厚壁圆筒应力
- 格式:ppt
- 大小:1.79 MB
- 文档页数:39
厚壁圆筒应力分析剖析一、应力分析方法1.在应力分析中,通常采用静力学的方法,根据力学定律对厚壁圆筒进行应力分析。
2.厚壁圆筒的应力分析可以分为轴向应力、周向应力和切向应力三个方向上的应力分析。
二、应力计算公式1.轴向应力:σa=(P·r)/t其中,σa表示轴向应力,P表示圆筒受到的内外压力,r表示圆筒内径,t表示圆筒壁厚。
2.周向应力:σc=(P·r)/(2t)其中,σc表示周向应力。
3. 切向应力:τ = (P · ri) / t其中,τ 表示切向应力,ri 表示圆筒中心点到任意一点的径向距离。
三、实例分析假设有一个内径为 10cm,外径为 15cm,壁厚为 2cm 的厚壁圆筒,内外压力分别为 5MPa 和 10MPa。
现对该厚壁圆筒进行应力分析。
1.轴向应力:根据公式σa = (P · r) / t,代入 P = 5MPa,r = 7.5cm,t =2cm,计算得σa = (5×7.5) / 2 = 18.75MPa。
同理,代入 P = 10MPa,r = 7.5cm,t = 2cm,计算得σa =(10×7.5) / 2 = 37.5MP a。
2.周向应力:根据公式σc = (P · r) / (2t),代入 P = 5MPa,r = 7.5cm,t= 2cm,计算得σc = (5×7.5) / (2×2) = 9.375MPa。
同理,代入 P = 10MPa,r = 7.5cm,t = 2cm,计算得σc =(10×7.5) / (2×2) = 18.75MPa。
3.切向应力:根据公式τ = (P · ri) / t,代入 P = 5MPa,ri = 7.5cm,t =2cm,计算得τ = (5×7.5) / 2 = 18.75MPa。
同理,代入 P = 10MPa,ri = 7.5cm,t = 2cm,计算得τ =(10×7.5) / 2 = 37.5MPa。
工程上一般将设计压力在10≤p≤100MPa之间的压力容器称为高压容器,而将100MPa压力以上的称为超高压容器。
高压容器不但压力高,而且同时伴有高温,例如合成氨就是在15~32MPa压力和500℃高温下进行合成反应。
一般来说,高压和超高压容器的径比K > 1.2,称此类容器为“厚壁容器”。
本章讨论的对象,是厚壁圆筒型容器。
承受压力载荷或者温差载荷的厚壁圆筒容器,其上任意点的应力,是三向应力状态。
即存在经向应力(又称轴向应力)、周向应力和径向应力。
针对厚壁筒的应力求解,将在平衡方程、几何方程、物理方程三个方面进行分析。
2.2.1 弹性应力-压力载荷引起的弹性应力(1)轴向(经向)应力ϭz222200002200002220()1i z i i i i i i i z i iP P FP P p R p R F R R p R p R p p KR K R R K R σππππσ−=−=⋅−⋅=−−−⋅===−−径比(2) 周向应力ϭ和径向应力ϭrθ三对截面:一对圆柱面,相距dr一对纵截面,相差dθ一对横截面,长度为1Ϭz作用在横截面上Ϭr作用在圆柱面上Ϭθ作用在纵截面上平衡方程(沿径向列平衡方程)()()112sin 102r r r d d r dr d rd dr θθσσθσθσ++⋅−⋅−⋅=sin 22d d θθ≈略去高阶无穷小,并使得到平衡方程r r d r drθσσσ−=几何方程()r w dw wdwdr drε+−==径向应变周向应变()r w d rd wrd r θθθεθ+−==上述表达式是Lame 在1833年推得的,又称为Lame 公式。
当仅有内压时,p o =0,有()222222211111112i o i o r z i z r p R K r p R K r p K θθσσσσσσ⎧⎛⎞=⋅−⎪⎜⎟−⎝⎠⎪⎪⎛⎞⎪=⋅+⎜⎟⎪−⎝⎠⎨⎪⎛⎞=⋅⎪⎜⎟−⎝⎠⎪⎪=+⎪⎩246810010********σθ R i / σθ R oK可见,当K 越大时,应力的分布就越不均匀。
厚壁圆筒或管道中的应力计算(1)概述当厚壁管或圆柱体受到内部和外部压力时,会在壁中产生环箍和纵向应力。
(2)轴向方向应力σa = (p i r i2 - p o r o2 )/(r o2 - r i2) (1)σa=轴向应力(MPa,psi)pi=管道或圆柱体中的内部压力(MPa,psi)p o=管道或圆柱体中的外部压力(MPa,psi)r i=管道或圆柱体的内径(mm,in)r o=管子或圆柱体的外半径(mm,in)(3)周向应力-环向应力圆周方向上的应力——环向应力——在管或圆筒壁上的一点上可以表示为:σc = [(p i r i2 - p o r o2) / (r o2 - r i2)] - [r i2 r o2 (p o - p i) / (r2 (r o2 r i2))] (2)其中:σc=周向应力(MPa,psi)r=管道或圆筒壁中点的半径(mm,in)(r i<r<r o)r=r i时的最大应力(管道或圆柱体内部)(4)合成应力气缸壁中单个点的组合应力不能通过使用矢量加法的单个矢量来描述。
相反,可以使用描述两个物理向量之间的线性连接的应力张量(矩阵)。
径向应力管壁或圆筒壁中某一点处的径向应力可以表示为:σr= [(p i r i2 - p o r o2) / (r o2 - r i2)] + [r i2 r o2 (p o - p i) / (r2 (r o2 - r i2))] (3) r=r o时的最大应力(管道或圆柱体外部)(5)示例-厚壁圆筒中的应力在内径为200mm(半径为100mm)、外径为400mm(半径为200mm)的圆柱体中,相对于外部压力存在100MPa的压力。
轴向应力可计算为:σa=(((100 MPa)(100 mm)2-(0 MPa)(200 mm)2)/((200 mm =33.3 MPa内壁(100 mm)的周向应力(环向应力)可计算为:σc=[((100 MPa)(100 mm)2-(0 MPa)(200 mm)2)/(200 mm=167 MPa内壁(100 mm)的径向应力可计算为:σr=[((100 MPa)(100 mm)2-(0 MPa)(200 mm)2)/(200 mm=-100MPa。
厚壁圆筒应力分析1、概述K>1.2的壳体成为厚壁圆筒。
厚壁容器承压的应力特点有(此处不考虑热应力):一、不能忽略径向应力,应做三向应力分析;二、厚壁容器的应力在厚度方向不是均匀分布,而是应力梯度。
所以,在求解的时候需要联立几何方程、物理方程、平衡方程才能确定厚壁各点的应力大小。
2、解析解一、内压为i p ,外压为0p 的厚壁圆筒,需要求出径向应力r σ、周向应力θσ和轴向应力z σ,其中轴向应力z σ不随半径r 变化。
(1)几何方程如图所示,取内半径r ,增量为dr 的一段区域两条弧边的径向位移为ω和ωωd +,其应变的表达式为:r rd rd d r drd dr d r ωθθθωεωωωωεθ=-+==-+=))((周向应力:径向应力:(1)θσ对r 求导,得:()θθσσωωωωωσ-=⎪⎭⎫⎝⎛-=-='⎪⎭⎫ ⎝⎛=r rr dr d r r r dr d r dr d 112 (2) (2)物理方程 根据胡克定理表示为[]z Eσσμσεθθ+-=r (1(3) 两式相减,消去z σ得:[]θθσσμεε-+=r E )(1-r []z r Eσσμσεθ+-=(1r(4) 将(4)代入(2)得:[])z r Edr d σσμσεθθ+-=(1(5) 对(3)的θε求导得,z σ看做常数:⎪⎭⎫⎝⎛-=dr r d dr d E dr d σμσεθθ1 (6) 联立(5)、(6)得:[]θθθσσμσμσ-)1-r rdr d dr d +=( (7) (3)平衡方程如图所示,沿径向和垂直径向建立坐标 系,把θσ向x 轴和y 轴分解,得:⎪⎭⎫ ⎝⎛=-+2sin 2θθd p p p r dr r (8)其中()θσσd dr r d p r r dr r ++=+)( (9)θσrd p r r =由于θd 很小,22sin θθd d ≈⎪⎭⎫⎝⎛,略去二阶微量r r d d σ,得 drd rrr σσσθ=- (10) 联立(7)(10)得0322=+drd dr d r r r σσ (11)对(11)进行求得r σ,在代入(10)得22rBA rB A r +=-=θσσ (12) 其中A 、B 是两个积分常数,要求A ,B 需要两个方程,根据内外壁边界条件0,,p R r p R r r i r i -==-==σσ (13)将(13)代入(12)得:22020202202002)(ii i i i i RR R R p p B R R R p R p A --=--=(14)最后剩下z σ未求出,最后在轴向用平衡方程,内力等于外力。
厚壁圆筒应力分析3.3.1弹性应力 3.3.2弹塑性应力3.3.3屈服压力和爆破压力33.4提高屈服承载能力的措施3.3.1弹性应力 3.3.2弹塑性应力一、弹塑性应力描述弹塑性疗壁圆筒的儿何与载荷参数:尺,/>; RJ;陽P () 本小节的U 的:求弹性区和塑性区里的应力假设:a.理想弹塑性材料b.圆筒体只取远离边缘区第三节 厚壁圆筒应力分析内压t 塑性区t2-22处于弹塑性状态的厚壁圆筒图2-23理想弹•塑性材料的应力■应变关系1、塑性区应力平衡方程:刃-旦drMises屈服失效判据:CF e-丐=—=丁2联立积分,得<T r=-^trJnr+Ar = &:6=-Pi内壁边界条件,求出A后带回上式得将r = R e: cr r= -p c代入(2-42)得2 ! R<p(=--a s ln-+Pl结论:① b = pjbj②q, cr^=/(lnr) rt,③cr:=-(b「+ b&) H const (区别:弹区cr. =-© + b&) =const )2 2弹性区内壁处于屈服状态:(刃)Y一(6)“ =眉$Kc=Ro/Rc(2-46)(2-26) (2-40) (2-41)将(2-42)带入(2-40)得(2-42 )(2-43)(2-44 )(2-45 ) 山表2J拉美公式得出:与2-45联立导出弹性区与塑性区交界面的pi与Rc的关系Pi =由(2-34)式(以代代替门)得若按屈雷斯卡(H.Tresca)屈服失效判据,也可导岀类似的上述各表达式。
各种应力表达式列于表2-4中结论:② 6 a d=f(r) rT->(r z. T,与「无关二、残余应力肖厚壁圆筒进入弹塑性状态后卸除内爪力pi —残余应力思考:残余应力是如何产生的卸载定理:卸载时应力改变量Ab = b-b和应变的改变量△£ = £-£之间存在着弹性关系= 图2・24。
厚壁圆筒应力分析剖析厚壁圆筒是一种常见的结构,广泛应用于各个领域,比如压力容器、热交换器等。
在使用厚壁圆筒的过程中,必须进行应力分析,以确保结构的安全性和可靠性。
首先,研究厚壁圆筒的应力分析需要考虑以下几个方面。
1.圆筒的几何形状:厚壁圆筒是由外径、厚度和长度组成的。
这些几何参数会影响圆筒内部的应力分布情况。
2.材料特性:圆筒的材料特性直接影响其应力分布。
研究厚壁圆筒时,通常会考虑材料的弹性模量和泊松比等参数。
3.加载条件:圆筒的应力分布受外部载荷的影响。
载荷的形式可以是压力、温度、重力等。
加载条件的确定对于应力分析至关重要。
接下来,我们将详细介绍厚壁圆筒的应力分析方法。
1.内外压力分析:考虑厚壁圆筒内外的压力差异。
当内外压力相等时,圆筒应力较小。
当内压大于外压时,圆筒将会受到较大的应力。
2.纵向应力分析:厚壁圆筒在纵向方向上承受的应力主要为轴向拉应力。
如果存在压力差,则拉应力沿厚度逐渐增加。
3.周向应力分析:在周向上,厚壁圆筒受到的应力主要为周向拉应力。
当圆筒内外压力不平衡时,周向应力将会增加。
4.切应力分析:切应力是圆筒内部的剪切应力分量。
在圆筒壁厚度的不同位置,切应力的大小也会有所不同。
5.应力分布图:为了更好地理解厚壁圆筒的应力分布情况,可以绘制应力分布图。
这样可以直观地了解不同部位的应力分布情况,以便进行结构优化。
总结一下,厚壁圆筒的应力分析对于确保结构安全性至关重要。
通过分析内外压力、纵向应力、周向应力和切应力,可以更好地理解圆筒的应力分布情况。
通过应力分布图,可以更直观地了解圆筒不同部位的应力情况,从而进行优化设计。
在实际工程中,应力分析的结果可以用来指导材料的选择、结构的设计以及使用中的安全操作。