坐标;(2)若点M 是圆Γ的圆心,求球面∑的球心坐标与该球面方程;(3)证明:点M 确是圆Γ的圆心.七、(12分)求级数1(1)(1)2nn n n n n ∞=++-∑的和.。
江苏省第一届(1991年)高等数学竞赛本科竞赛试题(有改动)一、填空题(每小题5分,共50分) 1.函数sin sin y x x =(其中2x π≤)的反函数为________________________。
2.当0→x 时,34sin sin cos x x x x -+x 与nx 为同阶无穷小,则n =____________。
3.在1x =时有极大值6,在3x =时有极小值2的最低幂次多项式的表达式是 _____________________________________。
4.设(1)()n m nnd x p x dx-=,n m ,是正整数,则(1)p =________________。
5.222[cos()]sin x x xdx ππ-+=⎰_______________________________。
6. 若函数)(t x x =由⎰=--xt dt e t 102所确定的隐函数,则==022t dt xd 。
7.已知微分方程()y yy x xϕ'=+有特解ln x y x =,则()x ϕ=________________________。
8.直线21x zy =⎧⎨=⎩绕z 轴旋转,得到的旋转面的方程为_______________________________。
9.已知a v为单位向量,b a ϖϖ3+垂直于b a ϖϖ57-,b a ϖϖ4-垂直于b a ϖϖ27-,则向量b a ϖϖ、的夹角为____________。
10. =⎭⎬⎫⎩⎨⎧⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+∞→nn n n n n 122222212111lim Λ 。
二、(7分)设数列{}n a 满足1,2,21≥+=->+n a a a n n n ,求n n a ∞→lim 。
三、(7分)求c 的值,使⎰=++b ac x c x 0)cos()(,其中a b >。
高等数学竟赛练习题二
一、填空题(每小题4分,共40分)
1. 设{ EMBED Equation.DSMT4 |lim ()0→+∞+-=x ax b , 则 , .
2. 设当时,函数与是同阶无穷小,则常数 .
3. 设,则 .
4. 已知函数在点处连续,且,则
.
5. 设常数,则方程在区间内的实根的个数为 .
6. 设,其中在点的某邻域内有定义,则在点处可导的充分必要条件是 .
7. 抛物线在点处的曲率半径为 .
8. 设(为正整数),,则
.
9. .
10. 设,则 .
二、求.
三、已知,且求.
四、计算().
五、设曲线在点处的切线方程为,试求:
.
六、设,等分闭区间,分点为
,
求 .
七、设 ,
(1) 求函数的单调区间与极值;
(2) 求函数的图形的凹凸区间与拐点.
八、设在上连续,在内可导,且,证明: 在内至少存在一点,使.
九.设在上二阶可导,且,,证明:
在上单调减少。
江苏省高等数学竞赛历年真题(专科)2012年江苏省第十一届高等数学竞赛试题(专科)一.填空(4分*8=32分) 1.=-+-+→561434lim4x x x2. =+++∞→433321limn n n 3. =?→xx tdtt x x 3230sin sin lim4.)1ln(x y -=,则=)(n y5.=?xdx x arctan 26.=211arccosdx xx 7.点)3,1,2(-到直线22311zy x =-+=-的距离为 8.级数∑∞=--21)1(n knn n 为条件收敛,则常数k 的取值范围是二.(6分*2=12分)(1)求))(13(lim 31223∑=∞→+-i n i n n n(2)设)(x f 在0=x 处可导,且,2)0(,1)0(='=f f 求21)1(cos limxx f x --→三.在下面两题中,分别指出满足条件的函数是否存在?若存在,举一例,若不存在,请给出证明。
(4分+6分=10分)(1)函数)(x f 在),(δδ-上有定义(0>δ),当0<<-x δ时,)(x f 严格增加,当δ<<="" 0时,)(x="" f="" p="" 严格减少,)(lim="">x f x →存在,且)0(f 是)(x f 的极小值。
(2)函数)(x f 在),(δδ-上一阶可导(0>δ),)0(f 为极值,且))0(,0(f 为曲线)(x f y =的拐点。
四.(10分)求一个次数最低的多项式)(x p ,使得它在1=x 时取得极大值13,在4=x 时取得极小值-14。
五.(12分)过点)0,0(作曲线x e y -=Γ:的切线L ,设D 是以曲线Γ、切线L 及x 轴为边界的无界区域。
(1)求切线L 的方程。
江苏省高等数学竞赛历年真题(专科)2012年江苏省第十一届高等数学竞赛试题(专科)一.填空(4分*8=32分) 1.=-+-+→561434lim4x x x2. =+++∞→433321limn n n 3. =?→xx tdtt x x 3230sin sin lim4.)1ln(x y -=,则=)(n y5.=?xdx x arctan 26.=211arccosdx xx 7.点)3,1,2(-到直线22311zy x =-+=-的距离为 8.级数∑∞=--21)1(n knn n 为条件收敛,则常数k 的取值范围是二.(6分*2=12分)(1)求))(13(lim 31223∑=∞→+-i n i n n n(2)设)(x f 在0=x 处可导,且,2)0(,1)0(='=f f 求21)1(cos limxx f x --→三.在下面两题中,分别指出满足条件的函数是否存在?若存在,举一例,若不存在,请给出证明。
(4分+6分=10分)(1)函数)(x f 在),(δδ-上有定义(0>δ),当0<<-x δ时,)(x f 严格增加,当δ<<="" 0时,)(x="" f="" p="" 严格减少,)(lim="">x f x →存在,且)0(f 是)(x f 的极小值。
(2)函数)(x f 在),(δδ-上一阶可导(0>δ),)0(f 为极值,且))0(,0(f 为曲线)(x f y =的拐点。
四.(10分)求一个次数最低的多项式)(x p ,使得它在1=x 时取得极大值13,在4=x 时取得极小值-14。
五.(12分)过点)0,0(作曲线x e y -=Γ:的切线L ,设D 是以曲线Γ、切线L 及x 轴为边界的无界区域。
(1)求切线L 的方程。
江苏省第七届(2004年)高等数学竞赛本科三级、民办本科竞赛试题一、 填空题(每小题5分,共40分)4.=⎪⎪⎭⎫ ⎝⎛++++++∞→22224116141lim n n n n n ________________. 2. 21arctan lim x x x x ⎪⎭⎫ ⎝⎛∞→________________. 3. 若0→x 时,x x x x 2cos cos sin -与k cx 为等价无穷小,则=c ________________.4. ()()x x x f -=1ln 4,则4>n 时,()()=0n f ________________.5. 设函数yxz arctan =,则()=-1,1dz ________________. 6. ()=-+⎰dx x x x x x x 2sin cos cos sin ________________ . 7. ()()[]=+-⎰-aa xdx x f x f sin ________________.8. 设D :+∞<<∞-x ,+∞<<∞-y ,()⎩⎨⎧≤≤=其他010x x x f 则()()⎰⎰=+Ddxdy y x f y f ________________.二、(10分)设()x f 在[]b a ,连续,在()b a ,可导;()()()2221,a b dx x f a a f b a -==⎰,求证:在()b a ,内至少存在一点u ,使得()()1'+-=u u f u f 。
三、(10分)设.4,2,,4:22≤+≥+≥≤-y x y x x y x y D 在D 的边界x y =上任意取点P ,设P 到原点的距离为t ,作PQ 垂直于x y =交D 的边界422=-x y 于Q 。
求:1)将Q P ,的距离PQ 用t 表示;2)将D 绕x y =旋转一周所得立体的体积。
2010年江苏省《高等数学》竞赛试题(本科二级)一 填空题(每题4分,共32分) 1.0sin sin(sin )lim sin x x x x→-=2.1y x=+,/y = 3.2cos y x =,()()n y x = 4.21x x e dx x -=⎰ 5.4211dx x+∞=-⎰ 6.圆222222042219x y z x y z x y z +-+=⎧⎪⎨++--+≤⎪⎩的面积为 7.(2,)x z f x y y =-,f 可微,//12(3,2)2,(3,2)3f f ==,则(,)(2,1)x y dz == 8.级数11(1)!2!n n n n n ∞=+-∑的和为 . 二.(10分)设()f x 在[],a b 上连续,且()()b ba ab f x dx xf x dx =⎰⎰,求证:存在点(),a b ξ∈,使得()0a f x dx ξ=⎰.三.(10分)已知正方体1111ABCD A B C D -的边长为2,E 为11D C 的中点,F 为侧面正方形11BCC B 的中点,(1)试求过点1,,A E F 的平面与底面ABCD 所成二面角的值。
(2)试求过点1,,A E F 的平面截正方体所得到的截面的面积.四(12分)已知ABCD 是等腰梯形,//,8BC AD AB BC CD ++=,求,,AB BC AD 的长,使得梯形绕AD 旋转一周所得旋转体的体积最大。
五(12分)求二重积分()22cos sin Dx y dxdy +⎰⎰,其中22:1,0,0D x y x y +≤≥≥六、(12分)求()()21xx y e dx x y dy Γ++++⎰,其中Γ为曲线22201212x x x y x x ⎧≤≤⎨+=≤≤⎩从()0,0O 到()1,1A -.七.(12分)已知数列{}n a 单调增加,123111,2,5,,3n n n a a a a a a +-====- ()2,3,,n =记1n n x a =,判别级数1n n x ∞=∑的敛散性.2008年江苏省普通高等学校非理科专业一、填空题(每小题5分,共40分)1)___,____a b ==时,2lim arctan .2x ax x x bx x π→∞+=--2)11lim __________.(3)n n k k k →∞==+∑3)设()(1)(2)(100),f x x x x x =---则(100)_______.f '= 4)___,____a b ==时,2()1x f x ax x bx =+++在0x →时关于x 的无穷小的阶数最高.5)2320sin cos _______.x xdx π⋅=⎰6)2221_______.(1)x dx x +∞=+⎰7)设,x z x y =-则(2,1)_________.n n z y ∂=∂8)设D 为,0,1y x x y ===所围区域,则arctan _________.Dydxdy =⎰⎰ 二、(8分) 设数列{}n x为:111,(1,2)n x x n +===,求证:数列{}n x 收敛,并求其极限三、(8分) 设函数()f x 在[,]a b 上连续(0),()0,b a a f x dx >=⎰求证:存在(,),a b ξ∈使得()().a f x dx f ξξξ=⎰四、(8分) 将xy 平面上的曲线222()(0)x b y a a b -+=<<绕直线3x b =旋转一周得到旋转曲面,求此旋转曲面所围立体的体积.五、(8分)设242,(,)(0,0);(,)0,(,)(0,0).x y x y f x y x y x y ≠=+⎪=⎩ 讨论(,)f x y 在(0,0)处的连续性、可偏导性、可微性.六、(10分) 已知曲面222441x y z +-= 与平面 0x y z +-=的交线在xy 平面上的投影为一椭圆,求此椭圆面积.七、(8分)求2401lim sin().t txtdx y dy t+→⎰⎰八、(10分)求1,Ddxdy-这里22:,0.D x y y x+≤≤≤2006年江苏省高等数学竞赛试题(本科一、二级)一.填空(每题5分,共40分)1.()3x f x a =,()()()41limln 12n f f f n n →∞=⎡⎤⎣⎦ 2. ()()25001lim 1x tx x e dt x-→-=⎰3. ()1202arctan 1x dx x =+⎰4.已知点()4,0,0,(0,2,0),(0,0,2)A B C --,O 为坐标原点,则四面体OABC 的内接球面方程为5. 设由y z x ze +=确定(,)z z x y =,则(),0e dz =6.函数()()2,x f x y e ax b y -=+-中常数,a b 满足条件 时,()1,0f -为其极大值.7.设Γ是sin (0)y a x a =>上从点()0,0到(),0π的一段曲线,a = 时,曲线积分()()222y x y dx xy e dy Γ+++⎰取最大值. 8.级数()111n p n n∞+=-∑条件收敛时,常数p 的取值范围是 二.(10分)某人由甲地开汽车出发,沿直线行驶,经2小时到达乙地停止,一路畅通,若开车的最大速度为100公里/小时,求证:该汽车在行驶途中加速度的变化率的最小值不大于200-公里/小时3三.(10分)曲线Γ的极坐标方程为1cos 02πρθθ⎛⎫=+≤≤ ⎪⎝⎭,求该曲线在4πθ=所对应的点的切线L 的直角坐标方程,并求切线L 与x 轴围成图形的面积.四(8分)设()f x 在(),-∞+∞上是导数连续的有界函数,()()1f x f x '-≤, 求证:()()1.,f x x ≤∈-∞+∞x-+=截五(12分)本科一级考生做:设锥面222=+≥被平面40z x y z33(0)下的有限部分为∑.(1)求曲面∑的面积;(2)用薄铁片制作∑的模型,A B-为∑上的两点,O为原点,将∑沿线段OB剪开并展成平(2,0,(面图形D,以OA方向为极坐标轴建立平面极坐标系,写出D的边界的极坐标方程.本科二级考生做:设圆柱面221(0)+=≥被柱面222x y z=++截下的有限部z x x分为∑.为计算曲面∑的面积,用薄铁片制作∑的模型,()(1,0,5),(1,0,1),1,0,0--为∑上的三点,将∑沿线段BC剪开并展成平面图A B C0,5,写出D的形D,建立平面在极坐标系,使D位于x轴正上方,点A坐标为()边界的方程,并求D的面积.六(10分)曲线220x zy ⎧=⎨=⎩绕z 轴旋转一周生成的曲面与1,2z z ==所围成的立体区域记为Ω, 本科一级考生做2221dxdydz x y zΩ++⎰⎰⎰本科二级考生做()222x y z dxdydz Ω++⎰⎰⎰七(10分)本科一级考生做1)设幂级数21n n n a x ∞=∑的收敛域为[]1,1-,求证幂级数1nn n a x n ∞=∑的收敛域也为[]1,1-;2)试问命题1)的逆命题是否正确,若正确给出证明;若不正确举一反例说明. 本科二级考生做:求幂级数()2112nn n n x ∞=+∑的收敛域与和函数2004年江苏省高等数学竞赛试题(本科二级)一.填空(每题5分,共40分)1. ()f x 是周期为π的奇函数,且在0x =处有定义,当0,2x π⎛⎫∈ ⎪⎝⎭时,()sin cos 2f x x x =-+,求当,2x ππ⎛⎤∈ ⎥⎝⎦时,()f x 的表达式 .2. ()2tan 2lim sin xx x π→=3. 2222lim 14n nn n n n n n →∞⎛⎫+++= ⎪+++⎝⎭4. ()()2ln 1,2f x x x n =->时()()0n f =5.()()21x x e x dx x e -=-⎰6.()112nn nn ∞==+∑. 7.设(),f x y 可微,()()()1,22,1,23,1,24x y f f f ''===,()()(),,2x f x f x x ϕ=, 则()1ϕ'= .8. 设()()010x x f x g x ≤≤⎧==⎨⎩其他,D 为,x y -∞<<+∞-∞<<+∞,则()()Df y f x y dxdy +=⎰⎰ .二.(10分)设()f x 在[],a b 上连续,()f x 在(),a b 内可导,(),f a a =,()()2212baf x dx b a =-⎰,求证: (),a b 内至少存在一点ξ使得()()1f f ξξξ'=-+三.(10分)设22:4,,24D y x y x x y -≤≥≤+≤,在D 的边界y x =上任取点P ,设P 到原点距离为t ,作PQ 垂直于y x =,交D 的边界224y x -=于Q 1)试将,P Q 的距离PQ 表示为t 的函数; 2)求D 饶y x =旋转一周的旋转体的体积四(10分)已知点(1,0,1),(3,1,2)P Q ,在平面212x yz上求一点M ,使PM MQ 最小五(10分)求幂级数()()1132n nn n x n ∞=+-∑的收敛域。
六(10分)设(),f x y 可微,()()()1,22,1,22,1,23x y f f f ''===,()()()(),2,2,2x f f x x f x x ϕ=,求()1ϕ'.七(10分)求二次积分()22221d e d ππρθθθρ-⎰⎰2002年江苏省高等数学竞赛试题(本科二级)一.填空(每题5分,共40分)1.()0lim 0x kx e c c x →-=≠,则k = ,c =2. 设()f x 在[)1,+∞上可导,下列结论成立的是 A. 若()lim 0x f x →+∞'=,则()f x 在[)1,+∞上有界B. 若()lim 0x f x →+∞'≠,则()f x 在[)1,+∞上无界C. 若()lim 1x f x →+∞'=,则()f x 在[)1,+∞上无界3. 设由()1y e x y x x -+-=+确定()y y x =,则()0y ''=4.()arcsin arccos x x dx -=⎰5. 曲线22222z x y x y y⎧=+⎨+=⎩,在点()1,1,2的切线的参数方程为 6.设(),sin x y z f g e y x ⎛⎫=+ ⎪⎝⎭,f 有二阶连续导数,g 有二阶连续偏导数,则2z x y∂=∂∂ 7. 交换二次积分的次序()2130,xxdx f x y dy -=⎰⎰ .8.幂级数11112n n x n ∞=⎛⎫+++ ⎪⎝⎭∑的收敛域 二.(8分)设()f x 在[)0,+∞上连续,单调减少,0a b <<, 求证0()()baa f x dxb f x dx ≤⎰⎰三.(8分)设()f x 在[],a b 上连续,()()0bbx aaf x dx f x e dx ==⎰⎰,求证: ()f x 在(),a b 内至少存在两个零点.四.(8分)求直线1211x y z-==-绕y轴旋转一周的旋转曲面方程,求求该曲面与0,2y y==所包围的立体的体积.五.(9分)设k为常数,试判断级数()()221lnnkn n n∞=-∑的敛散性,何时绝对收敛?何时条件收敛?何时发散?六.(9分)设()()()()(),0,0,0,0,0y x y f x y x y ⎧≠⎪=⎨⎪=⎩讨论(),f x y 在点()0,0处连续性,可偏导性?可微性.七.(9分)设()f u 在0u =可导,()22200,:2f x y z tz =Ω++≤, 求()22251lim t f x y z dxdydz t +→Ω++⎰⎰⎰八.(9分)设曲线AB 的极坐标方程为1cos 22ππρθθ⎛⎫=--≤≤ ⎪⎝⎭,一质点P 在力F 作用下沿曲线AB 从()0,1A -运动到()0,1B ,力F 的大小等于P 到定点()3,4M 的距离,其方向垂直于线段MP ,且与y 轴正向的夹角为锐角,求力F 对质点P 做得功.2000年江苏省高等数学竞赛试题(本科二级)一.填空(每题3分,共15分). 1.设()f x =()f f x =⎡⎤⎣⎦2. 1limln 1x x x xx x →-=-+ 3. 已知()21d f x dx x ⎡⎤=⎣⎦,则()f x '=4.()14451x dx x=+⎰5..设(),z z x y =由方程,0y z F x x ⎛⎫= ⎪⎝⎭确定(F 为任意可微函数),则z zxy x y∂∂+=∂∂ 二选择题(每题3分,共15分) 1.对于函数112121xx y -=+,点0x =是( )A. 连续点;B. 第一类间断点;C. 第二类间断点;D 可去间断点2.已知函数()y f x =对一切x 满足()()231xxf x x f x e -''+=-⎡⎤⎣⎦,若()000(0)f x x '=≠,则( )A. ()0f x 是()f x 的极大值;B. ()()00,x f x 是曲线()y f x =的拐点;C. ()0f x 是()f x 的极小值;D ()0f x 不是()f x 的极值,()()00,x f x 也不是曲线()y f x =的拐点3. limx )A. 等于1;B. 等于0;C. 等于1-;D 不存在,但也不是+∞ 4.若()()0000,,,x y x y ff xy∂∂∂∂都存在,则(),f x y 在()00,x yA. 极限存在,但不一定连续;B. 极限存在且连续;C. 沿任意方向的方向导数存在; D 极限不一定存在,也不一定连续5.设α为常数,则级数21sin n n n α∞=⎛ ⎝∑ A. 绝对收敛 B. 条件收敛; C. 发散; D 收敛性与α取值有关三(6分)求111lim 12n n n n n →∞⎛⎫+++⎪+++⎝⎭四(6分)已知函数()y y x =由参数方程(1)010y x t t te y +-=⎧⎨++=⎩确定,求202t d ydx =五(6分)设()(),f x g x 在[],a b 上连续,在(),a b 内可导且对于(),a b 一切x 均有()()()()0f x g x f x g x ''-≠,证明若()f x 在(),a b 内有两个零点,则()g x 至少存在一个介于这两个零点之间的零点。