RFID技术原理及其射频天线设计
- 格式:pdf
- 大小:240.38 KB
- 文档页数:6
rfid天线设计原理
RFID(射频识别)天线设计的主要原理涉及射频工程和天线理论。
以下是一些基本原理:
* 共振频率:RFID系统中的天线应该共振于RFID标签工作的频率。
这通常是通过天线的物理尺寸和形状来实现的。
* 天线类型:天线类型包括标签天线和阅读器天线。
常见的天线类型包括螺旋天线、贴片天线、和线圈天线。
选择合适的天线类型取决于应用需求和使用环境。
* 阻抗匹配:天线的阻抗应该与RFID读写器的输出阻抗匹配,以确保最大功率传输。
通常,天线设计需要调整天线的电感和电容来实现阻抗匹配。
* 方向性:天线的方向性也是一个重要考虑因素。
有些应用需要全向性天线,而其他应用可能需要更为定向的天线。
* 极化:天线的极化应该与RFID标签的极化方向匹配。
通常,线性极化较为常见,但在某些应用中,如在金属表面上使用时,可能需要圆极化天线。
* 损耗:天线的损耗对系统性能有影响。
天线设计应该尽量降低损耗,以提高效率。
* 射频功率:天线设计需要考虑RFID系统的射频功率要求,以确保足够的信号强度用于标签的激活和通信。
天线设计是一个复杂的工程领域,需要深入理解射频工程和电磁场理论。
在设计过程中,通常需要使用模拟工具和测量设备,以优化天线的性能。
1。
RFID技术原理及其射频天线设计近年来人们开始开发应用非接触式ic卡来逐步替代接触式IC卡,其中射频识别(RFID,radiofrequencyidentification)卡就是一种典型的非接触式IC卡,然而,RFID在不同的应用环境中需要采用不同天线通讯技术来实现数据交换的.自1970年第一张IC卡问世起,IC卡成为当时微电子技术市场增长最快的产品之一,到1996年全世界发售IC卡就有7亿多张.但是,这种以接触式使用的IC卡有其自身不可避免的缺点,即接触点对腐蚀和污染缺乏抵抗能力,大大降低了IC卡的使用寿命和使用范围.近年来人们开始开发应用非接触式IC卡来逐步替代接触式IC卡,其中射频识别(RFID,radiofrequencyidentification)卡就是一种典型的非接触式IC卡,它是利用无线通信技术来实现系统与IC卡之间数据交换的,显示出比一般接触式IC卡使用更便利的优点,已被广泛应用于制作电子标签或身份识别卡.然而,RFID在不同的应用环境中需要采用不同天线通讯技术来实现数据交换的.这里我们将首先通过介绍RFID应用系统的基本工作原理来具体说明射频天线的设计是RFID不同应用系统的关键,然后分别介绍几种典型的RFID天线及其设计原理,最后介绍利用AnsoftHFSS工具来设计了一种全向的RFID天线.1RFID技术原理通常情况下,RFID的应用系统主要由读写器和RFID卡两部分组成的,如图1所示.其中,读写器一般作为计算机终端,用来实现对RFID卡的数据读写和存储,它是由控制单元、高频通讯模块和天线组成•而RFID卡则是一种无源的应答器,主要是由一块集成电路(IC)芯片及其外接天线组成,其中RFID芯片通常集成有射频前端、逻辑控制、存储器等电路,有的甚至将天线一起集成在同一芯片上•图1射频识别系统原理图个人收集整理―仅供参考学习RFID应用系统的基本工作原理是RFID卡进入读写器的射频场后,由其天线获得的感应电流经升压电路作为芯片的电源,同时将带信息的感应电流通过射频前端电路检得数字信号送入逻辑控制电路进行信息处理;所需回复的信息则从存储器中获取经由逻辑控制电路送回射频前端电路,最后通过天线发回给读写器.可见,RFID卡与读写器实现数据通讯过程中起关键的作用是天线.一方面,无源的RFID卡芯片要启动电路工作需要通过天线在读写器天线产生的电磁场中获得足够的能量;另一方面,天线决定了RFID卡与读写器之间的通讯信道和通讯方式.目前RFID已经得到了广泛应用,且有国际标准:IS010536,IS014443,IS015693,IS018000等几种.这些标准除规定了通讯数据帧协议外,还着重对工作距离、频率、耦合方式等与天线物理特性相关的技术规格进行了规范.RFID应用系统的标准制定决定了RFID天线的选择,下面将分别介绍已广泛应用的各种类型的RFID 天线及其性能•2RFID天线类型RFID主要有线圈型、微带贴片型、偶极子型3种基本形式的天线.其中,小于1m的近距离应用系统的RFID天线一般采用工艺简单、成本低的线圈型天线,它们主要工作在中低频段.而1m以上远距离的应用系统需要采用微带贴片型或偶极子型的RFID天线,它们工作在高频及微波频段.这几种类型天线的工作原理是不相同的•2.1线圈天线当RFID的线圈天线进入读写器产生的交变磁场中,RFID天线与读写器天线之间的相互作用就类似于变压器,两者的线圈相当于变压器的初级线圈和次级线圈.由RFID的线圈天线形成的谐振回路如图2所示,它包括RFID天线的线圈电感L、寄生电容Cp和并联电容C2',其谐振频率为:f=]飞辽-C,(式中C为Cp和C2'的并联等效电容).RFID应用系统就是通过这一频率载波实现双向数据通讯的。
RFID天线的原理和应用1. RFID技术简介RFID(Radio Frequency Identification)即无线射频识别技术,是利用无线电频率进行数据传输和识别的一种自动识别技术。
它通过将一个RFID标签或智能卡片与一个RFID读写器进行无线通信,实现物体的追踪、检测和管理。
RFID技术得到了广泛应用,其中RFID天线作为RFID系统的重要组成部分,在RFID技术的应用中起着关键作用。
2. RFID天线的工作原理RFID系统主要由RFID标签、RFID读写器和RFID天线组成。
RFID天线作为一个发射和接收的信号设备,承担着将读写器与标签之间的数据进行无线传输和通信的重要任务。
RFID天线的工作原理如下:2.1 发射原理RFID天线将读写器发出的高频信号输入并进行处理,然后将处理后的信号通过天线的辐射部分以电磁波形式发送出去。
RFID天线一般使用线圈或天线阵列来实现。
2.2 接收原理当RFID标签进入RFID天线的工作范围内,天线会接收到标签发射出的信号。
RFID天线将接收到的信号放大并进行处理,然后通过RFID读写器进行后续的数据处理和分析。
3. RFID天线的应用领域RFID天线作为RFID系统的关键组成部分,广泛应用于以下领域:3.1 物流与仓储管理通过在物品上植入RFID标签,并将RFID天线安装在仓库的门口或货架上,可以实现对货物的实时追踪和管理。
这样可以提高物流运作的效率以及减少人力成本。
3.2 交通与车辆管理将RFID天线安装在交通要道上或车辆通行点处,可以实现对车辆的自动识别和监控。
这样可以提高交通管理的精度,并提升交通效率和安全性。
3.3 资产管理通过在资产上贴附RFID标签,并将RFID天线安装在关键位置上,可以实现对资产的实时监控和管理。
这样可以减少资产盗窃和丢失的风险,提高资产管理的效率。
3.4 零售业将RFID天线安装在商场或超市的出入口处,可以对商品进行实时监控和管理。
rfid标签天线RFID标签天线是无线射频识别(RFID)技术中的重要组成部分。
它通过与RFID标签进行通信,实现对标签所附加的物体进行识别、跟踪和管理。
本文将详细介绍RFID标签天线的工作原理、类型和在不同应用领域中的应用。
一、工作原理RFID标签天线通过接收和发射无线射频信号与标签进行通信。
它的主要功能是接收来自RFID读写器的信号,并将信号传递给标签。
当标签接收到信号后,它会将存储在芯片中的数据返回给天线,然后通过天线传输给读写器,完成数据的传输。
RFID标签天线的工作原理可以分为两种类型:容载型和电感型。
容载型天线是使用电容器和感应线圈组成的,其大小和形状可以根据应用场景的需要进行设计。
电感型天线是使用线圈的自感性质来实现通信,它通常是以线圈的形式制作。
这两种类型的天线都可以实现对标签的通信,但在具体应用中,需要根据实际情况选择合适的天线类型。
二、类型根据RFID标签天线的工作频率,可以将其分为低频(LF)、高频(HF)、超高频(UHF)和超高频(SHF)天线。
1. 低频(LF)天线:低频天线的工作频率一般在125kHz到134kHz之间。
它的通信距离较短,一般在几厘米到几十厘米之间。
低频天线通常用于对近距离物体的跟踪和识别,例如动物标识和车辆识别等应用。
2. 高频(HF)天线:高频天线的工作频率一般在13.56MHz左右。
它的通信距离相对较远,一般在几厘米到几十厘米之间。
高频天线广泛应用于智能卡、门禁系统和电子票务等场景。
3. 超高频(UHF)天线:超高频天线的工作频率一般在860MHz到960MHz之间。
它的通信距离较远,一般在几米到数十米之间。
超高频天线被广泛应用于物流、库存管理和供应链追踪等领域。
4. 超高频(SHF)天线:超高频天线的工作频率一般在2.4GHz到5.8GHz之间。
它的通信距离较短,一般在几米到几十米之间。
超高频天线主要用于近距离物体的识别和跟踪,例如无线支付、智能家居和智能手环等应用。
用于RFID系统的天线设计RFID(无线射频识别)技术是一种非接触式的自动识别技术,通过无线电波传输信息,实现物品的自动识别和追踪。
RFID系统主要由标签和阅读器组成,而天线则是连接标签和阅读器的关键组件。
天线的设计对于RFID系统的性能和可靠性有着至关重要的影响。
RFID系统通过无线电波进行通信,通常使用的是56 MHz的频率。
标签内置天线,用于接收来自阅读器的信号,并将信号传输到芯片中。
阅读器则通过天线发送信号,同时接收来自标签的信号。
图像处理技术也常常被用于RFID系统,以识别和解析标签上的信息。
天线设计是RFID系统设计的关键部分,主要包括以下步骤:方案选择:首先需要确定天线的类型和结构,根据应用场景的不同,可以选择不同的天线方案。
参数确定:在设计过程中,需要确定的参数包括天线的频率、增益、阻抗、波束宽度等。
这些参数的计算和选择将直接影响天线的性能。
设计仿真:利用仿真软件对设计进行模拟和分析,以验证设计的可行性和性能。
实验验证:制作样品,进行实际测试,以验证设计的有效性和可靠性。
在RFID系统的天线设计中,可能会遇到以下技术难题:阻抗匹配:天线与标签和阅读器之间的阻抗匹配是影响信号传输的重要因素。
如果阻抗不匹配,将会导致信号传输效率降低,甚至无法传输。
信号噪声比较:在复杂的电磁环境中,信号可能会受到各种噪声的干扰,如何提高天线的信噪比是一个关键问题。
针对以上技术难题,以下是一些可能的解决方案:采用全向波瓣天线或圆形天线:这些类型的天线具有较好的阻抗匹配特性,可以有效提高信号传输效率。
优化天线结构:通过改变天线的结构,可以改善天线的电气性能,减少信号噪声的影响。
使用滤波技术:滤波技术可以有效地抑制噪声,提高信号的信噪比。
天线设计在RFID系统中具有至关重要的地位。
正确的天线设计可以保证RFID系统的高性能和可靠性,进而广泛应用于供应链管理、门禁系统、支付系统等领域。
本文介绍了RFID系统和天线的基本原理、设计流程以及可能遇到的技术难题和解决方案。
rfid射频识别技术基本工作原理RFID(Radio Frequency Identification,射频识别)是一种无线通信技术,用于自动识别和跟踪标签上的信息。
RFID系统由读写器和标签组成,通过射频信号进行通讯。
RFID系统的基本工作原理如下:1.标签制作:标签由集成电路芯片和天线组成。
集成电路芯片存储和处理数据,而天线用于接收和发送射频信号。
2.标签激活:当标签处于读写器的射频场范围内时,射频信号能够传输到标签天线。
标签利用射频信号携带能量来激活并启动自身工作。
3.数据交互:读写器向标签发送一个命令,标签通过天线接收这个命令并解码。
标签根据命令的内容进行相应的处理,并将响应信息通过射频信号发送回读写器。
4.读写器识别:读写器收到由标签发送的射频信号后,进行解码和处理。
读写器判断标签的身份和所携带的信息,并将这些信息传输到计算机系统进行分析和处理。
5.数据处理:计算机系统根据标签所携带的信息进行相应的处理,如存储、更新、查询等操作。
计算机系统还可根据需求将特定的命令通过读写器发送到标签,实现对标签的控制。
6.实时跟踪:RFID系统可以实现对标签的实时跟踪,读写器可持续读取标签的信息,并将其和特定的位置信息进行关联,实现对物流、库存和资产的管理和追踪。
RFID技术在工业、物流、零售、医疗等领域具有广泛应用。
其主要优势包括:1.自动化:RFID技术可以实现自动化识别和跟踪,提高工作效率和生产力。
2.无需接触:标签和读写器之间无需物理接触,可以在不同条件下进行远距离识别。
3.高可靠性:RFID技术不受光线、尘埃、温度等环境因素的影响,具有较高的可靠性。
4.多标签读取:读写器可以同时读取多个标签的信息,提高工作效率。
5.数据安全:RFID系统可以对标签进行安全认证和数据加密,确保数据的安全性和完整性。
6.实时跟踪:RFID系统可以实时跟踪物品的位置和状态,提供有价值的信息供管理决策使用。
尽管RFID技术在许多领域都有广泛应用,但仍然存在一些挑战,包括:1.成本:尤其是在大规模应用中,RFID系统的成本相对较高,包括标签、读写器和基础设施的投入。
rfid天线的工作原理RFID(RadioFrequencyIdentification),即无线射频识别技术,是一种可以使物体获得识别和追踪的技术。
它可以使物体与其相关的信息绑定在一起,以实现物联网的功能。
RFID天线是实现RFID技术的关键元件,因此,它的工作原理非常重要。
RFID天线的工作原理简单来说就是通过射频电磁波在无线射频识别器和RFID标签之间传输信号:RFID标签中包含信息,通过无线射频识别器识别出这些信息,从而实现RFID技术的功能。
首先,RFID天线接收无线射频识别器发射出的高频信号,该信号会在空气中传播,在接近天线的RFID标签上受到激发并反射回来,然后被RFID天线接收并放大,并传输给无线射频识别器,进而完成RFID技术的目的。
其次,RFID天线负责发射信号:如果需要向某一RFID标签发出信号,无线射频识别器会发射一个高频信号到RFID天线,来激发RFID 标签,然后在信号接收器和RFID标签之间传输数据,从而实现控制、识别等功能。
此外,在RFID天线的设计过程中,采用不同的电路元件,以及满足各种环境需求的各种不同的天线形状,来调节收发信号的质量,以保证RFID系统的效率。
最后,RFID天线的功率需求也很高,常用的RFID天线的功率为单位面积1W。
同时,还需要优化RFID天线的结构形状,以提高射频传输效率,并减少射频信号受到的干扰。
总之,RFID天线是RFID技术的关键元件,可以实现RFID技术的功能,RFID天线的工作原理包括接收信号、发射信号和电源等,且需要调节收发信号的质量,以达到最佳的性能。
此外,RFID天线也需要足够的功率,以提高射频信号传输的效率,并减少射频信号受到的干扰。
随着RFID技术的发展,RFID天线将会得到更广泛的应用,未来还会有更多的RFID天线出现,它们将会更好地满足不同应用场景的需求。
rfid射频识别技术基本工作原理RFID(Radio-Frequency Identification)技术是一种无线射频识别技术,广泛应用于物联网、供应链管理、物流跟踪、智能交通等领域。
其基本工作原理是利用射频信号进行物品识别和数据传输。
本文将对RFID技术的基本工作原理、应用领域以及发展趋势进行介绍。
一、RFID技术的基本工作原理RFID技术的基本工作原理是由读写器(Reader)和标签(Tag)组成的系统。
读写器通过天线发射射频信号,当该信号接收到标签天线上时激活标签。
标签接收到射频信号后,利用这个能量驱动自身的芯片,将存储在芯片内的信息回传给读写器,完成数据的读取和写入。
整个过程无需接触,可实现远程自动识别。
RFID系统包括以下几个主要组成部分:1.标签天线:用于接收来自读写器的射频信号,并传递给标签芯片。
2.标签芯片:内嵌有芯片和天线的标签,用于存储物品信息并与读写器进行通信。
3.读写器天线:用于发射射频信号,并接收标签回传的射频信号。
4.读写器模块:负责发射射频信号、接收标签回传信号、数据处理和通信。
5.控制系统:管理整个RFID系统的数据读写、信息处理和设备控制。
二、RFID技术的应用领域1.物流管理:在物流管理领域,RFID技术可以实现对货物的追踪和管理。
标签可以贴附在货物上,通过RFID读写器对货物进行自动识别和记录,提高了物流管理的效率和精度。
2.供应链管理:RFID技术可以帮助企业对供应链进行实时监控和管理,提高生产和物流的效率,降低库存成本,改善供应链整体运作效果,实现供需匹配。
3.零售业:在零售业中,RFID技术可以用于商品的防盗和库存管理。
通过RFID标签的贴附,能够实现对商品的追踪和定位,提高了商品管理的便捷性和精准性。
4.医疗保健:在医疗保健领域,RFID技术可以用于病人身份识别、药品管理、设备追踪等方面,提高了医疗保健服务的精准性和效率。
5.智能交通:RFID技术可以应用于智能交通领域,如收费系统、车辆管理、车辆定位等方面,提高了智能交通系统的管理和服务水平。
RFID技术原理及其射频天线设计来源:RFID信息网 作者:佚名整理:金丝蝶近年来人们开始开发应用非接触式IC 卡来逐步替代接触式IC 卡,其中射频识别( RFID ,radio frequency identification) 卡就是一种典型的非接触式IC卡,然而,RFID 在不同的应用环境中需要采用不同天线通讯技术来实现数据交换的。
自1970 年第一张IC 卡问世起, IC 卡成为当时微电子技术市场增长最快的产品之一,到1996 年全世界发售IC 卡就有7 亿多张。
但是,这种以接触式使用的IC 卡有其自身不可避免的缺点,即接触点对腐蚀和污染缺乏抵抗能力,大大降低了IC 卡的使用寿命和使用范围。
近年来人们开始开发应用非接触式IC 卡来逐步替代接触式IC 卡,其中射频识别(RFID , radio frequency identification) 卡就是一种典型的非接触式IC卡,它是利用无线通信技术来实现系统与IC 卡之间数据交换的,显示出比一般接触式IC 卡使用更便利的优点,已被广泛应用于制作电子标签或身份识别卡。
然而,RFID 在不同的应用环境中需要采用不同天线通讯技术来实现数据交换的。
这里我们将首先通过介绍RFID 应用系统的基本工作原理来具体说明射频天线的设计是RFID 不同应用系统的关键,然后分别介绍几种典型的RFID 天线及其设计原理,最后介绍利用Ansoft HFSS 工具来设计了一种全向的RFID 天线。
1 RFID 技术原理通常情况下, RFID 的应用系统主要由读写器和RFID 卡两部分组成的,如图1 所示。
其中,读写器一般作为计算机终端,用来实现对RFID 卡的数据读写和存储,它是由控制单元、高频通讯模块和天线组成。
而RFID 卡则是一种无源的应答器,主要是由一块集成电路( IC) 芯片及其外接天线组成,其中RFID芯片通常集成有射频前端、逻辑控制、存储器等电路,有的甚至将天线一起集成在同一芯片上。
图1 射频识别系统原理图RFID 应用系统的基本工作原理是RFID 卡进入读写器的射频场后,由其天线获得的感应电流经升压电路作为芯片的电源,同时将带信息的感应电流通过射频前端电路检得数字信号送入逻辑控制电路进行信息处理;所需回复的信息则从存储器中获取经由逻辑控制电路送回射频前端电路,最后通过天线发回给读写器。
可见,RFID 卡与读写器实现数据通讯过程中起关键的作用是天线。
一方面,无源的RFID 卡芯片要启动电路工作需要通过天线在读写器天线产生的电磁场中获得足够的能量;另一方面,天线决定了RFID卡与读写器之间的通讯信道和通讯方式。
目前RFID 已经得到了广泛应用,且有国际标准:ISO10536 ,ISO14443 , ISO1 5693 , ISO18000 等几种。
这些标准除规定了通讯数据帧协议外,还着重对工作距离、频率、耦合方式等与天线物理特性相关的技术规格进行了规范。
RFID 应用系统的标准制定决定了RFID天线的选择,下面将分别介绍已广泛应用的各种类型的RFID 天线及其性能。
2 RFID 天线类型RFID 主要有线圈型、微带贴片型、偶极子型3 种基本形式的天线。
其中,小于1 m 的近距离应用系统的RFID 天线一般采用工艺简单、成本低的线圈型天线,它们主要工作在中低频段。
而1 m 以上远距离的应用系统需要采用微带贴片型或偶极子型的RFI D 天线,它们工作在高频及微波频段。
这几种类型天线的工作原理是不相同的。
2。
1 线圈天线当RFID 的线圈天线进入读写器产生的交变磁场中,RFID 天线与读写器天线之间的相互作用就类似于变压器,两者的线圈相当于变压器的初级线圈和次级线圈。
由RFID的线圈天线形成的谐振回路如图2所示,它包括RFID 天线的线圈电感L 、寄生电容Cp 和并联电容C2′,其谐振频率为:(式中C 为Cp 和C2′的并联等效电容) 。
RFID 应用系统就是通过这一频率载波实现双向数据通讯的。
常用的ID1 型非接触式IC 卡的外观为一小型的塑料卡(85.72mm ×54.03 mm ×0.76 mm) ,天线线圈谐振工作频率通常为13.56 MHz。
目前已研发出面积最小为0.4mm ×0.4 mm 线圈天线的短距离RFID 应用系统。
图2 应答器等效电路图某些应用要求RFID 天线线圈外形很小,且需一定的工作距离,如用于动物识别的R FID。
线圈外形即面积小的话,RFID 与读写器间的天线线圈互感量M就明显不能满足实际使用。
通常在RFID 的天线线圈内部插入具有高导磁率μ的铁氧体材料,以增大互感量,从而补偿线圈横截面减小的问题。
2。
2 微带贴片天线微带贴片天线是由贴在带有金属地板的介质基片上的辐射贴片导体所构成的,如图3 所示。
根据天线辐射特性的需要,可以设计贴片导体为各种形状。
通常贴片天线的辐射导体与金属地板距离为几十分之一波长,假设辐射电场沿导体的横向与纵向两个方向没有变化,仅沿约为半波长(λg/ 2) 的导体长度方向变化。
则微带贴片天线的辐射基本上是由贴片导体开路边沿的边缘场引起的,辐射方向基本确定,因此,一般适用于通讯方向变化不大的RFID 应用系统中。
为了提高天线的性能并考虑其通讯方向性问题,人们还提出了各种不同的微带缝隙天线,如文献[5,6]设计了一种工作在24 GHz 的单缝隙天线和5。
9 GHz 的双缝隙天线,其辐射波为线极化波;文献[7,8]开发了一种圆极化缝隙耦合贴片天线,它是可以采用左旋圆极化和右旋圆极化来对二进制数据中的‘1’和‘0’进行编码。
图3 微带天线2。
3 偶极子天线在远距离耦合的RFID 应用系统中,最常用的是偶极子天线(又称对称振子天线) 。
偶极子天线及其演化形式如图4 所示,其中偶极子天线由两段同样粗细和等长的直导线排成一条直线构成,信号从中间的两个端点馈入,在偶极子的两臂上将产生一定的电流分布,这种电流分布就在天线周围空间激发起电磁场。
利用麦克斯韦方程就可以求出其辐射场方程:式中Iz 为沿振子臂分布的电流,α为相位常数, r 是振子中点到观察点的距离,θ为振子轴到r 的夹角,l 为单个振子臂的长度。
同样,也可以得到天线的输入阻抗、输入回波损耗S11 、阻抗带宽和天线增益等等特性参数。
图4 偶极子天线(a) 偶极子天线; (b) 折合振子天线;(c) 变形偶极子天线当单个振子臂的长度l =λ/ 4 时(半波振子) ,输入阻抗的电抗分量为零,天线输入阻抗可视为一个纯电阻。
在忽略天线粗细的横向影响下,简单的偶极子天线设计可以取振子的长度l 为λ/ 4 的整数倍,如工作频率为2。
45 GHz 的半波偶极子天线,其长度约为6 cm。
当要求偶极子天线有较大的输入阻抗时,可采用图4b的折合振子。
3 RFID 射频天线的设计从RFID 技术原理和RFID 天线类型介绍上看,RFID 具体应用的关键在于RFID天线的特点和性能。
目前线圈型天线的实现技术很成熟,虽然都已广泛地应用在如身份识别、货物标签等RFID 应用系统中,但是对于那些要求频率高、信息量大、工作距离和方向不确定的RFID 应用场合,采用线圈型天线则难以设计实现相应的性能指标。
同样,如果采用微带贴片天线的话,由于实现工艺较复杂,成本较高,一时还无法被低成本的R FID 应用系统所选择。
偶极子天线具有辐射能力较强、制造简单和成本低等优点,且可以设计成适用于全方向通讯的RFID 应用系统,因此,下面我们来具体设计一个工作于2。
45 GHz (国际工业医疗研究自由频段) 的RFID 偶极子天线。
半波偶极子天线模型如图4a 所示。
天线采用铜材料(电导率:5。
8e7 s/ m ,磁导率:1) ,位于充满空气的立方体中心。
在立方体外表面设定辐射吸收边界。
输入信号由天线中心处馈入,也就是RFID 芯片的所在位置。
对于2。
45 GHz 的工作频率其半波长度约为61mm ,设偶极子天线臂宽w 为1 mm ,且无限薄,由于天线臂宽的影响,要求实际的半波偶极子天线长度为57mm。
在Ansoft HFSS 工具平台上,采用有限元算法对该天线进行仿真,获得的输入回波损耗S11 分布图如图5a 所示,辐射场E 面(即最大辐射方向和电场矢量所在的平面) 方向图如图5b 所示。
天线输入阻抗约为72 Ω,电压驻波比(VSWR) 小于2。
0 时的阻抗带宽为14。
3 % ,天线增益为1。
8。
图5 偶极子天线(a) 回波损耗S11 ; (b) 辐射方向图从图5b 可以看到在天线轴方向上,天线几乎无辐射。
如果此时读写器处于该方向上,应答器将不会做出任何反应。
为了获得全方位辐射的天线以克服该缺点,可以对天线做适当的变形,如在将偶极子天线臂末端垂直方向上延长λ/ 4 成图4c 所示。
这样天线总长度修改为(57。
0 mm + 2 ×28。
5 mm) ,天线臂宽仍然为1 mm。
天线臂延长λ/ 4 后,整个天线谐振于1 个波长,而非原来的半个波长。
这就使得天线的输入阻抗大大地增加,仿真计算结果约为2 kΩ。
其输入回波损耗S11如图6a 所示。
图6b 为E 面(天线平面) 上的辐射场方向图,其中实线为仿真结果,黑点为实际样品测量数据,两者结果较为吻合说明了该设计是正确的。
从图6b 可以看到在原来弱辐射的方向上得到了很大的改善,其辐射已经近似为全方向的了。
电压驻波比( VSWR)小于2。
0 时的阻抗带宽为12。
2 % ,增益为1。
4 ,对于大部分RFID 应用系统,该偶极子天线可以满足要求。
图6 变形偶极子天线(a) 回波损耗S11 ; (b) 辐射方向图4 结束语总之,RFID 的实际应用关键在于天线设计上,特别是对于具有非常大市场容量的商品标签来说,要求RFID 能够实现全方向的无线数据通讯,且还要价格低廉、体积小。
因此,我们所设计的上述这种全向型偶极子天线的结构简单、易于批量加工制造,是可以满足实际需要的。
通过对设计出来实际样品的进行参数测试,测试结果与我们的设计预期结果是一致。