当前位置:文档之家› 运算放大器芯片TLE2022AM使用简介

运算放大器芯片TLE2022AM使用简介

运算放大器芯片TLE2022AM使用简介
运算放大器芯片TLE2022AM使用简介

运算放大器使用技巧

运算放大器使用技巧 一、采用哪种放大器 运算放大器基本电路有反相放大器及同相放大器,在实际使用中如何选择? 如果输入与输出要求反相,当然要采用反相放大器,若放大的是交流信号,并无相位要求则可以采用同相放大器或反相放大器。采用哪种好呢?这要根据具体情况来分析。 采用反相放大器的优点是:运放不管有无输入信号,其两输入端电位始终近似为零.两输入端之间仅有低于μV级的差动信号(或称差模信号).而同相输入放大器的两个输入端之间除有极小的差模信号外,同时还存在较大的共模电压。虽然运放有较大的共模抑制比,但多少也会因共模电压带来一些误差。同相放大器的优点是输入阻抗极高,因此输入电阻取大取小影响不大,而反相放大器的输入阻抗Zi与输入电阻Ri大小有关(输入阻抗Zi等于输人电阻Ri) 例如,输入阻抗要求100kΩ;增益要求300,则若采用反相放大器时,Ri=100kΩ,Rf=30MΩ.这样大的反馈阻值对通用运放很难正常工作了,在这种情况时,采用同相放大器更合适。 另外,还要看信号源的内阻大小。某些传感器的内阻较大,若采用输入阻抗较小的放大电路,会影响测量精度、在这种情况时采用同相放大器更为合适。 这里介绍一种既采用反相放大器,而且也不采用阻值大的反馈电阻的电路,如图1 所示这电路中的反馈电 阻Rf不直接接在输出端, 而按在由R1、R2组成分 压器的中点A。现对此电 路进行一些分析。 此电路要求输入阻抗为100KΩ,增益为-500。按一般反相放大器设计,Ri=100 K Ω,Rf=50MΩ。 A点的分压比为R1/(R1+R2)=1/500,且有R1《Rf。根据“虚短”及“虚断”原则,可以列出下式: Ii=Vi/100KΩ=If, IfRf=-VA,

运算放大器经典问题解析

运算放大器经典问题解析 1.一般反相/同相放大电路中都会有一个平衡电阻,这个平衡电阻的作用是什么呢? (1) 为芯片内部的晶体管提供一个合适的静态偏置。 芯片内部的电路通常都是直接耦合的,它能够自动调节静态工作点,但是,如果某个输入引脚被直接接到了电源或者地,它的自动调节功能就不正常了,因为芯片内部的晶体管无法抬高地线的电压,也无法拉低电源的电压,这就导致芯片不能满足虚短、虚断的条件,电路需要另外分析。 (2)消除静态基极电流对输出电压的影响,大小应与两输入端外界直流通路的等效电阻值平衡,这也是其得名的原因。 2.同相比例运算放大器,在反馈电阻上并一个电容的作用是什么? (1)反馈电阻并电容形成一个高通滤波器, 局部高频率放大特别厉害。 (2)防止自激。 3.运算放大器同相放大电路如果不接平衡电阻有什么后果? (1)烧毁运算放大器,有可能损坏运放,电阻能起到分压的作用。 4.在运算放大器输入端上拉电容,下拉电阻能起到什么作用? (1)是为了获得正反馈和负反馈的问题,这要看具体连接。比如我把现在输入电压信号,输出电压信号,再在输出端取出一根线连到输

入段,那么由于上面的那个电阻,部分输出信号通过该电阻后获得一个电压值,对输入的电压进行分流,使得输入电压变小,这就是一个负反馈。因为信号源输出的信号总是不变的,通过负反馈可以对输出的信号进行矫正。 5.运算放大器接成积分器,在积分电容的两端并联电阻RF 的作用是什么? (1) 泄放电阻,用于防止输出电压失控。 6.为什么一般都在运算放大器输入端串联电阻和电容? (1)如果你熟悉运算放大器的内部电路的话,你会知道,不论什么运算放大器都是由几个几个晶体管或是MOS 管组成。在没有外接元件的情况下,运算放大器就是个比较器,同相端电压高的时候,会输出近似于正电压的电平,反之也一样……但这样运放似乎没有什么太大的用处,只有在外接电路的时候,构成反馈形式,才会使运放有放大,翻转等功能…… 7.运算放大器同相放大电路如果平衡电阻不对有什么后果? (1)同相反相端不平衡,输入为0 时也会有输出,输入信号时输出值总比理论输出值大(或小)一个固定的数。 (2)输入偏置电流引起的误差不能被消除。 8.理想集成运算放大器的放大倍数是多少输入阻抗是多少其同相输入端和反相输入端之间的电压是多少? (1) 放大倍数是无穷大,输入阻抗是无穷小,同向输入和反向输入之间电压几乎相同(不是0哦!!!比如同向端为10V,反向端为

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406

实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导 体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、 二极管、电阻和电容等元件及它们之间的连线所组成的完整电路 制作在一起,使之具有特定的功能。集成放大电路最初多用于各 种模拟信号的运算(如比例、求和、求差、积分、微分……)上, 故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟 信号的处理和产生电路之中,因其高性价能地价位,在大多数情 况下,已经取代了分立元件放大电路。 反相比例放大电路 输入输出关系: i o V R R V 12-=i R o V R R V R R V 1 212)1(-+=

输入电阻:Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图

压输入输出波形图 同相比例放大电路 输入输出关系: i o V R R V )1(12+=R o V R R V R R V 1 2i 12)1(-+=

输入电阻:Ri=∞ 输出电阻:Ro=0 同相比例放大电路仿真电路图 电压输入输出波形图

差动放大电路电路图 差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

运算放大器基本应用

东南大学电工电子实验中心 实验报告 课程名称:电子电路实验 第一次实验 实验名称:运算放大器的基本应用 院(系):吴健雄学院专业:电类强化 姓名:周晓慧学号:61010212 实验室: 105实验组别: 同组人员:无实验时间:2012年03月23日评定成绩:审阅教师:

实验一运算放大器的基本应用 一、实验目的: 1、熟练掌握反相比例、同相比例、加法、减法、积分、微分等电路的设计方法; 2、熟练掌握运算放大电路的故障检查和排除方法,以及增益、幅频特性、传输特性曲线、 带宽的测量方法; 3、了解运算放大器的主要直流参数(输入失调电压、输入偏置电流、输入失调电流、温度 漂移、共模抑制比,开环差模电压增益、差模输入电阻、输出电阻等)、交流参数(增益带宽积、转换速率等)和极限参数(最大差模输入电压、最大共模输入电压、最大输出电流、最大电源电压等)的基本概念; 4、了解运放调零和相位补偿的基本概念; 5、掌握利用运算放大器设计各种运算功能电路的方法及实验测量技能。 二、预习思考: 1、查阅741运放的数据手册,自拟表格记录相关的直流参数、交流参数和极限参数,解释 参数含义。

2、 设计一个反相比例放大器,要求:|A V |=10,Ri>10K Ω,将设计过程记录在预习报告上; (1) 仿真原理图 (2) 参数选择计算 因为要求|A v |=10,即|V 0/V i |= |-R f /R 1|=10,故取R f =10R 1,.又电阻应尽量大些,故取:R 1=10k Ω,Rk=100 k Ω, R L =10 k Ω (3) 仿真结果 图中红色波形表示输入,另一波形为输出,通过仿真可知|V 0/V i |=9.77≈10,仿真正确。 3、 设计一个电路满足运算关系U O = -2U i1 + 3U i2

基于AD620芯片的运算放大器

基于AD620芯片的运算放大器 一、设计要求及目的 设计一个简单的运算放大电路,信号输入有效频率2KHz以下,放大倍数250-300之间。为抑制随机噪声,信号放大后再经过一个简单一阶RC低通滤波器,在不损坏有效信号的同时,最大限度滤除噪声。 二、放大电路介绍 放大电路是指增加电信号幅度或功率的电子电路。应用放大电路实现放大的装置称为。它的核心是电子,如、晶体管等。为了实现放大,必须给放大器提供能量。常用的能源是,但有的放大器也利用作为泵浦源。放大作用的实质是把电源的能量转移给。输入信号的作用是控制这种转移,使放大器输出信号的变化重复或反映输入信号的变化。现代中,电信号的产生、发送、接收、变换和处理,几乎都以放大电路为基础。20世纪初,真空的发明和电的实现,标志着电子学发展到一个新的阶段。2040年代末的问世,特别是60年代的问世,加速了电子放大器以至电子系统小型化和微型化的进程。 现代使用最广的是以晶体管(或场效应晶体管)放大电路为基础的集成放大器。大功率放大以及高频、微波的低噪声放大,常用分立晶体管放大器。高频和微波的大功率放大主要靠特殊类型的真空管,如功率三极管或四极管、、速调管、行波管以及正交场放大管等。 三、AD620芯片介绍 AD620是一款低成本、高精度仪表放大器,仅需要一个外部电阻来设置增益,增益范围为1至10000。此外,AD620引脚图采用8引脚SOIC和DIP封装,尺寸小于分立式设计,并且功耗较低(最大电源电流仅1.3 mA),因此非常适合电

池供电的便携式(或远程)应用。AD620具有高精度(最大非线性度40 ppm)、低失调电压(最大50 μV)和低失调漂移(最大0.6 μV/°C)特性,是和传感器接口等精密数据采集系统的理想之选。它还具有低噪声、低输入偏置电流和低功耗特性,使之非常适合ECG和无创血压监测仪等医疗应用。 由于其输入级采用Superβeta处理,因此可以实现最大1.0 nA的低输入偏置电流。AD620在1 kHz时具有9 nV/√Hz的低输入电压噪声,在0.1 Hz至10 Hz 内的噪声为0.28μV峰峰值,输入电流噪声为0.1 pA/√Hz,因而作为前置放大器使用效果很好。同时,AD620的0.01%建立时间为15μs,非常适合多路复用应用;而且成本很低,足以实现每通道一个仪表放大器的设计。 AD620 由传统的三运算放大器发展而成, 但一些主要性能却优于三运算放大器构成的仪表放大器的设计, 如电源范围宽(±2. 3~±18 V ) , 设计体积小, 功耗非常低(最大供电电流仅1. 3 mA ) , 因而适用于低电压、低功耗的应用场合。AD620 的单片结构和激光晶体调整, 允许电路元件紧密匹配和跟踪, 从而保证电路固有的高性能。AD620 为三运放集成的仪表放大器结构, 为保护增益控制的高精度, 其输入端的三极管提供简单的差分双极输入, 并采用β工艺获得更低的输入偏置电流, 通过输入级内部运放的反馈, 保持输入三极管的电流恒定, 并使输入电压加到外部增益控制电阻RG上。AD620 的两个内部增益电阻为 24.7KΩ, 因而增益方程式为 G =49.4 KΩ/RG + 1 对于所需的增益, 则外部控制电阻值为 RG =49.4/(G - 1)kΩ AD620的引脚图如图一所示:

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告 一、实验目的 1. 了解运算放大器的特性和基本运算电路的组成; 2. 掌握运算电路的参数计算和性能测试方法。 二、实验仪器及器件 1 .数字示波器; 2. 直流稳压电源; 3. 函数信号发生器; 4. 数字电路实验箱或实验电路板; 5. 数字万用表; 6. 集成电路芯片UA741 2块、电容个,各个阻值的电阻若干个。 三、实验内容 1、在面包板上搭接卩A741的电路。首先将+12V和-12V直流电压正确接入卩A741的Vcc+(7脚)和Vcc- (4脚)。 2、用卩A741组成反比例放大电路,放大倍数自定,用示波器观察输入和输出波形,测量放大器的电压放大倍数。 3、用卩A741组成积分电路,用示波器观察输入和输出波形,并做好记录。 四、实验原理 (1)集成运放简介 集成电路运算放大器(简称集成运放或运放)是一个集成的高

增益直接耦合放大器,通过外接反馈网络可构成 各种运算放大电路和 其它应用电路。集成运放uA741 的 引脚图下图所示 uA741电路符号及引脚图 任何一个集成运放都有两个输入端,一个输出端以及正、负电源端,有的品种还有补偿端和调零端等。 (a)电源端:通常由正、负双电源供电,典型电源电压为土15V、±12V等。如:uA741的7脚和4脚。 (b)输出端:只有一个输出端。在输出端和地(正、负电源公共端) 之间获得输出电压。如:uA741的6脚。最大输出电压受运放所接电源的电压大小限制,一般比电源电压低1?2V;输出电压的正负也受电源极性的限制;在允许输出电流条件下,负载变化时输出电压几乎不变。这表明集成运放的输出电阻很小,带负载能力较强。 (c)输入端:分别为同相输入端和反相输入端。如:uA741的3脚和2脚。输入端有两个参数需要注意:最大差模输入电压V id max和最大共模输入电压V ic max 。 两输入端电位差称为“差模输入电压” V id :V id V V 。两输入端电 位的平均值,称为“共模输入电压”V ic : 任何一个集成运放,允许承受的V d max和V c max都有一定限制。两输入端的输入电流i + 和i - 很小,通常小于1?A ,所以集成运放的输入电阻很大。 (2)集成运放的主要参数

运算放大器在实际中的应用

运算放大器在实际中的应用 广西大学电气工程学院摘要:运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 关键词:结构组成,工作原理,基本原理电路,实际应用 The application of Operational amplifier in practice Abstract:Operational amplifier is one of the most widely used devices, when external access different linear or nonlinear components of input and negative feedback circuit, can flexibly implement specific function. In the aspects of linear composition proportion, addition, subtraction, integral, differential, logarithm, simulation operation circuit. Keywords:structure ,working principle,The basic principle of the circuit ,The practical application 绪论:模拟运算放大器从诞生至今,已有40多年的历史了。运算放大器最早被设计出来的目的是用来进行加、减、微分、积分的模擬数学运算,因此被称为“运算放大器。直流放大电路在工业技术领域中,特别是在一些测量仪器和自动化控制系统中应用非常广泛。如在一些自动控制系统中,首先要把被控制的非电量(如温度、转速、压力、流量、照度等)用传感器转换为电信号,再与给定量比较,得到一个微弱的偏差信号。因为这个微弱的偏差信号的幅度和功率均不足以推动显示或者执行机构,所以需要把这个偏差信号放大到需要的程度,再去推动执行机构或送到仪表中去显示,从而达到自动控制和测量的目的。因为被放大的信号多数变化比较缓慢的直流信号,分析交流信号放大的放大器由于存在电容器这样的元件,不能有效地耦合这样的信号,所以也就不能实现对这样信号的放大。能够有效地放大缓慢变化的直流信号的最常用的器件是运算放大器。 运算放大器最早被发明作为模拟信号的运算(实现加减乘除比例微分积分等)单元,是模拟电子计算机的基本组成部件,由真空电子管组成。目前所用的运算放大器,是把多个晶体管组成的直接耦合的具有高放大倍数的电路,集成在一块微小的硅片上。运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。 一、运算放大器的结构组成和工作原理 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。

运算放大器组成的各种实用电路

运算放大器组成的电路五花八门,令人眼花瞭乱,是模拟电路中学习的重点。在分析它的工作原理时倘没有抓住核心,往往令人头大。为此本人特搜罗天下运放电路之应用,来个“庖丁解牛”,希望各位从事电路板维修的同行,看完后有所斩获。 遍观所有模拟电子技朮的书籍和课程,在介绍运算放大器电路的时候,无非是先给电路来个定性,比如这是一个同向放大器,然后去推导它的输出与输入的关系,然后得出Vo=(1+Rf)Vi,那是一个反向放大器,然后得出Vo=-Rf*Vi……最后学生往往得出这样一个印象:记住公式就可以了!如果我们将电路稍稍变换一下,他们就找不着北了!偶曾经面试过至少100个以上的大专以上学历的电子专业应聘者,结果能将我给出的运算放大器电路分析得一点不错的没有超过10个人!其它专业毕业的更是可想而知了。 今天,芯片级维修教各位战无不胜的两招,这两招在所有运放电路的教材里都写得明白,就是“虚短”和“虚断”,不过要把它运用得出神入化,就要有较深厚的功底了。 虚短和虚断的概念 由于运放的电压放大倍数很大,一般通用型运算放大器的开环电压放大倍数都在80 dB以上。而运放的输出电压是有限的,一般在 10 V~14 V。因此运放的差模输入电压不足1 mV,两输入端近似等电位,相当于“短路”。开环电压放大倍数越大,两输入端的电位越接近相等。 “虚短”是指在分析运算放大器处于线性状态时,可把两输入端视为等电位,这一特性称为虚假短路,简称虚短。显然不能将两输入端真正短路。 由于运放的差模输入电阻很大,一般通用型运算放大器的输入电阻都在1MΩ以上。因此流入运放输入端的电流往往不足1uA,远小于输入端外电路的电流。故通常可把运放的两输入端视为开路,且输入电阻越大,两输入端越接近开路。“虚断”是指在分析运放处于线性状态时,可以把两输入端视为等效开路,这一特性称为虚假开路,简称虚断。显然不能将两输入端真正断路。 在分析运放电路工作原理时,首先请各位暂时忘掉什么同向放大、反向放大,什么加法器、减法器,什么差动输入……暂时忘掉那些输入输出关系的公式……这些东东只会干扰你,让你更糊涂﹔也请各位暂时不要理会输入偏置电流、共模抑制比、失调电压等电路参数,这是设计者要考虑的事情。我们理解的就是理想放大器(其实在维修中和大多数设计过程中,把实际放大器当做理想放大器来分析也不会有问题)。 好了,让我们抓过两把“板斧”------“虚短”和“虚断”,开始“庖丁解牛”了。 (原文件名:1.jpg)

运算放大器在电路中发挥重要的作用

运算放大器在电路中发挥重要的作用,其应用已经延伸到汽车电子、通信、消费等各个领域,并将在支持未来技术方面扮演重要角色。在运算放大器的实际应用中,设计工程师经常遇到诸如选型、供电电路设计、偏置电路设计、PCB设计等方面的问题。在电子工程专辑网站举行的《运算放大器应用设计》专题讨论中,圣邦微电子有限公司总裁张世龙先生应邀回答与工程师进行互动。我们也基于此专题讨论,总结出了运算放大器应用设计的几个技巧,以飨读者。 一、如何实现微弱信号放大? 传感器+运算放大器+ADC+处理器是运算放大器的典型应用电路,在这种应用中,一个典型的问题是传感器提供的电流非常低,在这种情况下,如何完成信号放大?张世龙指出,对于微弱信号的放大,只用单个放大器难以达到好的效果,必须使用一些较特别的方法和传感器激励手段,而使用同步检测电路结构可以得到非常好的测量效果。这种同步检测电路类似于锁相放大器结构,包括传感器的方波激励,电流转电压放大器,和同步解调三部分。他表示,需要注意的是电流转电压放大器需选用输入偏置电流极低的运放。另外同步解调需选用双路的SPDT模拟开关。 另有工程师朋友建议,在运放、电容、电阻的选择和布板时,要特别注意选择高阻抗、低噪声运算和低噪声电阻。有网友对这类问题的解决也进行了补充,如网友“1sword”建议: 1)电路设计时注意平衡的处理,尽量平衡,对于抑制干扰有效,这些在美国国家半导体、BB(已被TI收购)、ADI等公司关于运放的设计手册中均可以查到。 2)推荐加金属屏蔽罩,将微弱信号部分罩起来(开个小模具),金属体接电路地,可以大大改善电路抗干扰能力。 3)对于传感器输出的nA级,选择输入电流pA级的运放即可。如果对速度没有多大的要求,运放也不贵。仪表放大器当然最好了,就是成本高些。 4)若选用非仪表运放,反馈电阻就不要太大了,M欧级好一些。否则对电阻要求比较高。后级再进行2级放大,中间加入简单的高通电路,抑制50Hz干扰。 二、运算放大器的偏置设置 在双电源运放在接成单电源电路时,工程师朋友在偏置电压的设置方面会遇到一些两难选择,比如作为偏置的直流电压是用电阻分压好还是接参考电压源好?有的网友建议用参考电压源,理由是精度高,此外还能提供较低的交流旁路,有的网友建议用电阻,理由是成本低而且方便,对此,张世龙没有特别指出用何种方式,只是强调双电源运放改成单电源电路时,如果采用基准电压的话,效果最好。这种基准电压使系统设计得到最小的噪声和最高的PSRR。但若采用电阻分压方式,必须考虑电源纹波对系统的影响,这种用法噪声比较高,PSRR比较低。 三、如何解决运算放大器的零漂问题?

CMOS运算放大器设计毕业设计

目录 摘要 (5) Abstract (6) 0 文献综述 (6) 0.1 集成电路概述 (7) 0.2 集成电路的发展 (7) 0.3 集成电路应用领域 (8) 0.4 CMOS集成电路 (11) 0.5 运算放大器 (11) 0.6 CMOS运算放大器 (12) 1 引言 (13) 1.1 运算放大器简介 (13) 1.2 本文研究内容 (14) 2 CMOS运算放大器 (14) 2.1 CMOS运算放大器简介 (14) 2.2 CMOS运算放大器的设计流程 (14) 3 CMOS运算放大器电路设计 (15) 3.1 电路的PSpice模拟及理论计算 (15) 3.2 电路结构分析及参数调试 (17) 3.3 电路仿真 (17) 4 CMOS 运算放大器版图设计 (27) 4.1 版图设计流程 (27) 4.2 工艺设计规则 (28) 4.3 单元器件的绘制——图元 (29) 4.4 CMOS放大器的版图设计 (34) 4.5 T-Spice仿真 (37) 5 总结 (41) 参考文献 (42)

致谢 (44)

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

集成电路运算放大器的定义

第四章集成运算放大电路 第一节学习要求 第二节集成运算放大器中的恒流源 第三节差分式放大电路 第四节集成电路运算放大器 第五节集成电路运算放大器的主要参数 第六节场效应管简介 第一节学习要求 1. 掌握基本镜象电流源、比例电流源、微电流源电路结构及基本特性。 2. 掌握差模信号、共模信号的定义与特点。 3. 掌握基本型和恒流源型差分放大器的电路结构、特点,会熟练计算电路的静态工作点,熟悉四种电路的连接方式及输入输出电压信号之间的相位关系。 4. 熟练分析差分放大器对差模小信号输入时的放大特性,共模抑制比。会计算A VD、R id、 R ic、 R od、 R oc、K CMR。 5.熟悉运放的主要技术指标及集成运算放大电路的一般电路结构。 学习重点:

掌握集成运放的基本电路的分析方法 学习难点: 集成运放内部电路的分析 集成电路简介 集成电路是在一小块 P型硅晶片衬底上,制成多个晶体管 ( 或FET)、电阻、电容,组合成具有特定功能的电路。 集成电路在结构上的特点: 1. 采用直接耦合方式。 2. 为克服直接耦合方式带来的温漂现象,采用了温度补偿的手段 ----输入级是差放电路。 3. 大量采用BJT或FET构成恒流源 ,代替大阻值R ,或用于设置静态电流。 4. 采用复合管接法以改进单管性能。 集成电路分为数字和模拟两大部分。 返回 第二节集成运算放大器中的恒流源 一、基本镜象电流源

电路如图6.1所示。T1,T2参数完全相同,即 β1=β2,I CEO1=I CEO2 ,从电路中可知V BE1=V BE2,I E1=I E2,I C1=I C2 当β>>2时, 式中I R=I REF称为基准电流,由上式可以看出,当R确定后,I R就确定,I C2也随之而定,我们把I C2看作是I R的镜像,所以称图6.1为镜像恒流源。 改进电路一:

集成运算放大器的应用实验报告

集成运算放大器的应用实验报告 【摘要】: 本题目关于放大器设计的基本目标:使用一片通用四运放芯片LM324组成预 设的电路,电路包括三角波产生器、加法器、滤波器、比较器四个设计模块,每个模块 均采用一个运放及一定数目的电容、电阻搭建,通过理论计算分析,最终实现规定的电 路要求。 【关键字】:运算放大器LM324、三角波信号发生器、加法器、滤波器、比较器 一、设计任务 使用一片通用四运放芯片LM324 组成电路框图见图1(a ),实现下述功能: 使用低频信号源产生 , 的正弦波信号, 加至加法器的输入端,加法器的另一输入端加 入由自制振荡器产生的信号uo1, uo1 如图1(b )所示, T1=,允许T1有±5%的误差。 (a ) (b ) 图中要求加法器的输出电压ui2=10ui1+uo1。ui2 经选频滤波器滤除uo1 频率分量,选 出f0 信号为uo2,uo2 为峰峰值等于9V 的正弦信号,用示波器观察无明显失真。uo2 信 号再经比较器后在1kΩ 负载上得到峰峰值为2V 的输出电压uo3。 电源只能选用+12V 和+5V 两种单电源,由稳压电源供给。不得使用额外电源和其它型号 运算放大器。 要求预留ui1、ui2、uo1、uo2 和uo3 的测试端子。 二、设计方案 1、 三角波发生器 由于用方波发生器产生方波,再经过积分电路电路产生三角波需要运用两个运算放大器,而LM324只有四个运算放大器,每个电路运用一个,所以只能用一个运算放大器产生三 角波。同时由于器件不提供稳压二极管,所以电阻电容的参数必须设计合理,用直流电 压源代替稳压管。对方波放生电路进行分析发现,如果将输出端改接运放的负输入端, 出来的波形近似为三角波。电路仿真如下图所示: 2、 加法器 由于加法器输出11210o i i u u u += ,根据《模拟电子技术》书上内容采用求和电路,电路如 下所示: 3、 滤波器 由于正弦波信号1i u 的频率为500Hz ,三角波1o u 的频率为2KHz ,滤波器需要滤除1o u ,所 以采用二阶的有源低通滤波器。电路仿真如下图: 4、 比较器 由于单门限电压比较器的抗干扰能力差,所以采用迟滞比较器,电路仿真如图所示: 三、电路设计及理论分析: 1、 总电路图: 2、 三角波发生器:

运算放大器应用电路的设计与制作

运算放大器应用电路的设计与制作 一.实验目的 1.掌握运算放大器和滤波电路的基本工作原理; 2.掌握运用运算放大器实现滤波电路的原理方法; 3.会用Multisim10对电路进行仿真分析; 二.实验内容 1.讲解运算放大器和滤波电路的基本工作原理; 2.讲解用运算放大器实现滤波电路的原理方法; 3.用Multisim10对二阶有源低通滤波电路进行仿真分析; 三.实验仪器 1.支持Win2000/2003/Me/XP/vista的PC机; 2.Multisim10软件; 四.实验原理 (一)运算放大器 1.原理 运算放大器是目前应用最广泛的一种器件,当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。 运算放大器一般由4个部分组成,偏置电路,输入级,中间级,输出级。 图1运算放大器的特性曲线图2运算放大器输入输出端图示

图1是运算放大器的特性曲线,一般用到的只是曲线中的线性部分。如图2所示。U -对应的端子为“-”,当输入U -单独加于该端子时,输出电压与输入电压U -反相,故称它为反相输入端。U +对应的端子为“+”,当输入U +单独由该端加入时,输出电压与U +同相,故称它为同相输入端。 输出:U 0= A(U +-U -) ; A 称为运算放大器的开环增益(开环电压放大倍数)。 在实际运用经常将运放理想化,这是由于一般说来,运放的输入电阻很大,开环增益也很大,输出电阻很小,可以将之视为理想化的,这样就能得到:开环电压增益A ud =∞;输入阻抗r i =∞;输出阻抗r o =0;带宽f BW =∞;失调与漂移均为零等理想化参数。 2.理想运放在线性应用时的两个重要特性 输出电压U O 与输入电压之间满足关系式:U O =A ud (U +-U -),由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。即U +≈U -,称为“虚短”。 由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”,这说明运放对其前级吸取电流极小。 上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。 3. 运算放大器的应用 (1)比例电路 所谓的比例电路就是将输入信号按比例放大的电路,比例电路又分为反向比例电路、同相比例电路、差动比例电路。 (a) 反向比例电路 反向比例电路如图3所示,输入信号加入反相输入端: 图3反向比例电路电路图 对于理想运放,该电路的输出电压与输入电压之间的关系为: i 1 f O U R R U -=

集成电路运算放大器

第六章集成电路运算放大器 本章内容简介 (一) 目标:集成元器件,构成特定功能的电子线路 (二) 侧重点不同:区别于单元电路,研究对象为高开环电压放大倍数的多级直接耦合 放大电路 (三)主要内容 ?组成集成运放的基本单元电路; ?典型集成运放电路以及集成运放的主要指标参数; ?几种专用型集成运放。 (四)学习目标 ?了解电流源的构成、恒流特性及其在放大电路中的作用。 ?正确理解直接耦合放大电路中零点漂移(简称零漂)产生的原因,以及有关指 标。 ?熟练掌握差模信号、共模信号、差模增益、共模增益和共模抑制比的基本概念。 ?熟练掌握差分放大电路的组成、工作原理以及抑制零点漂移的原理。 ?熟练掌握差分放大电路的静态工作点和动态指标的计算,以及输出输入相位关 系。 ?了解集成运放的内部结构及各部分功能、特点。(选讲内容) ?了解集成运放主要参数的定义,以及它们对运放性能的影响。(选讲内容) (五)参考资料说明 ?清华大学童诗白主编《模拟电子技术基础》有关章节 ?高文焕、刘润生编《电子线路基础》 ?王远编《模拟电子技术基础学习指导书》 ?陈大钦编《模拟电子技术基础问答、例题、试题》

6.1 集成运放中的电流源 主要内容: 本节主要定义了电流源电路并做了分类。 基本要求: 正确理解电流源的定义及种类。 教学要点: 1.镜象电流源 (1). 电路组成:镜象电流源是由三级管电流源演变而来的,如图1所示。 (2)电流估算 由于两管的V BE相同,所以它们的发射极电流和集电极电流均相等。电流源的输出电流,即T2的集电极电流为 当>>1时 当R和V CC确定后,基准电流I REF也就确定了,I C2也随之而定。由于Ic2≈I REF, 我们把I REF看作是I C2的镜象,所以这种电流源称为镜象电流源。 (3)提高镜象精度 在图1中,当不够大时,I C2与I REF就存在一定的差别。为了减小镜象差别,在电路中接入BJT T3,称为带缓冲级的镜象电流源。如下图所示。 该电路利用T3的电流放大作用,减小了I B对I REF的分流作用,从而提高了I C2与I REF镜象的精度。 原镜象电流源电路中,对I REF 的分流为2I B 带缓冲级的镜象电流源电路中,对I REF 的分流为2I B/β3, 比原来小。 2.微电流源 镜象电流源电路适用于较大工作电流(毫安数量级)的场合,若需要减小I C2的

运算放大器的作用

运算放大器在电路中发挥重要的作用 运算放大器在电路中发挥重要的作用,其应用已经延伸到汽车电子、通信、消费等各个领域,并将在支持未来技术方面扮演重要角色。在运算放大器的实际应用中,设计工程师经常遇到诸如选型、供电电路设计、偏置电路设计、PCB设计等方面的问题。在电子工程专辑网站举行的《运算放大器应用设计》专题讨论中,圣邦微电子有限公司总裁张世龙先生应邀回答与工程师进行互动。我们也基于此专题讨论,总结出了运算放大器应用设计的几个技巧,以飨读者。一、如何实现微弱信号放大? 传感器+运算放大器+ADC+处理器是运算放大器的典型应用电路,在这种应用中,一个典型的问题是传感器提供的电流非常低,在这种情况下,如何完成信号放大?张世龙指出,对于微弱信号的放大,只用单个放大器难以达到好的效果,必须使用一些较特别的方法和传感器激励手段,而使用同步检测电路结构可以得到非常好的测量效果。这种同步检测电路类似于锁相放大器结构,包括传感器的方波激励,电流转电压放大器,和同步解调三部分。他表示,需要注意的是电流转电压放大器需选用输入偏置电流极低的运放。另外同步解调需选用双路的SPDT模拟开关。 另有工程师朋友建议,在运放、电容、电阻的选择和布板时,要特别注意选择高阻抗、低噪声运算和低噪声电阻。有网友对这类问题的解决也进行了补充,如网友“1sword”建议: 1)电路设计时注意平衡的处理,尽量平衡,对于抑制干扰有效,这些在美国国家半导体、BB(已被TI收购)、ADI等公司关于运放的设计手册中均可以查到。 2)推荐加金属屏蔽罩,将微弱信号部分罩起来(开个小模具),金属体接电路地,可以大大改善电路抗干扰能力。 3)对于传感器输出的nA级,选择输入电流pA级的运放即可。如果对速度没有多大的要求,运放也不贵。仪表放大器当然最好了,就是成本高些。 4)若选用非仪表运放,反馈电阻就不要太大了,M欧级好一些。否则对电阻要求比较高。后级再进行2级放大,中间加入简单的高通电路,抑制50Hz干扰。二、运算放大器的偏置设置

放大器常用芯片

放大器常用芯片 ISO106高压,隔离缓冲放大器 ISO106同ISO102性能基本相同,主要区别要以下两点:①ISO106的连续隔离电压3500;②ISO106封装为40引脚DIP组件;主要引脚定义可参看ISO102。 LF147/347四JFET输入运算放大器 输入失调电压1mV(LF147)、5mV(LF347);温度漂移10μV/℃;偏置电流50pA增益带宽4MHz;转换速率13V/μs;噪声20nV/(Hz^1/2)(1kHZ);消耗电流7.2mA。±22V电源(LF147)、±18V电源(LF347);差模输入电压±38V(LF147)、±30V(LF347);共模输入电压±19V(LF147)、±15V(LF347);功耗500mW。 LF155/255/355JFET输入运算放大器 输入失调电压1mV(LF155/355)、3mV(LF255);温度漂移3μV/℃(LF155/355)、5μV/℃(LF255);偏置电流30pA增益带宽GB=2.5MHz;转换速率5V/μs;噪声20nV/(Hz^1/2)(1kHZ);消耗电流2mA。±40V电源(LF155/255)、±30V电源(LF355);共模输入电压±20V(LF155/255)、±16V(LF355);输入阻抗10^12Ω共模抑制比100dB;电压增益106dB。 LF353双JFET输入运算放大器 输入失调电压5mV;温度漂移10μV/℃;偏置电流50pA;增益带宽GB=4MHz;转换速率13V/μs;噪声16nV/(Hz^1/2)(1kHZ);消耗电流1.8mA。±18V电源;差模输入电压±30V;共模输入电压±15V;功耗500mW。 LF411/411A低失调、低漂移、JFET输朐怂惴糯笃?br> 输入失调电压800μV (LF411)、300μV(LF411A);温度漂移7μV/℃;偏置电流50pA;增益带宽GB=4MHz;转换速率15V/μs;噪声23nV/(Hz^1/2)(1kHZ);消耗电流1.8mA。±18V 电源(LF411)、±22V(LF411A);差模输入电压±30V(LF411)、±38V(LF411A); 共模输入电压±15V(LF411)、±19V(LF411A)。

运算放大器详细的应用电路(很详细)

§8.1 比 例运算电 路 8.1.1 反相比例电路 1. 基本电路 电压并联负反馈输入端虚短、虚断 特点: 反相端为虚地,所以共模输入可视为0,对运放共模抑制比要求低 输出电阻小,带负载能力强 要求放大倍数较大时,反馈电阻阻值高,稳定性差。 如果要求放大倍数100,R1=100K,Rf=10M 2. T型反馈网络(T型反馈网络的优点是什么?) 虚短、虚断

8.1.2 同相比例电路 1. 基本电路:电压串联负反馈 输入端虚短、虚断 特点: 输入电阻高,输出电阻小,带负载能力强 V-=V+=V i,所以共模输入等于输入信号,对运放的共模抑制比要求高 2. 电压跟随器 输入电阻大输出电阻小,能真实地将输入信号传给负载而从信号源取流很小§8.2 加减运算电路 8.2.1 求和电路 1.反相求和电路 2.

虚短、虚断 特点:调节某一路信号的输入电阻不影响其他路输入与输出的比例关系 3.同相求和电路 4. 虚短、虚断 8.2.2 单运放和差电路

8.2.3 双运放和差电路 例1:设计一加减运算电路 设计一加减运算电路,使 V o=2Vi1+5Vi2-10Vi3 解:用双运放实现

如果选Rf1=Rf2=100K,且R4= 100K 则:R1=50K R2=20K R5=10K 平衡电阻 R3= R1// R2// Rf1=12.5K R6=R4//R5//Rf2= 8.3K 例2:如图电路,求A vf,Ri 解: §8.3 积分电路和微分电路 8.3.1 积分电路 电容两端电压与电流的关系:

积分实验电路 积分电路的用途 将方波变为三角波(Vi:方波,频率500Hz,幅度1V)

如何选择放大器芯片

如何正确地选择运算放大器摘要:实现了一种全集成可变带宽中频宽带低通滤波器,讨论分析了跨导放大器-电容(OTA—C)连续时间型滤波器的结构、设计和具体实现,使用外部可编程电路对所设计滤波器带宽进行控制,并利用ADS软件进行电路设计和仿真验证。仿真结果表明,该滤波器带宽的可调范围为1~26 MHz,阻带抑制率大于35 dB,带内波纹小于0.5 dB,采用1.8 V电源,TSMC 0.18μm CMOS工艺库仿真,功耗小于21 mW,频响曲线接近理想状态。 现代电子工业的趋势是集成更多的功能到尽可能小巧的外形中,这已经不是什么秘密。移动电话就是这样的实例。当今许多生产商将MP3播放器、数码相机甚至卫星电视功能集成在移动电话里。过去几年,该市场已经取得了巨大的发展,并且仍在快速扩展。 这些产品的设计周期通常较短,测试比实际设计耗费更长的时间(设计大约需要4个月,测试需要6个月)。为此,设计师必须谨慎选择器件,以避免对最终的产品进行反复修改和导致延误。 下文将重点说明一些有用的设计技术、简短的计算和通用的评估方法,以帮助设计师更好地进行评估。 在便携电子领域,设计师基于多种因素(尺寸、成本和性能),利用他们的专业知识和最佳判断来选择器件。但这些因素通常需要进行权衡,设计师必须依据所需的最终产品谨慎选择元件。几乎与其它行业一样,便携市场,特别是移动电话市场,通常会同时提供高端(多功能)和低端(廉价)产品。

移动电话主板包括不同的元件,如运算放大器、音频放大器及前置放大器、数据转换器和ASIC等。选择运算放大器之前,设计师必须考虑封装选项,以及更小的封装是否会使性能降低。尽管在便携产品领域小型封装很受欢迎,但小型封装可能会给设计师带来麻烦和问题。采用塑料封装形式的运算放大器,譬如SC70,往往不能达到与SOIC或MSOP封装对应产品相同的性能。微型芯片级封装(CSP)(这实质上是裸片),暴露于光线下,输入偏流可能发生数百量级的偏移。该封装形式也容易在组装期间发生破裂。 哪些参数最重要? 在电池供电的应用领域—特别是PDA和移动电话,由于电池电压会随着干扰而下降,因此应选择PSRR性能好(~80dB)的运算放大器。此外,要注意高增益配置,这是因为耦合到运放中的噪声将导致噪声电平升高。电阻器的选择也十分关键,更大的阻值会产生更高的噪声。设计师可以利用估算约翰逊噪声(Johnson noise)或电阻噪声,这里R的单位是K欧姆,因此100K欧姆电阻产生大约40nV噪声! 如果运用多个运算放大器,减少输出噪声,这里n是使用的放大器数量。对于LMV651而言,输出噪声将减少到大约12nV

741运算放大器

LM741/UA741运算放大器使用说明及应用 物理量的感测在一般应用中,经常使用各类传感器将位移、角度、压力、与流量等物理量转换为电流或电压信号,之后再由量测此电压电流信号间接推算出物理量变化,以达成感测、控制的目的。但有时传感器所输出的电压电流信号可能非常微小,以致信号处理时难以察觉其间的变化,故需要以放大器进行信号放大以顺利测得电流电压信号,而放大器所能达成的工作不仅是放大信号而已,尚能应用于缓冲隔离、准位转换、阻抗匹配、以及将电压转换为电流或电流转换为电压等用途。现今放大器种类繁多,一般仍以运算放大器(Operational Amplifier, Op Amp)应用较为广泛,本文即针对741运算放大器的使用加以说明。 1. 运算放大器简介ab126计算公式大全 放大器最初被开发的目的是运用于类比计算器之运算电路,其内部为复杂的集成电路(Integrated Circuit, IC),亦即在单一电子组件中整合了许多晶体管与二极管,图1为一般放大器之内部等值电路。 1. 运算放大器内部等值电路图 运算放大器属于使用反馈电路进行运算的高放大倍率型放大器,其放大倍率完全由外界组件所控制,透过外接电路或电阻的搭配,即可决定增益(即放大倍率)大小。图2为运算放大器于电路中的表示符号,可看出其包含两个输入端,其中(+)端为非反相(Non-Inverting)端,而(-)端称为反相(Inverting)端,运算放大器的作动与此二输入端差值有关,此差值称为「差动输入」。通常放大器的理想增益为无穷大,实际使用时亦往往相当高(可放大至105或106倍),故差动输入跟增益后输出比较起来几乎等于零。838电子

相关主题
文本预览
相关文档 最新文档