【常考题】高中三年级数学下期中试题(及答案)(1)
- 格式:doc
- 大小:1.44 MB
- 文档页数:18
【常考题】高中三年级数学下期中试卷及答案一、选择题1.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .42.若,x y 满足1010330x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩,则2z x y =+的最大值为( )A .8B .7C .2D .13.正项等比数列中,的等比中项为,令,则( ) A .6B .16C .32D .644.设x y ,满足约束条件70310,350x y x y x y +-⎧⎪-+⎨⎪--⎩,,………则2z x y =-的最大值为( ).A .10B .8C .3D .25.已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈,则5a 等于( )A .16-B .16C .31D .326.已知变量x , y 满足约束条件13230x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最小值为( )A .1B .2C .3D .67.如果111A B C ∆的三个内角的余弦值分别等于222A B C ∆的三个内角的正弦值,则 A .111A B C ∆和222A B C ∆都是锐角三角形 B .111A B C ∆和222A B C ∆都是钝角三角形C .111A B C ∆是钝角三角形,222A B C ∆是锐角三角形D .111A B C ∆是锐角三角形,222A B C ∆是钝角三角形8.《周髀算经》有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种十二个节气日影长减等寸,冬至、立春、春分日影之和为三丈一尺五寸,前九个节气日影之和为八丈五尺五寸,问芒种日影长为( )A .一尺五寸B .二尺五寸C .三尺五寸D .四尺五寸9.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则313233310log log log log a a a a +++⋅⋅⋅+=( )A .10B .12C .31log 5+D .32log 5+10.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32B .36C .38D .4011.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .(][),42,-∞-+∞U C .()2,4-D .(][),24,-∞-⋃+∞12.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,若(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,则ABC V 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形二、填空题13.若ABC ∆的三个内角45A =︒,75B =︒,60C =︒,且面积623S =+,则该三角形的外接圆半径是______14.设122012(1)(1)(1)n nn x x x a a x a x a x ++++++=++++L L ,其中n *∈N ,且2n ≥,若0121022n a a a a ++++=L ,则n =_____15.设正项数列{}n a 的前n 项和是n S ,若{}n a 和{}nS 都是等差数列,且公差相等,则1a =_______.16.在等比数列中,,则__________.17.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.18.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .19.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,5cos2C =,且cos cos 2a B b A +=,则ABC ∆面积的最大值为 .20.在ABC ∆中,4a =,5b =,6c =,则sin 2sin AC=__________. 三、解答题21.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D . 现测得BCD α∠=,BDC β∠=,CD s =,并在点C 测得塔顶A 的仰角为θ,求塔高AB .22.设数列{}n a 满足()*164n n n a a n a +-=∈-N ,其中11a =. (Ⅰ)证明:32n n a a ⎧⎫-⎨⎬-⎩⎭是等比数列;(Ⅱ)令112n n b a =--,设数列{}(21)n n b -⋅的前n 项和为n S ,求使2019n S <成立的最大自然数n 的值.23.已知S n 为等差数列{a n }的前n 项和,a 1>0,a 8﹣a 4﹣a 3=1,a 4是a 1和a 13的等比中项. (1)求数列{a n }的通项公式;(2)证明:对一切正整数n .有1211134n S S S +++<L L . 24.已知a ,b ,c 分别为ABC △三个内角A ,B ,C 的对边,cos 3sin 0a C a C b c --=.(1)求A .(2)若2a =,ABC △3b ,c .25.已知数列{}n a 是递增的等比数列,且14239,8.a a a a +== (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设n S 为数列{}n a 的前n 项和,11n n n n a b S S ++=,求数列{}n b 的前n 项和n T . 26.已知函数()sin 2(0)f x m x x m =+>的最大值为2. (Ⅰ)求函数()f x 在[0,]π上的单调递减区间; (Ⅱ)ABC ∆中,()()46sin 44f A f B A B ππ-+-=,角,,A B C 所对的边分别是,,a b c ,且060,3C c ==,求ABC ∆的面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】∵点M (a ,b )与点N (0,−1)在直线3x −4y +5=0的两侧,∴()()34530450a b -+⨯++<,即3450a b -+<,故①错误; 当0a >时,54a b +>,a +b 即无最小值,也无最大值,故②错误; 设原点到直线3x −4y +5=0的距离为d ,则22513(4)==+-d ,则22a b +>1,故③正确;当0a >且a ≠1时,11b a +-表示点M (a ,b )与P (1,−1)连线的斜率. ∵当0a =,b =54时,51194114b a ++==---,又直线3x −4y +5=0的斜率为34, 故11b a +-的取值范围为93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故④正确.∴正确命题的个数是2个. 故选B.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.2.B解析:B【解析】试题分析:作出题设约束条件可行域,如图ABC ∆内部(含边界),作直线:20l x y +=,把直线l 向上平移,z 增加,当l 过点(3,2)B 时,3227z =+⨯=为最大值.故选B .考点:简单的线性规划问题.3.D解析:D 【解析】因为,即,又,所以.本题选择D 选项.4.B解析:B 【解析】 【分析】作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数即可求解. 【详解】 作出可行域如图:化目标函数为2y x z =-,联立70310x y x y +-=⎧⎨-+=⎩,解得5,2A(). 由图象可知,当直线过点A 时,直线在y 轴上截距最小,z 有最大值25-28⨯=. 【点睛】本题主要考查了简单的线性规划,数形结合的思想,属于中档题.5.B解析:B 【解析】 【分析】令1n =,由11a S =可求出1a 的值,再令2n ≥,由21n n S a =-得出1121n n S a --=-,两式相减可得出数列{}n a 为等比数列,确定出该数列的公比,利用等比数列的通项公式可求出5a 的值. 【详解】当1n =时,1121S a =-,即1121a a =-,解得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=.所以,数列{}n a 是以1为首项,以2为公比的等比数列,则451216a =⨯=,故选:B. 【点睛】本题考查利用n S 来求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,同时也要注意等差数列和等比数列定义的应用,考查运算求解能力,属于中等题.6.A解析:A 【解析】 【分析】画出可行域,平移基准直线20x y +=到可行域边界的点()1,1C -处,由此求得z 的最小值. 【详解】画出可行域如下图所示,平移基准直线20x y +=到可行域边界的点()1,1C -处,此时z 取得最小值为()2111⨯+-=. 故选:A.【点睛】本小题主要考查线性规划问题,考查数形结合的数学思想方法,属于基础题.7.D解析:D 【解析】 【分析】 【详解】111A B C ∆的三个内角的余弦值均大于0,则111A B C ∆是锐角三角形,若222A B C ∆是锐角三角形,由,得2121212{22A AB BC C πππ=-=-=-,那么,2222A B C π++=,矛盾,所以222A B C ∆是钝角三角形,故选D.8.B解析:B 【解析】 【分析】从冬至日起各节气日影长设为{}n a ,可得{}n a 为等差数列,根据已知结合前n 项和公式和等差中项关系,求出通项公式,即可求解. 【详解】由题知各节气日影长依次成等差数列,设为{}n a ,n S 是其前n 项和,则()19959985.52a a S a +===尺,所以59.5a =尺,由题知1474331.5a a a a ++==, 所以410.5a =,所以公差541d a a =-=-, 所以1257 2.5a a d =+=尺。
2020-2021高中三年级数学下期中试题(及答案)一、选择题1.已知在中,,,分别为角,,的对边,为最小角,且,,,则的面积等于( ) A .B .C .D .2.在R 上定义运算:A()1B A B =-,若不等式()x a -()1x a +<对任意的实数x ∈R 恒成立,则实数a 的取值范围是( ) A .11a -<<B .02a <<C .1322a -<< D .3122a -<< 3.已知函数1()2xf x ⎛⎫= ⎪⎝⎭,则不等式()24(3)f a f a ->的解集为( )A .(4,1)-B .(1,4)-C .(1,4)D .(0,4)4.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,若∠C=120°,c=a ,则A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定5.设2z x y =+,其中,x y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最小值是12-,则z 的最大值为( ) A .9-B .12C .12-D .96.数列{}n a 中,()1121nn n a a n ++-=-,则数列{}n a 的前8项和等于( ) A .32B .36C .38D .407.河南洛阳的龙门石窟是中国石刻艺术宝库之一,现为世界文化遗产,龙门石窟与莫高窟、云冈石窟、麦积山石窟并称中国四大石窟.现有一石窟的某处“浮雕像”共7层,每上层的数量是下层的2倍,总共有1016个“浮雕像”,这些“浮雕像”构成一幅优美的图案,若从最下层往上“浮雕像”的数量构成一个数列{}n a ,则()235log a a ⋅的值为( ) A .8B .10C .12D .168.已知等比数列{}n a 中,31174a a a =,数列{}n b 是等差数列,且77b a =,则59b b +=( ) A .2B .4C .16D .89.在ABC ∆中,,,a b c 分别是角,,A B C 的对边,若sin 3cos 0b A a B -=,且2b ac =,则a cb+的值为( )A .2BC.2D .410.已知等比数列{}n a 的各项均为正数,若3132312log log log 12a a a ++⋯+=,则67a a =( ) A .1B .3C .6D .911.在ABC V 中,角A 、B 、C 的对边分别为a 、b 、c ,若(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,则ABC V 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形12.等差数列{}n a 中,已知611a a =,且公差0d >,则其前n 项和取最小值时的n 的值为( ) A .6B .7C .8D .9二、填空题13.若首项为1a ,公比为q (1q ≠)的等比数列{}n a 满足21123lim()2n n a q a a →∞-=+,则1a 的取值范围是________.14.若关于 x 的不等式 ()2221x ax -< 的解集中的整数恰有 3 个,则实数 a 的取值范围是________________.15.若正项数列{}n a 满足11n n a a +-<,则称数列{}n a 为D 型数列,以下4个正项数列{}n a 满足的递推关系分别为:①2211n n a a +-= ②1111n na a +-= ③121n n n a a a +=+④2121n n a a +-=,则D 型数列{}n a 的序号为_______.16.若直线2y x =上存在点(,)x y 满足约束条件30230x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩,则实数m 的取值范围为_______.17.已知实数,x y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩,则目标函数2z x y =+的最大值为____.18.已知数列{}n a 满足1133,2,n n a a a n +=-=则na n 的最小值为__________. 19.(理)设函数2()1f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,2()4()(1)4()xf m f x f x f m m-≤-+恒成立,则实数m 的取值范围是______.20.已知n S 是数列{}n a 的前n 项和,122n n S a +=-,若212a =,则5S =__________. 三、解答题21.设}{n a 是等差数列,公差为d ,前n 项和为n S . (1)设140a =,638a =,求n S 的最大值.(2)设11a =,*2()na nb n N =∈,数列}{n b 的前n 项和为n T ,且对任意的*n N ∈,都有20n T ≤,求d 的取值范围.22.已知S n 为等差数列{a n }的前n 项和,a 1>0,a 8﹣a 4﹣a 3=1,a 4是a 1和a 13的等比中项. (1)求数列{a n }的通项公式; (2)证明:对一切正整数n .有1211134n S S S +++<L L . 23.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC V 的外接圆半径为R,且sin sin cos 0A B b A --=.(1)求A ∠;(2)若tan 2tan A B =,求sin 2sin 2sin b Ca b B c C+-的值.24.各项均为整数的等差数列{}n a ,其前n 项和为n S ,11a =-,2a ,3a ,41S +成等比数列.(1)求{}n a 的通项公式;(2)求数列{(1)}nn a -•的前2n 项和2n T .25.设函数2()1f x mx mx =--.(1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[1,3]x ∈,()0f x <恒成立,求实数m 的取值范围.26.已知在等比数列{a n }中,2a =2,,45a a =128,数列{b n }满足b 1=1,b 2=2,且{12n n b a +}为等差数列. (1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【分析】根据同角三角函数求出;利用余弦定理构造关于的方程解出,再根据三角形面积公式求得结果. 【详解】由余弦定理得:,即解得:或为最小角本题正确选项: 【点睛】本题考查余弦定理解三角形、三角形面积公式的应用、同角三角函数关系,关键是能够利用余弦定理构造关于边角关系的方程,从而求得边长.2.C解析:C 【解析】 【分析】根据新运算的定义, ()x a -()x a +22x x a a =-++-,即求221x x a a -++-<恒成立,整理后利用判别式求出a 范围即可【详解】Q A()1B A B =-∴()x a -()x a +()()()()22=11x a x a x a x a x x a a --+=--+-=-++-⎡⎤⎣⎦Q ()x a -()1x a +<对于任意的实数x ∈R 恒成立,221x x a a ∴-++-<,即2210x x a a -++--<恒成立,()()2214110a a ∴∆=-⨯-⨯--<,1322a ∴-<<故选:C 【点睛】本题考查新定义运算,考查一元二次不等式中的恒成立问题, 当x ∈R 时,利用判别式是解题关键3.B【解析】 【分析】先判断函数1()2xf x ⎛⎫= ⎪⎝⎭的单调性,把()24(3)f a f a ->转化为自变量的不等式求解.【详解】可知函数()f x 为减函数,由2(4)(3)f a f a ->,可得243a a -<,整理得2340a a --<,解得14a -<<,所以不等式的解集为(1,4)-. 故选B. 【点睛】本题考查函数不等式,通常根据函数的单调性转化求解,一般不代入解析式.4.A解析:A 【解析】 【分析】由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,进而求得a ﹣b 的表达式,根据表达式与0的大小,即可判断出a 与b 的大小关系. 【详解】解:∵∠C =120°,ca ,∴由余弦定理可知c 2=a 2+b 2﹣2ab cos C ,()2=a 2+b 2+ab .∴a 2﹣b 2=ab ,a ﹣b ,∵a >0,b >0, ∴a ﹣b ,∴a >b 故选A . 【点睛】本题考查余弦定理,特殊角的三角函数值,不等式的性质,比较法,属中档题.5.B解析:B 【解析】 【分析】作出不等式对应的可行域,当目标函数过点A 时,z 取最小值,即min 12z =-,可求得k 的值,当目标函数过点B 时,z 取最大值,即可求出答案. 【详解】作出不等式对应的可行域,如下图阴影部分,目标函数可化为2y x z =-+,联立20x y y k +=⎧⎨=⎩,可得()2,A k k -,当目标函数过点A 时,z 取最小值,则()2212k k ⨯-+=-,解得4k =,联立0x y y k-=⎧⎨=⎩,可得(),B k k ,即()4,4B ,当目标函数过点B 时,z 取最大值,max 24412z =⨯+=.故选:B.【点睛】本题考查线性规划,考查学生的计算求解能力,利用数形结合方法是解决本题的关键,属于基础题.6.B解析:B 【解析】 【分析】根据所给数列表达式,递推后可得()121121n n n a a n ++++-=+.并将原式两边同时乘以()1n-后与变形后的式子相加,即可求得2n n a a ++,即隔项和的形式.进而取n 的值,代入即可求解. 【详解】由已知()1121nn n a a n ++-=-,① 得()121121n n n a a n ++++-=+,②由()1n ⨯-+①②得()()()212121nn n a a n n ++=-⋅-++,取1,5,9n =及2,6,10n =,易得13572a a a a +=+=,248a a +=,6824a a +=, 故81234836S a a a a a =++++⋅⋅⋅+=. 故选:B. 【点睛】本题考查了数列递推公式的应用,对数列表达式进行合理变形的解决此题的关键,属于中档题.7.C解析:C 【解析】 【分析】数列{}n a ,是等比数列,公比为2,前7项和为1016,由此可求得首项1a ,得通项公式,从而得结论. 【详解】Q 最下层的“浮雕像”的数量为1a ,依题有:公比()717122,7,101612a q n S -====-,解得18a =,则()12*82217,n n n a n n N -+=⨯=≤≤∈,57352,2a a ∴==,从而()()571212352352222,log log 212a a a a ⋅=⨯=∴⋅==,故选C .【点睛】本题考查等比数列的应用.数列应用题求解时,关键是根据题设抽象出数列的条件,然后利用数列的知识求解.8.D解析:D 【解析】 【分析】利用等比数列性质求出a 7,然后利用等差数列的性质求解即可. 【详解】等比数列{a n }中,a 3a 11=4a 7, 可得a 72=4a 7,解得a 7=4,且b 7=a 7, ∴b 7=4,数列{b n }是等差数列,则b 5+b 9=2b 7=8. 故选D . 【点睛】本题考查等差数列以及等比数列的通项公式以及简单性质的应用,考查计算能力.9.A解析:A 【解析】 【分析】由正弦定理,化简求得sin 0B B =,解得3B π=,再由余弦定理,求得()224b a c =+,即可求解,得到答案.【详解】在ABC ∆中,因为sin cos 0b A B -=,且2b ac =,由正弦定理得sin sin cos 0B A A B =, 因为(0,)A π∈,则sin 0A >,所以sin 0B B =,即tan B =3B π=,由余弦定理得222222222cos ()3()3b a c ac B a c ac a c ac a c b =+-=+-=+-=+-, 即()224b a c =+,解得2a cb+=,故选A . 【点睛】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.10.D解析:D 【解析】 【分析】首先根据对数运算法则,可知()31212log ...12a a a =,再根据等比数列的性质可知()6121267.....a a a a a =,最后计算67a a 的值.【详解】由3132312log log log 12a a a +++=L ,可得31212log 12a a a =L ,进而可得()6121212673a a a a a ==L ,679a a ∴= .【点睛】本题考查了对数运算法则和等比数列性质,属于中档题型,意在考查转化与化归和计算能力.11.D解析:D 【解析】 【分析】由正弦定理化简(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅,得到sin 2sin 20B A -=,由此得到三角形是等腰或直角三角形,得到答案. 【详解】由题意知,(cos )sin (cos )sin a c B B b c A A -⋅⋅=-⋅⋅, 结合正弦定理,化简可得(cos )(cos )a c B b b c A a -⋅⋅=-⋅⋅, 所以cos cos 0a A b B -=,则sin cos sin cos 0B B A A -=,所以sin 2sin 20B A -=,得22B A =或22180B A +=o , 所以三角形是等腰或直角三角形. 故选D . 【点睛】本题考查了正弦定理和余弦定理在解三角形中的应用.在解三角形问题中经常把边的问题转化成角的正弦或余弦函数,利用三角函数的关系来解决问题,属于基础题.12.C解析:C 【解析】因为等差数列{}n a 中,611 a a =,所以6116111150,0,,2a a a a a d =-=-,有2[(8)64]2n dS n =--, 所以当8n =时前n 项和取最小值.故选C. 二、填空题13.【解析】【分析】由题意可得且即且化简可得由不等式的性质可得的取值范围【详解】解:故有且化简可得且即故答案为:【点睛】本题考查数列极限以及不等式的性质属于中档题解析:33(0,)(,3)22U【解析】 【分析】由题意可得1q <且0q ≠,即11q -<<且0q ≠,211232a a a =+,化简可得13322a q =+由不等式的性质可得1a 的取值范围. 【详解】解:21123lim()2n n a q a a →∞-=+Q 21123lim 2n a a a →∞∴=+,lim 0nn q →∞= 故有11q -<<且0q ≠,211232a a a =+ 化简可得13322a q =+ 103a ∴<<且132a ≠即133(0,)(,3)22a ∈U故答案为:33(0,)(,3)22U 【点睛】本题考查数列极限以及不等式的性质,属于中档题.14.【解析】试题分析:关于x 的不等式(2x -1)2<ax2等价于其中且有故有不等式的解集为所以解集中一定含有123可得所以解得考点:含参数的一元二次方程的解法解析:2549,916⎡⎤⎢⎥⎣⎦【解析】试题分析:关于x 的不等式(2x -1)2<ax 2等价于2(4)410a x x -+-+<,其中40a ∆=>且有40a ->,故有04a <<,不等式的解集为22x a a<<+-,所以11422a <<+解集中一定含有1,2,3,可得,所以5374a a ≥≤,解得2549916a ≤≤. 考点:含参数的一元二次方程的解法.15.①②③④【解析】【分析】根据D 型数列的定义逐个判断正项数列是否满足即可【详解】对①因为且正项数列故故所以成立对②故成立对③成立对④故成立综上①②③④均正确故答案为:①②③④【点睛】本题主要考查了新定解析:①②③④ 【解析】 【分析】根据D 型数列的定义,逐个判断正项数列{}n a 是否满足11n n a a +-<即可. 【详解】对①,因为2211n n a a +-=,且正项数列{}n a .故()222211211n n n n n a a a a a +=+<++=+,故11n n a a +<+.所以11n n a a +-<成立. 对②,1111111111n n n n n n n a a a a a a a +++-=?=Þ++, 故22101111n n n n nn n n n n n a a a a a a a a a a a +--=---++==<<+成立.对③, 112221101111n n n n n n n n n n a a a a a a a a a a ++⎛⎫=⇒-=-=-<< ⎪+++⎝⎭成立 对④, ()2222112121211n n n n n n n a a a a a a a ++-=⇒=+<++=+.故11n n a a +<+,11n n a a +-<成立.综上, ①②③④均正确.故答案为:①②③④【点睛】本题主要考查了新定义的问题,需要根据递推公式证明11n n a a +-<.属于中等题型. 16.【解析】试题分析:由题意由可求得交点坐标为要使直线上存在点满足约束条件如图所示可得则实数m 的取值范围考点:线性规划解析:(,1]-∞【解析】试题分析:由题意,由2{30y x x y =+-=,可求得交点坐标为(1,2),要使直线2y x =上存在点(,)x y 满足约束条件30,{230,,x y x y x m +-≤--≤≥,如图所示,可得1m ≤,则实数m 的取值范围(,1]-∞.考点:线性规划.17.5【解析】【分析】作出不等式组对应的平面区域利用数形结合即可得到z 的最大值【详解】作出实数xy 满足对应的平面区域如图:由z =2x+y 得y =﹣2x+z 平移直线y =﹣2x+z 由图象可知当直线y =﹣2x+解析:5【解析】【分析】作出不等式组对应的平面区域,利用数形结合即可得到z 的最大值.【详解】作出实数x ,y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩对应的平面区域,如图:由z =2x +y 得y =﹣2x +z ,平移直线y =﹣2x +z 由图象可知当直线y =﹣2x +z 经过点A 时,直线y =﹣2x +z 的截距最大.又x 10y --=与20x y -=联立得A (2,1)此时z 最大,此时z 的最大值为z =2×2+1=5,故答案为5.【点睛】本题主要考查线性规划的应用,考查了z 的几何意义,利用数形结合是解决本题的关键.18.【解析】【分析】先利用累加法求出an =33+n2﹣n 所以设f (n )由此能导出n =5或6时f (n )有最小值借此能得到的最小值【详解】解:∵an+1﹣an =2n∴当n≥2时an =(an ﹣an ﹣1)+(a 解析:212【解析】【分析】先利用累加法求出a n =33+n 2﹣n ,所以331n a n n n =+-,设f (n )331n n=+-,由此能导出n =5或6时f (n )有最小值.借此能得到n a n 的最小值. 【详解】解:∵a n +1﹣a n =2n ,∴当n ≥2时,a n =(a n ﹣a n ﹣1)+(a n ﹣1﹣a n ﹣2)+…+(a 2﹣a 1)+a 1=2[1+2+…+(n ﹣1)]+33=n 2﹣n +33且对n =1也适合,所以a n =n 2﹣n +33. 从而331n a n n n=+- 设f (n )331n n =+-,令f ′(n )23310n-=+>,则f (n )在)+∞上是单调递增,在(0上是递减的, 因为n ∈N +,所以当n =5或6时f (n )有最小值. 又因为55355a =,66321662a ==, 所以n a n 的最小值为62162a = 故答案为212 【点睛】本题考查了利用递推公式求数列的通项公式,考查了累加法.还考查函数的思想,构造函数利用导数判断函数单调性.19.或【解析】【分析】先化简不等式再变量分离转化为对应函数最值问题最后根据二次函数最值以及解不等式得结果【详解】即即因为当时所以或故答案为:或【点睛】本题考查不等式恒成立问题以及二次函数最值考查综合分析解析:2m ≤或2m ≥ 【解析】【分析】先化简不等式,再变量分离转化为对应函数最值问题,最后根据二次函数最值以及解不等式得结果.【详解】 2()4()(1)4()x f m f x f x f m m-≤-+Q 22222()14(1)(1)14(1)x m x x m m∴---≤--+- 即2221(41)230m x x m +---≥ 即222123341,()2m x m x x +-≥+≥ 因为当32x ≥时22323839324x x +≤+=所以2221834134m m m +-≥∴≥∴m ≤或m ≥故答案为:2m ≤-或2m ≥ 【点睛】本题考查不等式恒成立问题以及二次函数最值,考查综合分析求解能力,属中档题.20.【解析】【分析】由题意首先求得然后结合递推关系求解即可【详解】由题意可知:且:整理可得:由于故【点睛】本题主要考查递推关系的应用前n 项和与通项公式的关系等知识意在考查学生的转化能力和计算求解能力 解析:3116【解析】【分析】由题意首先求得1S ,然后结合递推关系求解5S 即可.【详解】由题意可知:12221S a =-=,且:()122n n n S S S +=--,整理可得:()11222n n S S +-=-, 由于121S -=-,故()455113121,21616S S ⎛⎫-=-⨯=-∴= ⎪⎝⎭. 【点睛】本题主要考查递推关系的应用,前n 项和与通项公式的关系等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1)2020(2)29-,log 10⎛⎤∞ ⎥⎝⎦ 【解析】【分析】(1)运用等差数列的通项公式可得公差d ,再由等差数列的求和公式,结合配方法和二次函数的最值求法,可得最大值;(2)由题意可得数列{b n }为首项为2,公比为2d 的等比数列,讨论d =0,d >0,d <0,判断数列{b n }的单调性和求和公式,及范围,结合不等式恒成立问题解法,解不等式可得所求范围.【详解】(1)a 1=40,a 6=38,可得d 61255a a -==-, 可得S n =40n 12-n (n ﹣1)2155=-(n 2012-)2220120+, 由n 为正整数,可得n =100或101时,S n 取得最大值2020;(2)设()*112n a n a b n N ==∈,,数列{b n }的前n 项和为T n, 可得a n =1+(n ﹣1)d ,数列{b n }为首项为2,公比为2d 的等比数列,若d =0,可得b n =2;d >0,可得{b n }为递增数列,无最大值;当d <0时,T n ()21221212dnd d-=--<, 对任意的n ∈N *,都有T n ≤20,可得20212d ≥-,且d <0, 解得d ≤29log 10. 【点睛】 本题考查等差数列和等比数列的通项公式和求和公式的运用,考查数列不等式恒成立问题解法,注意运用转化思想,考查化简运算能力,属于中档题.22.(1)a n =2n +1;(2)证明见解析.【解析】【分析】(1)利用等比中项的性质,结合等差数列通项公式的基本量计算,求得1,a d ,由此求得数列{}n a 的通项公式.(2)先求得n S ,然后利用裂项求和法证得不等式成立.【详解】(1)解:设等差数列{a n }的公差为d ,由题意,()12111121(3)120d a a d a a d a -=⎧⎪+=+⎨⎪>⎩,解得132a d =⎧⎨=⎩, ∴数列{a n }的通项公式为a n =3+2(n ﹣1)=2n +1;(2)证明:由(1)知,()()12322n n n S n n n -⨯=+=+. ∴()()()1211111111132435112n S S S n n n n +++=+++++⨯⨯⨯-++L L L12=[111111111132435112n n n n -+-+-++-+--++L ]3111342124n n ⎛⎫=-+< ⎪+⎝⎭. 【点睛】本小题主要考查等差数列通项公式的基本量计算,考查等比中项的性质,考查裂项求和法,考查数列不等式的证明,属于中档题.23.(1)6π;(2). 【解析】【分析】(1)由正弦定理化简已知三角等式,根据sin 0B ≠可得tan A =,即可求出角A ;(2)由(1)可得tan B =,利用2sin 1A =及正弦定理将分式化简,再利用余弦定理化简分式得()1tan 2A B -+,最后利用正切和角公式代入tan A ,tan B ,可求出结果. 【详解】(1)∵sin sin cos 0A B b A -=,由正弦定理得:sin sin 2sin cos 0A B R B A -=,即)sin cos 0B A A -=, ∵()0,B π∈,∴sin 0B ≠,cos A A =,tan A =, ∵()0,A π∈,∴6A π∠=.(2)由(1)知:tan 3A =,tan 6B =,1sin 2A =, ∴2sin 1A =, ∴sin 2sin sin 2sin 2sin 2sin 2sin 2sin b C Ab C a b B c C Aa b B c C=+-+- 222sin ab C a b c =+- 由余弦定理得:()sin sin 11tan tan 2sin 2sin 2cos 22b C C C A B a b Bc C C ===-++-1tan tan 21tan tan A B A B +=-⨯=- 【点睛】本题考查正弦定理、余弦定理、同角三角函数的基本关系等基础知识,考查学生数形结合、转化与化归以及运算求解能力,解决此类问题的关键是灵活运用正、余弦定理进行边角的互化,属于中等题.24.(1) 23n a n =- (2) 22n T n =【解析】【分析】(1)由题意,可知2324(1)a a S =⋅+,解得2d =,即可求解数列的通项公式;(2)由(1),可知12n n a a --=,可得()()()21234212...n n n T a a a a a a -=-++-+++-+,即可求解.【详解】(1)由题意,可知数列{}n a 中,11a =-,2a ,3a ,41S +成等比数列.则2324(1)a a S =⋅+,即()()()212136d d d -+=-+-+,解得2d =, 所以数列的通项公式23n a n =-.(2)由(1),可知12n n a a --=,所以()()()21234212...2n n n T a a a a a a n -=-++-+++-+=.【点睛】本题主要考查了等差数列的通项公式的求解,以及“分组求和”的应用,其中解答中熟记等差数列的通项公式和等比中项公式,准确求得等差数列的公差是解答的关键,着重考查了运算与求解能力,属于基础题.25.(1) 40m -<≤.(2) 16m <【解析】【分析】(1)利用判别式可求实数m 的取值范围,注意二次项系数的讨论.(2)就0,0,0m m m <=>三种情况讨论函数的最值后可得实数m 的取值范围.【详解】解:(1)要使210mx mx --<恒成立,若0m =,显然10-<; 若0m ≠,则有2040m m m <⎧⎨∆=+<⎩,40m ∴-<<, ∴40m -<≤.(2)当0m =时,()10f x =-<显然恒成立;当0m ≠时,该函数的对称轴是12x =,2()1f x mx mx =--在[1,3]x ∈上是单调函数. 当0m >时,由于(1)10f =-<,要使()0f x <在[1,3]x ∈上恒成立, 只要(3)0f <即可,即9310m m --<得16m <,即106m <<; 当0m <时,由于函数()0f x <在[1,3]x ∈上恒成立,只要(1)0f <即可, 此时(1)10f =-<显然成立. 综上可知16m <. 【点睛】一元二次不等式的恒成立问题,可以转化为函数的最值进行讨论,必要时需要考虑对称轴的不同位置.26.(1)1232;2,122n n n n a b n n --==-⋯(=,,);(2)213312442n n T n n -=+-+. 【解析】【分析】(1)根据等比数列的性质得到7a =64,2a =2,进而求出公比,得到数列{a n }的通项,再由等差数列的公式得到结果;(2)根据第一问得到通项,分组求和即可.【详解】(1)设等比数列{a n }的公比为q .由等比数列的性质得a 4a 5=27a a =128,又2a =2,所以7a =64.所以公比2q ===. 所以数列{a n }的通项公式为a n =a 2q n -2=2×2n -2=2n -1. 设等差数列{12n n b a +}的公差为d . 由题意得,公差221111113221122222d b a b a ⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+⨯-+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 所以等差数列{12n n b a +}的通项公式为()()11113331122222n n b a b a n d n n ⎛⎫+=++-=+-⋅= ⎪⎝⎭. 所以数列{b n }的通项公式为12313132222222n n n n b n a n n --=-=-⋅=-(n =1,2,…). (2)设数列{b n }的前n 项和为T n . 由(1)知,2322n n b n -=-(n =1,2,…). 记数列{32n }的前n 项和为A ,数列{2n -2}的前n 项和为B ,则 ()33322124n n A n n ⎛⎫+ ⎪⎝⎭==+,()1112122122n n B --==--. 所以数列{b n }的前n 项和为()1213133112242442n n n T A B n n n n --=-=+-+=+-+. 【点睛】 这个题目考查了数列的通项公式的求法,以及数列求和的应用,常见的数列求和的方法有:分组求和,错位相减求和,倒序相加等.。
新高中三年级数学下期中试卷附答案一、选择题1.已知数列{}n a 的通项公式是221sin2n n a n π+=(),则12310a a a a ++++=A .110B .100C .55D .02.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,干支是天干和地支的总称,把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”甲、乙、丙、丁、戊、己、庚、辛、癸等十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥等十二个符号叫地支,如公元1984年农历为甲子年,公元1985年农历为乙丑年,公元1986年农历为丙寅年,则公元2047年农历为 A .乙丑年B .丙寅年C .丁卯年D .戊辰年3.ABC ∆中有:①若A B >,则sin sin A>B ;②若22sin A sin B =,则ABC ∆—定为等腰三角形;③若cos acosB b A c -=,则ABC ∆—定为直角三角形.以上结论中正确的个数有( ) A .0B .1C .2D .34.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞5.“0x >”是“12x x+≥”的 A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.已知等差数列{}n a 的前n 项为n S ,且1514a a +=-,927S =-,则使得n S 取最小值时的n 为( ). A .1B .6C .7D .6或7 7.在等差数列{}n a 中,351024a a a ++=,则此数列的前13项的和等于( ) A .16B .26C .8D .138.在等差数列{}n a 中,如果123440,60a a a a +=+=,那么78a a +=( ) A .95B .100C .135D .809.等比数列{}n a 中,11,28a q ==,则4a 与8a 的等比中项是( ) A .±4 B .4 C .14± D .1410.若01a <<,1b c >>,则( )A .()1ab c<B .c a cb a b->- C .11a a c b --< D .log log c b a a <11.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a,则此数列的项数为()A.134B.135C.136D.13712.已知x,y 均为正实数,且111226 xy+=++,则x y+的最小值为()A.20B.24C.28D.32二、填空题13.设{}n a是公比为q的等比数列,1q>,令1(1,2,)n nb a n=+=,若数列{}n b有连续四项在集合{}53,23,19,37,82--中,则6q= .14.ABC∆内角A、B、C的对边分别是a,b,c,且2cos(32)cosb C ac B=-.当42b=,2a c=,ABC∆的面积为______.15.若实数,x y满足约束条件20220x yx yx y+≥⎧⎪-≤⎨⎪-+≥⎩,则3z x y=-的最小值等于_____.16.设正项数列{}n a的前n项和是n S,若{}n a和{}n S都是等差数列,且公差相等,则1a=_______.17.已知实数x,y满足不等式组203026x yx yx y-≤⎧⎪+-≥⎨⎪+≤⎩,则2z x y=-的最小值为__________.18.若变量x,y满足2239x yx yx+≤⎧⎪-≤⎨⎪≥⎩,则z=2x+y的最大值是_____.19.如图,无人机在离地面高200m的A处,观测到山顶M处的仰角为15°、山脚C处的俯角为45°,已知∠MCN=60°,则山的高度MN为_________m.20.已知数列的前项和,则_______.三、解答题21.在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转,如图,小卢利用图形的旋转设计某次活动的徽标,他将边长为a的正三角形ABC 绕其中心O 逆时针旋转θ到三角形A 1B 1C 1,且20,3πθ⎛⎫∈ ⎪⎝⎭.顺次连结A ,A 1,B ,B 1,C ,C 1,A ,得到六边形徽标AA 1BB 1CC 1 .(1)当θ=6π时,求六边形徽标的面积; (2)求六边形徽标的周长的最大值.22.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,设平面向量()()sin cos ,sin ,cos sin ,sin p A B A q B A B =+=-,且2cos p q C ⋅=(Ⅰ)求C ; (Ⅱ)若3,23c a b =+=ABC ∆中边上的高h .23.ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知ABC 的外接圆半径为R ,且23sin sin cos 0R A B b A --=.(1)求A ∠;(2)若tan 2tan A B =,求sin 2sin 2sin b Ca b B c C+-的值.24.等差数列{}n a 的各项均为正数,11a =,前n 项和为n S .等比数列{}n b 中,11b =,且226b S =,238b S +=.(1)求数列{}n a 与{}n b 的通项公式;(2)求12111nS S S ++⋯+. 25.已知数列{}n a 是公差为2-的等差数列,若1342,,a a a +成等比数列. (1)求数列{}n a 的通项公式;(2)令12n n n b a -=-,数列{}n b 的前n 项和为n S ,求满足0n S ≥成立的n 的最小值.26.ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos cos a C c A a +=. (1)求证:A B =; (2)若6A π=,ABC 3,求ABC 的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由已知条件得a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数,所以a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92,由此能求出结果. 【详解】∵2n 12+π =n π+2π,n ∈N *,∴a n =n 2sin (2n 12+π)=22,,n n n n ⎧-⎨⎩是奇数是偶数, ∴a 1+a 2+a 3+…+a 10=22﹣12+42﹣32+…+102﹣92=1+2+3+…+10=()101+10=552故选C . 【点睛】本题考查了等差数列的通项公式与求和公式、分类讨论方法、三角函数的周期性,属于中档题.2.C解析:C 【解析】记公元1984年为第一年,公元2047年为第64年,即天干循环了十次,第四个为“丁”,地支循环了五次,第四个为“卯”,所以公元2047年农历为丁卯年. 故选C.3.C解析:C 【解析】 【分析】①根据正弦定理可得到结果;②根据A B =或,2A B π+=可得到结论不正确;③可由余弦定理推得222a b c =+,三角形为直角三角形. 【详解】①根据大角对大边得到a>b,再由正弦定理sin sin a bA B=知sinA sinB >,①正确;②22sin A sin B =,则A B =或,2A B π+=ABC ∆是直角三角形或等腰三角形;所以②错误;③由已知及余弦定理可得22222222a c b b c a a b c ac bc+-+--=,化简得222a b c =+,所以③正确. 故选C. 【点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据,解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答.4.A解析:A 【解析】分析:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b +++=,可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭,化简整理即可得出. 详解:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b+++=, 可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭, 化为()()2540a b a b +-++≤, 解得14a b ≤+≤, 则+a b 的取值范围是[]1,4. 故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.5.C解析:C 【解析】先考虑充分性,当x>0时,12x x +≥=,当且仅当x=1时取等.所以充分条件成立.再考虑必要性,当12x x+≥时,如果x>0时,22210(1)0x x x -+≥∴-≥成立,当x=1时取等.当x<0时,不等式不成立. 所以x>0. 故选C.6.B解析:B 【解析】试题分析:由等差数列的性质,可得,又,所以,所以数列的通项公式为,令,解得,所以数列的前六项为负数,从第七项开始为正数,所以使得取最小值时的为,故选B .考点:等差数列的性质.7.D解析:D 【解析】 【详解】试题分析:∵351024a a a ++=,∴410224a a +=,∴4102a a +=,∴1134101313()13()1322a a a a S ++===,故选D. 考点:等差数列的通项公式、前n 项和公式.8.B解析:B 【解析】 【分析】根据等差数列{}n a 性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,然后求出结果 【详解】由等差数列的性质可知:1234a a a a ++,,56a a +,78a a +构成新的等差数列,()()()()781234124140320100a a a a a a a a ⎡⎤∴+=++-+-+=+⨯=⎣⎦故选B 【点睛】本题主要考查了等差数列的性质运用,等差数列中连续的、等长的、间隔相等的几项的和依然成等差,即可计算出结果。
2020-2021青岛市高中三年级数学下期中试卷及答案一、选择题1.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a ab -的值是 ( ) A .12B .12-C .12或12- D .142.设数列{}n a 是以2为首项,1为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,则1210b b b a a a ++⋯+=( ) A .1033 B .1034C .2057D .20583.若直线()10,0x ya b a b+=>>过点(1,1),则4a b +的最小值为( ) A .6B .8C .9D .104.数列{}n a 中,对于任意,m n N *∈,恒有m n m n a a a +=+,若118a =,则7a 等于( ) A .712B .714C .74D .785.设实数,x y 满足242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,则1y x +的最大值是( )A .-1B .12C .1D .326.变量,x y 满足条件1011x y y x -+≤⎧⎪≤⎨⎪>-⎩,则22(2)x y -+的最小值为( ) A.2BC .5D .927.设x ,y 满足不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩,若Z ax y =+的最大值为29a +,最小值为2a +,则实数a 的取值范围是( ).A .(,7]-∞-B .[3,1]-C .[1,)+∞D .[7,3]--8.已知,x y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3x y -的最小值为( )A .4B .8C .12D .169.已知0,0x y >>,且91x y +=,则11x y+的最小值是 A .10B .12?C .14D .1610.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则2z y x =-的最大值为( ).A .8-B .4-C .1D .211.若01a <<,1b c >>,则( ) A .()1ab c<B .c a cb a b->- C .11a a c b --<D .log log c b a a <12.若正数,x y 满足40x y xy +-=,则3x y+的最大值为 A .13B .38C .37D .1二、填空题13.在ABC ∆中,角,,A B C 所对的边为,,a b c ,若23sin c ab C =,则当b aa b+取最大值时,cos C =__________;14.已知实数x ,y 满足不等式组2202x y y y x+-≥⎧⎪≤⎨⎪≥⎩,则1y x +的最大值为_______.15.已知n S 为数列{a n }的前n 项和,且22111n n n a a a ++-=-,21313S a =,则{a n }的首项的所有可能值为______16.已知a b c R ∈、、,c 为实常数,则不等式的性质“a b a c b c >⇐+>+”可以用一个函数在R 上的单调性来解析,这个函数的解析式是()f x =_________ 17.已知命题20001:,02p x R ax x ∃∈++≤,若命题p 是假命题,则实数a 的取值范围是________.18.等差数列{}n a 中,1351,14,a a a =+=其前n 项和100n S =,则n=__19.数列{}n b 中,121,5b b ==且*21()n n n b b b n N ++=-∈,则2016b =___________.20.设变量,x y 满足约束条件:21y x x y x ≥⎧⎪+≤⎨⎪≥-⎩,则3z x y =-的最小值为__________.三、解答题21.在等差数列{}n a 中,36a =,且前7项和756T =. (1)求数列{}n a 的通项公式;(2)令3nn n b a =⋅,求数列{}n b 的前n 项和n S .22.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.23.已知等差数列{}n a 的前n 项和为n S ,各项为正的等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式; (2)若321T =,求3S24.等差数列{}n a 的各项均为正数,11a =,前n 项和为n S .等比数列{}n b 中,11b =,且226b S =,238b S +=.(1)求数列{}n a 与{}n b 的通项公式;(2)求12111nS S S ++⋯+. 25.已知数列{}n a 满足111,221n n n a a a a +==+. (1)证明数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,并求{}n a 的通项公式; (2)若数列{}n b 满足12n n nb a =g ,求数列{}n b 的前n 项和n S . 26.已知点(1,2)是函数()(0,1)xf x a a a =>≠的图象上一点,数列{}n a 的前n 项和是()1n S f n =-.(1)求数列{}n a 的通项公式;(2)若1log n a n b a +=,求数列{}n n a b •的前n 项和n T【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d , 则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q , 则4=q 4,解得q 2=2, ∴b 2=q 2=2.则21221122a ab --==. 本题选择A 选项.2.A解析:A 【解析】 【分析】 【详解】首先根据数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,求出等差数列和等比数列的通项公式,然后根据a b1+a b2+…+a b10=1+2+23+25+…+29+10进行求和. 解:∵数列{a n }是以2为首项,1为公差的等差数列, ∴a n =2+(n-1)×1=n+1, ∵{b n }是以1为首项,2为公比的等比数列, ∴b n =1×2n-1, 依题意有:a b1+a b2+…+a b10=1+2+22+23+25+…+29+10=1033, 故选A .3.C解析:C 【解析】 【详解】 因为直线()10,0x y a b a b+=>>过点()1,1,所以11+1a b = ,因此114(4)(+)5+59b a a b a b a b +=+≥+= ,当且仅当23b a ==时取等号,所以选C.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.4.D解析:D 【解析】因为11,8m nm n a a a a +=+=,所以2112,4a a == 42122a a ==,3123,8a a a =+= 73478a a a =+=.选D.5.D解析:D 【解析】 【分析】由约束条件确定可行域,由1y x+的几何意义,即可行域内的动点与定点P (0,-1)连线的斜率求得答案. 【详解】由约束条件242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,作出可行域如图,联立10220x x y -=⎧⎨+-=⎩,解得A (112,),1y x+的几何意义为可行域内的动点与定点P (0,-1)连线的斜率, 由图可知,113212PAk +==最大.故答案为32.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于中档题型.6.C解析:C【解析】由约束条件画出可行域,如下图,可知当过A(0,1)点时,目标函数取最小值5,选C.7.B解析:B【解析】【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【详解】作出不等式组110750310x y x y x y +-≤⎧⎪--≥⎨⎪--≤⎩对应的平面区域(如图阴影部分),目标函数z ax y =+的几何意义表示直线的纵截距,即y ax z =-+,(1)当0a <时,直线z ax y =+的斜率为正,要使得z 的最大值、最小值分别在,C A 处取得,则直线z ax y =+的斜率不大于直线310x y --=的斜率, 即3a -≤,30a ∴-≤<.(2)当0a >时,直线z ax y =+的斜率为负,易知最小值在A 处取得,要使得z 的最大值在C 处取得,则直线z ax y =+的斜率不小于直线110x y +-=的斜率1a -≥-, 01a ∴<≤.(3)当0a =时,显然满足题意. 综上:31a -≤….故选:B . 【点睛】本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法,确定目标函数的斜率关系是解决本题的关键.8.A解析:A 【解析】 【分析】作出可行域,变形目标函数并平移直线3y x =,结合图象,可得最值. 【详解】作出x 、y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩所对应的可行域(如图ABC V ),变形目标函数可得3y x z =-,平移直线3y x =可知, 当直线经过点(2,2)A 时,截距z -取得最大值, 此时目标函数z 取得最小值3224⨯-=. 故选:A.【点睛】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.9.D解析:D 【解析】 【分析】通过常数代换后,应用基本不等式求最值. 【详解】∵x >0,y >0,且9x+y=1, ∴()11119999110216y x y xx y x y x y x y x y ⎛⎫+=+⋅+=+++≥+⋅= ⎪⎝⎭当且仅当9y x x y =时成立,即11,124x y ==时取等号. 故选D. 【点睛】本题考查了应用基本不等式求最值;关键是注意“1”的整体代换和几个“=”必须保证同时成立.10.D解析:D 【解析】作出不等式组20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,所表示的平面区域,如图所示,当0x ≥时,可行域为四边形OBCD 内部,目标函数可化为2z y x =-,即2y x z =+,平移直线2y x =可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,此时,max 2z =,当0x <时,可行域为三角形AOD ,目标函数可化为2z y x =+,即2y x z =-+,平移直线2y x =-可知当直线经过点(0,2)D 时,直线的截距最大,从而z 最大,max 2z =, 综上,2z y x =-的最大值为2. 故选D .点睛:利用线性规划求最值的步骤: (1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(ax by +型)、斜率型(y b x a++型)和距离型(()()22x a y b +++型). (3)确定最优解:根据目标函数的类型,并结合可行域确定最优解. (4)求最值:将最优解代入目标函数即可求出最大值或最小值. 注意解答本题时不要忽视斜率不存在的情形.11.D解析:D 【解析】 【分析】运用不等式对四个选项逐一分析 【详解】对于A ,1b c >>Q ,1b c ∴>,01a <<Q ,则1ab c ⎛⎫> ⎪⎝⎭,故错误 对于B ,若c a cb a b->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误对于C ,01a <<Q ,10a ∴-<,1b c >>Q ,则11a a c b -->,故错误 对于D ,1b c >>Q ,c b log a log a ∴<,故正确 故选D 【点睛】本题考查了不等式的性质,由未知数的范围确定结果,属于基础题.12.A解析:A 【解析】 【分析】 分析题意,取3x y +倒数进而求3x y+的最小值即可;结合基本不等式中“1”的代换应用即可求解。
2020-2021高中三年级数学下期中试卷含答案一、选择题1.已知等比数列{}n a 的公比为正数,且239522,1a a a a ⋅==,则1a = ( )A .12B .2 C.2D .2 2.若正项递增等比数列{}n a 满足()()()243510a a a a R λλ+-+-=∈,则89a a λ+的最小值为( ) A .94-B .94C .274D .274-3.已知,,a b R +∈且115a b a b+++=,则+a b 的取值范围是( ) A .[1,4]B .[)2,+∞C .(2,4)D .(4,)+∞4.若直线2y x =上存在点(,)x y 满足30,230,,x y x y x m +-≤⎧⎪--≥⎨⎪≥⎩则实数m 的最大值为A .2-B .1-C .1D .35.设实数,x y 满足242210x y x y x -≤⎧⎪+≤⎨⎪-≥⎩,则1y x +的最大值是( )A .-1B .12C .1D .326.如图,为了测量山坡上灯塔CD 的高度,某人从高为=40h 的楼AB 的底部A 处和楼顶B 处分别测得仰角为=60βo,=30αo ,若山坡高为=35a ,则灯塔高度是( )A .15B .25C .40D .607.已知等比数列{}n a ,11a =,418a =,且12231n n a a a a a a k +++⋅⋅⋅+<,则k 的取值范围是( )A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭8.已知关于x 的不等式()224300x ax a a -+<<的解集为()12,x x ,则1212a x x x x ++的最大值是( ) ABCD. 9.已知,x y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则3x y -的最小值为( )A .4B .8C .12D .1610.已知:0x >,0y >,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是( ) A .()4,2- B .(][),42,-∞-+∞U C .()2,4-D .(][),24,-∞-⋃+∞11.已知正数x 、y 满足1x y +=,则141x y++的最小值为( ) A .2B .92 C .143D .512.已知等差数列{}n a 的前n 项和为n S ,若341118a a a ++=则11S =( ) A .9B .22C .36D .66二、填空题13.数列{}n a 满足14a =,12nn n a a +=+,*n N ∈,则数列{}n a 的通项公式n a =______.14.设{}n a 是公比为q 的等比数列,1q >,令1(1,2,)n n b a n =+=L ,若数列{}n b 有连续四项在集合{}53,23,19,37,82--中,则6q = .15.已知数列{}n a 中,45n a n =-+,等比数列{}n b 的公比q 满足1(2)n n q a a n -=-≥,且12b a =,则12n b b b +++=L __________.16.已知x y 、满足约束条件1{1,22x y x y x y +≥-≥--≤若目标函数()0,0z ax by a b =+>>的最大值为7,则34a b+的最小值为_______. 17.已知数列{}n a 、{}n b 均为等差数列,且前n 项和分别为n S 和n T ,若321n n S n T n +=+,则44a b =_____.18.已知数列111112123123n+++++++L L L ,,,,,,则其前n 项的和等于______. 19.已知数列是各项均不为的等差数列,为其前项和,且满足()221n n a S n *-=∈N.若不等式()()11181nn n n a nλ++-+⋅-≤对任意的n *∈N 恒成立,则实数的取值范围是 .20.在ABC ∆中,4a =,5b =,6c =,则sin 2sin AC=__________. 三、解答题21.如图,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D . 现测得BCD α∠=,BDC β∠=,CD s =,并在点C 测得塔顶A 的仰角为θ,求塔高AB .22.已知函数()21f x x =-. (1)若不等式121(0)2f x m m ⎛⎫+≥+> ⎪⎝⎭的解集为][(),22,-∞-⋃+∞,求实数m 的值; (2)若不等式()2232y y af x x ≤+++对任意的实数,x y R ∈恒成立,求正实数a 的最小值.23.在ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,角A 、B 、C 的度数成等差数列,13b =.(1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值.24.已知在等比数列{a n }中,2a =2,,45a a =128,数列{b n }满足b 1=1,b 2=2,且{12n n b a +}为等差数列. (1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和25.在ABC ∆ 中,内角,,A B C 的对边分别为,,a b c .已知cos 2cos 2cos A C c aB b--=(1) 求sin sin CA的值 (2) 若1cos ,24B b == ,求ABC ∆的面积. 26.设函数2()1f x mx mx =--.(1)若对于一切实数x ,()0f x <恒成立,求实数m 的取值范围; (2)若对于[1,3]x ∈,()0f x <恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】设公比为q ,由已知得()22841112a q a q a q ⋅=,即22q=,又因为等比数列{}n a 的公比为正数,所以q212a a q ===,故选D. 2.C解析:C 【解析】设等比数列的公比为q (q >1),1+(a 2-a 4)+λ(a 3-a 5)=0,可得λ=24531a a a a +--则a 8+λa 9=a 8+666929498385888222535353111a a a a a a a a a q q q a a a a a a a q a a q q --+=++=+-=------令21t q =-,(t >0),q 2=t+1,则设f (t )=()()()()()()3232622213112111t t t t t t qf t q tt t ++-+-+=='=∴-当t >12时,f (t )递增; 当0<t <12时,f (t )递减. 可得t=12处,此时f (t )取得最小值,且为274,则a 8+λa 9的最小值为274;故选C.3.A解析:A 【解析】分析:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b +++=,可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭,化简整理即可得出. 详解:,a b R +∈,由22a b ab +⎛⎫≥ ⎪⎝⎭,可得()214ab a b ≥+,又115a b a b+++=, 可得()()()214151a b a b ab a b ⎛⎫⎛⎫ ⎪++=≥++ ⎪ ⎪⎝⎭+⎝⎭, 化为()()2540a b a b +-++≤, 解得14a b ≤+≤, 则+a b 的取值范围是[]1,4. 故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.4.B解析:B 【解析】 【分析】首先画出可行域,然后结合交点坐标平移直线即可确定实数m 的最大值. 【详解】不等式组表示的平面区域如下图所示, 由2230y x x y =⎧⎨--=⎩,得:12x y =-⎧⎨=-⎩,即C 点坐标为(-1,-2),平移直线x =m ,移到C 点或C 点的左边时,直线2y x =上存在点(,)x y 在平面区域内, 所以,m ≤-1, 即实数m 的最大值为-1.【点睛】本题主要考查线性规划及其应用,属于中等题. 5.D解析:D【解析】【分析】由约束条件确定可行域,由1yx+的几何意义,即可行域内的动点与定点P(0,-1)连线的斜率求得答案.【详解】由约束条件242210x yx yx-≤⎧⎪+≤⎨⎪-≥⎩,作出可行域如图,联立10220xx y-=⎧⎨+-=⎩,解得A(112,),1yx+的几何意义为可行域内的动点与定点P(0,-1)连线的斜率,由图可知,113212PAk+==最大.故答案为32.【点睛】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于中档题型.6.B解析:B【解析】【分析】过点B作BE DC⊥于点E,过点A作AF DC⊥于点F,在ABD∆中由正弦定理求得AD,在Rt ADF∆中求得DF,从而求得灯塔CD的高度.【详解】过点B作BE DC⊥于点E,过点A作AF DC⊥于点F,如图所示,在ABD∆中,由正弦定理得,sin sinAB ADADB ABD=∠∠,即sin[90(90)]sin(90)h ADαβα=︒--︒-︒+,cossin()hADαβα∴=-,在Rt ADF∆中,cos sinsinsin()hDF ADαβββα==-,又山高为a,则灯塔CD的高度是3340cos sin22356035251sin()2hCD DF EF aαββα⨯⨯=-=-=-=-=-.故选B.【点睛】本题考查了解三角形的应用和正弦定理,考查了转化思想,属中档题.7.D解析:D【解析】设等比数列{}n a 的公比为q ,则34118a q a ==,解得12q =, ∴112n n a -=, ∴1121111222n n n n n a a +--=⨯=, ∴数列1{}n n a a +是首项为12,公比为14的等比数列,∴1223111(1)21224(1)134314n n n n a a a a a a +-++⋅⋅⋅+==-<-, ∴23k ≥.故k 的取值范围是2[,)3+∞.选D .8.D解析:D 【解析】:不等式x 2-4ax +3a 2<0(a <0)的解集为(x 1,x 2),根据韦达定理,可得:2123x x a =,x 1+x 2=4a ,那么:1212a x x x x ++=4a +13a. ∵a <0, ∴-(4a +13a ),即4a +13a ≤故1212a x x x x ++的最大值为. 故选D .点睛:本题主要考查基本不等式,其难点主要在于利用三角形的一边及这条边上的高表示内接正方形的边长.在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.9.A解析:A 【解析】 【分析】作出可行域,变形目标函数并平移直线3y x =,结合图象,可得最值. 【详解】作出x 、y 满足0404x y x y x -≥⎧⎪+-≥⎨⎪≤⎩所对应的可行域(如图ABC V ),变形目标函数可得3y x z =-,平移直线3y x =可知, 当直线经过点(2,2)A 时,截距z -取得最大值, 此时目标函数z 取得最小值3224⨯-=. 故选:A.【点睛】本题考查简单线性规划,准确作图是解决问题的关键,属中档题.10.A解析:A 【解析】 【分析】若222x y m m +>+恒成立,则2x y +的最小值大于22m m +,利用均值定理及“1”的代换求得2x y +的最小值,进而求解即可. 【详解】 由题,因为211x y+=,0x >,0y >, 所以()214422242448x y x yx y x y y x y x ⎛⎫++=+++≥+⋅=+= ⎪⎝⎭,当且仅当4x y y x =,即4x =,2y =时等号成立,因为222x y m m +>+恒成立,则228m m +<,即2280m m +-<,解得42m -<<, 故选:A 【点睛】本题考查均值不等式中“1”的代换的应用,考查利用均值定理求最值,考查不等式恒成立问题.11.B解析:B 【解析】 【分析】由1x y +=得(1)2x y ++=,再将代数式(1)x y ++与141x y++相乘,利用基本不等式可求出141x y++的最小值. 【详解】1x y +=Q ,所以,(1)2x y ++=,则1414412()[(1)]()559111x y x y x y x y y x ++=+++=++=+++…, 所以,14912x y ++…, 当且仅当4111x y y x x y +⎧=⎪+⎨⎪+=⎩,即当2313x y ⎧=⎪⎪⎨⎪=⎪⎩时,等号成立,因此,141x y ++的最小值为92, 故选B . 【点睛】本题考查利用基本不等式求最值,对代数式进行合理配凑,是解决本题的关键,属于中等题.12.D解析:D 【解析】分析:由341118a a a ++=,可得156a d +=,则化简11S =()1115a d +,即可得结果. 详解:因为341118a a a ++=, 所以可得113151856a d a d +=⇒+=, 所以11S =()111511666a d +=⨯=,故选D.点睛:本题主要考查等差数列的通项公式与等差数列的求和公式, 意在考查等差数列基本量运算,解答过程注意避免计算错误.二、填空题13.【解析】【分析】由题意得出利用累加法可求出【详解】数列满足因此故答案为:【点睛】本题考查利用累加法求数列的通项解题时要注意累加法对数列递推公式的要求考查计算能力属于中等题 解析:22n +【解析】 【分析】由题意得出12nn n a a +-=,利用累加法可求出n a .【详解】数列{}n a 满足14a =,12n n n a a +=+,*n N ∈,12nn n a a +∴-=,因此,()()()211213214222n n n n a a a a a a a a --=+-+-++-=++++L L ()121242212n n --=+=+-.故答案为:22n +. 【点睛】本题考查利用累加法求数列的通项,解题时要注意累加法对数列递推公式的要求,考查计算能力,属于中等题.14.【解析】【分析】【详解】考查等价转化能力和分析问题的能力等比数列的通项有连续四项在集合四项成等比数列公比为=-9 解析:9-【解析】 【分析】 【详解】考查等价转化能力和分析问题的能力,等比数列的通项,{}n a 有连续四项在集合{}54,24,18,36,81--,四项24,36,54,81--成等比数列,公比为32q =-,6q = -9. 15.【解析】【分析】【详解】所以所以故答案为 解析:41n -【解析】 【分析】 【详解】()()145[415]4n n q a a n n -=-=-+---+=-,124253b a ==-⨯+=-,所以()11134n n n b b q --=⋅=-⋅-,()113434n n n b --=-⋅-=⋅,所以211214334343434114n n n n b b b --++⋯+=+⋅+⋅+⋯+⋅=⋅=--,故答案为41n -.16.7【解析】试题分析:作出不等式表示的平面区域得到及其内部其中把目标函数转化为表示的斜率为截距为由于当截距最大时最大由图知当过时截距最大最大因此由于当且仅当时取等号考点:1线性规划的应用;2利解析:7【解析】试题分析:作出不等式表示的平面区域,得到及其内部,其中把目标函数转化为,表示的斜率为,截距为,由于当截距最大时,最大,由图知,当过时,截距最大,最大,因此,,由于,当且仅当时取等号,.考点:1、线性规划的应用;2、利用基本不等式求最值.17.【解析】【分析】根据等差数列中等差中项的性质将所求的再由等差数列的求和公式转化为从而得到答案【详解】因为数列均为等差数列所以【点睛】本题考查等差中项的性质等差数列的求和公式属于中档题 解析:238【解析】 【分析】根据等差数列中等差中项的性质,将所求的174417a a ab b b +=+,再由等差数列的求和公式,转化为77S T ,从而得到答案.【详解】因为数列{}n a 、{}n b 均为等差数列所以7474141422a a b b a a b b ==++ ()()1771777272a a S b b T +==+37223718⨯+==+ 【点睛】本题考查等差中项的性质,等差数列的求和公式,属于中档题.18.【解析】【分析】由题意可知此数列为将代入根据数列特点将通项公式化简利用裂项相消的求和方法即可求出前n 项和【详解】由题意可知此数列分母为以1为首项以1为公差的等差数列的前n 项和由公式可得:所以数列通项 解析:21nn + 【解析】 【分析】由题意可知此数列为1n S ⎧⎫⎨⎬⎩⎭,将n S 代入,根据数列特点,将通项公式化简,利用裂项相消的求和方法即可求出前n 项和. 【详解】由题意可知此数列分母为以1为首项,以1为公差的等差数列的前n 项和,由公式可得:()12n n n S +=,所以数列通项:()1211211nS n n n n ⎛⎫==- ⎪++⎝⎭, 求和得:122111n n n ⎛⎫-=⎪++⎝⎭.【点睛】本题考查数列通项公式与数列求和,当通项公式为分式且分母为之差为常数时,可利用裂项相消的方法求和,裂项时注意式子的恒等,有时要乘上系数.19.【解析】试题分析:由题意则当为偶数时由不等式得即是增函数当时取得最小值所以当为奇数时函数当时取得最小值为即所以综上的取值范围是考点:数列的通项公式数列与不等式恒成立的综合问题解析:77,153⎡⎤--⎢⎥⎣⎦【解析】试题分析:由题意,则, 当为偶数时由不等式()()11181nn n n a nλ++-+⋅-≤得821n n n λ-≤+,即(8)(21)n n nλ-+≤, (8)(21)8215n n y n n n-+==--是增函数,当2n =时取得最小值15-,所以15;λ≤-当为奇数时,(8)(21)8217n n n n n λ++-≤=++,函数8217y n n=++,当3n =时取得最小值为773,即77,3λ-≤所以773λ≥-,综上, 的取值范围是77,153⎡⎤--⎢⎥⎣⎦. 考点:数列的通项公式,数列与不等式恒成立的综合问题.20.【解析】【分析】【详解】试题分析:考点:正余弦定理解三角形 解析:1【解析】 【分析】 【详解】试题分析:222sin 22sin cos 2cos 44cos 1sin sin 332A A A a A b c a A C C c bc+-====⨯=考点:正余弦定理解三角形三、解答题21.tan sin sin()s θβαβ⋅+【解析】 【分析】 【详解】 在△BCD 中,CBD παβ∠=--.由正弦定理得,sin sin BC CDBDC CBD=∠∠所以sin sin CD BDCBC CBD∠=∠sin .sin()s βαβ⋅=+在Rt △ABC 中,tan AB BC ACB =∠tan sin .sin()s θβαβ⋅=+塔高AB 为tan sin sin()s θβαβ⋅+.22.(1) 32m =;(2)4. 【解析】试题分析:(Ⅰ)先根据绝对值定义解不等式解集为][(),22,-∞-⋃+∞,再根据解集相等关系得122m +=,解得32m =.(Ⅱ)不等式恒成立问题,一般转化为对应函数最值问题,即()max212322y yax x --+≤+,根据绝对值三角不等式可得()max21234x x --+=,再利用变量分离转化为对应函数最值问题:()max242y ya ⎡⎤≥-⎣⎦,根据基本不等式求最值: ()()224224242y yy y ⎡⎤+-⎢⎥-≤=⎢⎥⎣⎦,因此4a ≥,所以实数a 的最小值为4.试题解析:(Ⅰ)由题意知不等式221(0)x m m ≤+>的解集为][(),22,-∞-⋃+∞. 由221x m ≤+,得1122m x m --≤≤+, 所以,由122m +=,解得32m =. (Ⅱ)不等式()2232y y a f x x ≤+++等价于212322yya x x --+≤+, 由题意知()max212322y yax x --+≤+. 因为()()212321234x x x x --+≤--+=, 所以242y y a +≥,即()242y y a ⎡⎤≥-⎣⎦对任意y R ∈都成立,则()max 242y ya ⎡⎤≥-⎣⎦.而()()224224242y y y y⎡⎤+-⎢⎥-≤=⎢⎥⎣⎦,当且仅当242y y =-,即1y =时等号成立, 故4a ≥,所以实数a 的最小值为4. 23.(1)4c =;(2) 【解析】 【分析】 【详解】(1) 由角,,A B C 的度数成等差数列,得2B A C =+. 又,3A B C B ππ++=∴=.由正弦定理,得34c a =,即34ca =. 由余弦定理,得2222cos b a c ac B =+-,即22331132442c c c c ⎛⎫=+-⨯⨯⨯ ⎪⎝⎭,解得4c =. (2)由正弦定理,得,.sin sin sin a c b a A c C A C B ====∴==)()sin sin sin sin sin sin 3a c A C A A B A A π⎤⎛⎫⎤∴+=+=++=++ ⎪⎥⎦⎝⎭⎦3sin sin cos 226A A A π⎫⎛⎫=+=+⎪ ⎪⎪⎝⎭⎭. 由203A π<<,得5666A πππ<+<. 所以当62A ππ+=,即3A π=时,()max a c +=【方法点睛】解三角形问题基本思想方法:从条件出发,利用正弦定理(或余弦定理)进行代换、转化.逐步化为纯粹的边与边或角与角的关系,即考虑如下两条途径:①统一成角进行判断,常用正弦定理及三角恒等变换;②统一成边进行判断,常用余弦定理、面积公式等. 24.(1)1232;2,122n n n n a b n n --==-⋯(=,,);(2)213312442n n T n n -=+-+. 【解析】 【分析】(1)根据等比数列的性质得到7a =64,2a =2,进而求出公比,得到数列{a n }的通项,再由等差数列的公式得到结果;(2)根据第一问得到通项,分组求和即可.【详解】(1)设等比数列{a n }的公比为q .由等比数列的性质得a 4a 5=27a a =128,又2a =2,所以7a =64.所以公比2q ===. 所以数列{a n }的通项公式为a n =a 2q n -2=2×2n -2=2n -1. 设等差数列{12n n b a +}的公差为d . 由题意得,公差221111113221122222d b a b a ⎛⎫⎛⎫⎛⎫⎛⎫=+-+=+⨯-+⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 所以等差数列{12n n b a +}的通项公式为()()11113331122222n n b a b a n d n n ⎛⎫+=++-=+-⋅= ⎪⎝⎭.所以数列{b n }的通项公式为12313132222222n n n n b n a n n --=-=-⋅=-(n =1,2,…). (2)设数列{b n }的前n 项和为T n .由(1)知,2322n n b n -=-(n =1,2,…). 记数列{32n }的前n 项和为A ,数列{2n -2}的前n 项和为B ,则 ()33322124n n A n n ⎛⎫+ ⎪⎝⎭==+,()1112122122nn B --==--. 所以数列{b n }的前n 项和为()1213133112242442n n n T A B n n n n --=-=+-+=+-+. 【点睛】这个题目考查了数列的通项公式的求法,以及数列求和的应用,常见的数列求和的方法有:分组求和,错位相减求和,倒序相加等. 25.(1)sin 2sin C A = (2【解析】 【分析】(1)正弦定理得边化角整理可得()()sin 2sin A B B C +=+,化简即得答案. (2)由(1)知sin 2sin c C a A ==,结合题意由余弦定理可解得1a =,sin 4B =,从而计算出面积. 【详解】(1)由正弦定理得2sin ,2sin ,2sin a R A b R b c R C ===, 所以cos cos 22sin sin cos sin A C c a C AB b B---==即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=- 即有()()sin 2sin A B B C +=+,即sin 2sin C A = 所以sin 2sin CA= (2)由(1)知sin 2sin c C a A==,即2c a =, 又因为2b = ,所以由余弦定理得:2222cos b c a ac B =+-,即222124224a a a a =+-⨯⨯,解得1a =,所以2c =,又因为1cos 4B =,所以sin B =,故ABC ∆的面积为11sin 1222ac B =⨯⨯⨯4=4. 【点睛】正弦定理与余弦定理是高考的重要考点,本题主要考查由正余弦定理解三角形,属于一般题.26.(1) 40m -<≤.(2) 16m < 【解析】 【分析】(1)利用判别式可求实数m 的取值范围,注意二次项系数的讨论.(2)就0,0,0m m m <=>三种情况讨论函数的最值后可得实数m 的取值范围. 【详解】解:(1)要使210mx mx --<恒成立, 若0m =,显然10-<;若0m ≠,则有2040m m m <⎧⎨∆=+<⎩,40m ∴-<<, ∴40m -<≤.(2)当0m =时,()10f x =-<显然恒成立;当0m ≠时,该函数的对称轴是12x =,2()1f x mx mx =--在[1,3]x ∈上是单调函数. 当0m >时,由于(1)10f =-<,要使()0f x <在[1,3]x ∈上恒成立,只要(3)0f <即可,即9310m m --<得16m <,即106m <<; 当0m <时,由于函数()0f x <在[1,3]x ∈上恒成立,只要(1)0f <即可,此时(1)10f=-<显然成立.综上可知16m<.【点睛】一元二次不等式的恒成立问题,可以转化为函数的最值进行讨论,必要时需要考虑对称轴的不同位置.。
【必考题】高中三年级数学下期中试卷含答案一、选择题1.已知数列121,,,4a a 成等差数列,1231,,,,4b b b 成等比数列,则212a ab -的值是 ( ) A .12B .12-C .12或12- D .142.已知数列{}n a 的前n 项和为n S ,且1142n n a -⎛⎫=+- ⎪⎝⎭,若对任意*N n ∈,都有()143n p S n ≤-≤成立,则实数p 的取值范围是( )A .()2,3B .[]2,3C .92,2⎡⎤⎢⎥⎣⎦D .92,2⎡⎫⎪⎢⎣⎭3.若0a b <<,则下列不等式恒成立的是 A .11a b> B .a b -> C .22a b > D .33a b <4.已知数列{}n a 的前n 项和为n S ,1112n n a S a +=,=, 则n S =( )A .12n -B .13()2n -C .12()3n - D .112n - 5.已知等比数列{}n a ,11a =,418a =,且12231n n a a a a a a k +++⋅⋅⋅+<,则k 的取值范围是( ) A .12,23⎡⎤⎢⎥⎣⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .12,23⎡⎫⎪⎢⎣⎭D .2,3⎡⎫+∞⎪⎢⎣⎭6.已知不等式2230x x --<的解集为A ,260x x +-<的解集为B ,不等式2+0x ax b +<的解集为A B I ,则a b +=( )A .-3B .1C .-1D .37.某校运动会开幕式上举行升旗仪式,旗杆正好处在坡度的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为和,第一排和最后一排的距离为56米(如图所示),旗杆底部与第一排在同一个水平面上.若国歌长度约为秒,要使国歌结束时国旗刚好升到旗杆顶部,升旗手升旗的速度应为()(米 /秒)A .110B .310C .12D .7108.若不等式1221m x x≤+-在()0,1x ∈时恒成立,则实数m 的最大值为( ) A .9B .92C .5D .529.“中国剩余定理”又称“孙子定理”1852年英国来华传教士伟烈亚力将《孙子算经》中“物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{}n a ,则此数列的项数为( ) A .134B .135C .136D .13710.在等差数列 {}n a 中, n S 表示 {}n a 的前 n 项和,若 363a a += ,则 8S 的值为( )A .3B .8C .12D .2411.已知x ,y 均为正实数,且111226x y +=++,则x y +的最小值为( ) A .20B .24C .28D .3212.已知a >0,x ,y 满足约束条件1{3(3)x x y y a x ≥+≤≥-,若z=2x+y 的最小值为1,则a=A .B .C .1D .2二、填空题13.如图,在ABC V 中,,43C BC π==时,点D 在边AC 上, AD DB =,DE AB ⊥,E 为垂足若22DE =cos A =__________14.已知锐角三角形的边长分别为1,3,a ,则a 的取值范围是__________. 15.已知0a >,0b >,且31a b +=,则43a b+的最小值是_______. 16.等差数列{}n a 前9项的和等于前4项的和.若141,0k a a a =+=,则k = . 17.若数列{}n a 满足11a =,()()11132nn n n a a -+-+=⋅ ()*n N ∈,数列{}n b 的通项公式()()112121n n nn a b ++=-- ,则数列{}n b 的前10项和10S =___________18.若变量x ,y 满足22390x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则z =2x +y 的最大值是_____.19.若数列{}n a 通项公式是12,123,3n n n n a n --⎧≤≤=⎨≥⎩,前n 项和为n S ,则lim n n S →∞=______. 20.设a ∈R ,若x >0时均有[(a -1)x -1]( x 2-ax -1)≥0,则a =__________.三、解答题21.在四边形ABCD 中,120BAD ︒∠=,60BCD ︒∠=,1cos 7D =-,2AD DC ==.(1) 求cos DAC ∠及AC 的长; (2) 求BC 的长.22.在等比数列{}n a 中,125a a +=,且2320a a +=. (1)求{}n a 的通项公式;(2)求数列{}3n n a a +的前n 项和n S . 23.已知0a >,0b >,且1a b +=.(1)若ab m ≤恒成立,求m 的取值范围; (2))若41212x x a b+≥--+恒成立,求x 的取值范围. 24.已知,,a b c 分别是ABC △的角,,A B C 所对的边,且222,4c a b ab =+-=. (1)求角C ;(2)若22sin sin sin (2sin 2sin )B A C A C -=-,求ABC △的面积.25.设数列{}n a 满足12a = ,12nn n a a +-= ;数列{}n b 的前n 项和为n S ,且2132n S n n =-()(1)求数列{}n a 和{}n b 的通项公式;(2)若n n n c a b = ,求数列{}n c 的前n 项和n T . 26.已知数列{}n a 满足:1=1a ,()*11,2,n n n a n a n N a n ++⎧=∈⎨⎩为奇数为偶数设21n n b a -=. (1)证明:数列{}2n b +为等比数列; (2)求数列3+2n n b ⎧⎫⎨⎬⎩⎭的前n 项和n S .【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】由题意可知:数列1,a 1,a 2,4成等差数列,设公差为d , 则4=1+3d ,解得d =1, ∴a 1=1+2=2,a 2=1+2d =3.∵数列1,b 1,b 2,b 3,4成等比数列,设公比为q , 则4=q 4,解得q 2=2, ∴b 2=q 2=2.则21221122a ab --==. 本题选择A 选项.2.B解析:B【解析】011111444222n n S -⎛⎫⎛⎫⎛⎫=+-++-+⋅⋅⋅++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11221244133212nnn n ⎛⎫-- ⎪⎛⎫⎝⎭=+=+-⋅- ⎪⎛⎫⎝⎭-- ⎪⎝⎭()143n p S n ≤-≤Q即22113332n p ⎛⎫⎛⎫≤-⋅-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭对任意*n N ∈都成立, 当1n =时,13p ≤≤ 当2n =时,26p ≤≤当3n =时,443p ≤≤ 归纳得:23p ≤≤故选B点睛:根据已知条件运用分组求和法不难计算出数列{}n a 的前n 项和为n S ,为求p 的取值范围则根据n 为奇数和n 为偶数两种情况进行分类讨论,求得最后的结果3.D解析:D 【解析】 ∵0a b << ∴设1,1a b =-= 代入可知,,A B C 均不正确对于D ,根据幂函数的性质即可判断正确 故选D4.B解析:B 【解析】 【分析】利用公式1n n n a S S -=-计算得到11323,2n n n n S S S S ++==,得到答案. 【详解】由已知1112n n a S a +==,,1n n n a S S -=-得()12n n n S S S -=-,即11323,2n n n n S S S S ++==, 而111S a ==,所以13()2n n S -=.故选B. 【点睛】本题考查了数列前N 项和公式的求法,利用公式1n n n a S S -=-是解题的关键.5.D解析:D 【解析】设等比数列{}n a 的公比为q ,则34118a q a ==,解得12q =, ∴112n n a -=, ∴1121111222n n n n n a a +--=⨯=, ∴数列1{}n n a a +是首项为12,公比为14的等比数列,∴1223111(1)21224(1)134314n n n n a a a a a a +-++⋅⋅⋅+==-<-, ∴23k ≥.故k 的取值范围是2[,)3+∞.选D .6.A解析:A 【解析】 【分析】根据题意先求出集合,A B ,然后求出=1,2A B -I (),再根据三个二次之间的关系求出,a b ,可得答案.【详解】由不等式2230x x --<有13x -<<,则(1,3)A =-. 由不等式260x x +-<有,则32x -<<,则(3,2)B =-. 所以=1,2A B -I ().因为不等式2+0x ax b +<的解集为A B I , 所以方程2+=0x ax b +的两个根为1,2-.由韦达定理有:1212a b -+=-⎧⎨-⨯=⎩,即=12a b -⎧⎨=-⎩. 所以3a b +=-. 故选:A. 【点睛】本题考查二次不等式的解法和三个二次之间的关系,属于中档题.7.B解析:B 【解析】试题分析: 如下图:由已知,在ABC ∆中,105,45,56ABC ACB BC ∠=∠==o o ,从而可得:30BAC ∠=o 由正弦定理,得:56sin 45AB =o 103AB ∴=那么在Rt ADB ∆中,60ABD o ∠=,3sin 6010315AD AB ∴===o , 即旗杆高度为15米,由3155010÷=,知:升旗手升旗的速度应为310(米 /秒). 故选B .考点:解三角形在实际问题中的应用.8.B解析:B 【解析】 【分析】设f (x )1221x x=+-,根据形式将其化为f (x )()1152221x x x x-=++-.利用基本不等式求最值,可得当且仅当x 13=时()11221x x x x-+-的最小值为2,得到f (x )的最小值为f(13)92=,再由题中不等式恒成立可知m ≤(1221x x +-)min ,由此可得实数m 的最大值. 【详解】解:设f (x )11222211x x x x=+=+--(0<x <1) 而1221x x+=-[x +(1﹣x )](1221x x +-)()1152221x x x x -=++- ∵x ∈(0,1),得x >0且1﹣x >0∴()11221x x x x -+≥-=2, 当且仅当()112211x x x x -==-,即x 13=时()11221x x x x -+-的最小值为2 ∴f (x )1221x x =+-的最小值为f (13)92= 而不等式m 1221x x ≤+-当x ∈(0,1)时恒成立,即m ≤(1221x x+-)min 因此,可得实数m 的最大值为92故选:B . 【点睛】本题给出关于x 的不等式恒成立,求参数m 的取值范围.着重考查了利用基本不等式求函数的最值和不等式恒成立问题的处理等知识,属于中档题.9.B解析:B 【解析】 【分析】由题意得出1514n a n =-,求出15142019n a n =-≤,即可得出数列的项数. 【详解】因为能被3除余1且被5除余1的数就是能被15整除余1的数,故1514n a n =-.由15142019n a n =-≤得135n ≤,故此数列的项数为135,故答案为B.【点睛】本题主要考查阅读能力及建模能力、转化与化归思想及等差数列的通项公式及数学的转化与化归思想.属于中等题.10.C解析:C 【解析】 【分析】由题意可知,利用等差数列的性质,得18363a a a a +=+=,在利用等差数列的前n 项和公式,即可求解,得到答案。
【常考题】高中三年级数学下期中试题(及答案)(1)一、选择题1.已知点(),M a b 与点()0,1N -在直线3450x y -+=的两侧,给出以下结论:①3450a b -+>;②当0a >时,+a b 有最小值,无最大值;③221a b +>;④当0a >且1a ≠时,11b a +-的取值范围是93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,正确的个数是( ) A .1B .2C .3D .42.已知数列{}n a 的前n 项和为n S ,且1142n n a -⎛⎫=+- ⎪⎝⎭,若对任意*N n ∈,都有()143n p S n ≤-≤成立,则实数p 的取值范围是( )A .()2,3B .[]2,3C .92,2⎡⎤⎢⎥⎣⎦D .92,2⎡⎫⎪⎢⎣⎭3.等比数列{}n a 的前n 项和为n S ,若36=2S =18S ,,则105S S 等于( ) A .-3B .5C .33D .-314.“干支纪年法”是中国历法上自古以来就一直使用的纪年方法,干支是天干和地支的总称,把干支顺序相配正好六十为一周,周而复始,循环记录,这就是俗称的“干支表”甲、乙、丙、丁、戊、己、庚、辛、癸等十个符号叫天干,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥等十二个符号叫地支,如公元1984年农历为甲子年,公元1985年农历为乙丑年,公元1986年农历为丙寅年,则公元2047年农历为 A .乙丑年B .丙寅年C .丁卯年D .戊辰年5.已知数列{}n a 的前n 项和为n S ,点(,3)n n S +*()n N ∈在函数32xy =⨯的图象上,等比数列{}n b 满足1n n n b b a ++=*()n N ∈,其前n 项和为n T ,则下列结论正确的是( )A .2n n S T =B .21n n T b =+C .n n T a >D .1n n T b +<6.已知数列{}n a 的前n 项和为n S ,且()*21n n S a n N =-∈,则5a 等于( )A .16-B .16C .31D .327.已知等比数列{}n a 的各项均为正数,且564718a a a a +=,则313233310log log log log a a a a +++⋅⋅⋅+=( )A .10B .12C .31log 5+D .32log 5+8.设{}n a 是首项为1a ,公差为-1的等差数列,n S 为其前n 项和,若124,,S S S 成等比数列,则1a =( ) A .2B .-2C .12D .12-9.若函数1()(2)2f x x x x =+>-在x a =处取最小值,则a 等于( ) A .3B.1C.1+D .410.已知数列{a n } 满足a 1=1,且111()(233n n n a a n -=+≥,且n ∈N*),则数列{a n }的通项公式为( )A .32nn a n =+B .23n n n a +=C .a n =n+2D .a n =( n+2)·3n11.若0,0x y >>,且211x y+=,227x y m m +>+恒成立,则实数m 的取值范围是( ) A .(8,1)-B .(,8)(1,)-∞-⋃+∞C .(,1)(8,)-∞-⋃+∞D .(1,8)-12.已知正项数列{}n a*(1)()2n n n a n N ++=∈,则数列{}n a 的通项公式为( ) A .n a n =B .2n a n =C .2n na =D .22n n a =二、填空题13.等比数列{}n a 的首项为1a ,公比为q ,1lim 2n n S →∞=,则首项1a 的取值范围是____________.14.计算:23lim 123n n nn→+∞-=++++________15.已知n S 是数列{}n a 的前n 项和,122n n S a +=-,若212a =,则5S =__________. 16.已知n S 为数列{}n a 的前n 项和,且13a =,131n n a S +=+,*n ∈N ,则5S =______.17.已知实数,x y 满足102010x y x y x y ++≥⎧⎪-≥⎨⎪--≤⎩,则目标函数2z x y =+的最大值为____.18.在△ABC 中,已知sinA:sinB:sinC=3:5:7,则此三角形最大内角的大小..为________.19.若两个正实数,x y 满足141x y +=,且不等式234yx m m +<-有解,则实数m 的取值范围是____________ .20.如图所示,在平面四边形ABCD中,AB =,BC =,AB AD ⊥,AC CD ⊥,3AD AC =,则AC =__________.三、解答题21.已知函数()21f x x =-.(1)若不等式121(0)2f x m m ⎛⎫+≥+> ⎪⎝⎭的解集为][(),22,-∞-⋃+∞,求实数m 的值; (2)若不等式()2232y y af x x ≤+++对任意的实数,x y R ∈恒成立,求正实数a 的最小值.22.在ABC ∆中,,A B C 的对边分别,,a b c ,若()2sin(2)()26f x x f C π=+=-,,7c =,sin B =2sin A ,(1)求C (2)求a 的值.23.已知函数()2sin(2)(||)2f x x πϕϕ=+<部分图象如图所示.(1)求ϕ值及图中0x 的值;(2)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,已知7,()2,c f C ==-sin B =2sin A ,求a 的值.24.已知数列{n a }的前n 项和1*1()2()2n n n S a n N -=--+∈,数列{n b }满足n b =2n n a .(I)求证数列{n b }是等差数列,并求数列{n a }的通项公式; (Ⅱ)设2log n n n c a =,数列{22n n c c +}的前n 项和为T n ,求满足*25()21n T n N <∈的n 的最大值.25.已知函数()[)22,1,x x af x x x++=∈+∞.(1)当12a =时,求函数()f x 的最小值; (2)若对任意[)1,x ∈+∞,()0f x >恒成立,试求实数a 的取值范围.26.ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos cos a C c A a +=. (1)求证:A B =; (2)若6Aπ=,ABC 的面积为3,求ABC 的周长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】∵点M (a ,b )与点N (0,−1)在直线3x −4y +5=0的两侧,∴()()34530450a b -+⨯++<,即3450a b -+<,故①错误; 当0a >时,54a b +>,a +b 即无最小值,也无最大值,故②错误; 设原点到直线3x −4y +5=0的距离为d ,则22513(4)==+-d ,则22a b +>1,故③正确;当0a >且a ≠1时,11b a +-表示点M (a ,b )与P (1,−1)连线的斜率. ∵当0a =,b =54时,51194114b a ++==---,又直线3x −4y +5=0的斜率为34, 故11b a +-的取值范围为93,,44⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭,故④正确.∴正确命题的个数是2个. 故选B.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意z 前面的系数为负时,截距越大,z 值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.2.B解析:B 【解析】11111444222n n S -⎛⎫⎛⎫⎛⎫=+-++-+⋅⋅⋅++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11221244133212nnn n ⎛⎫-- ⎪⎛⎫⎝⎭=+=+-⋅- ⎪⎛⎫⎝⎭-- ⎪⎝⎭()143n p S n ≤-≤即22113332n p ⎛⎫⎛⎫≤-⋅-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭对任意*n N ∈都成立, 当1n =时,13p ≤≤ 当2n =时,26p ≤≤当3n =时,443p ≤≤ 归纳得:23p ≤≤故选B点睛:根据已知条件运用分组求和法不难计算出数列{}n a 的前n 项和为n S ,为求p 的取值范围则根据n 为奇数和n 为偶数两种情况进行分类讨论,求得最后的结果3.C解析:C 【解析】 【分析】由等比数列的求和公式结合条件求出公比,再利用等比数列求和公式可求出105S S . 【详解】设等比数列{}n a 的公比为q (公比显然不为1),则()()61636333111119111a q S q q q S qa q q---===+=---,得2q ,因此,()()101105510555111111233111a q S q q q S q a qq---===+=+=---,故选C. 【点睛】本题考查等比数列基本量计算,利用等比数列求和公式求出其公比,是解本题的关键,一般在求解等比数列问题时,有如下两种方法:(1)基本量法:利用首项和公比列方程组解出这两个基本量,然后利用等比数列的通项公式或求和公式来进行计算;(2)性质法:利用等比数列下标有关的性质进行转化,能起到简化计算的作用.4.C解析:C 【解析】记公元1984年为第一年,公元2047年为第64年,即天干循环了十次,第四个为“丁”,地支循环了五次,第四个为“卯”,所以公元2047年农历为丁卯年. 故选C.5.D解析:D 【解析】 【分析】 【详解】由题意可得:332,323n nn n S S +=⨯=⨯- ,由等比数列前n 项和的特点可得数列{}n a 是首项为3,公比为2的等比数列,数列的通项公式:132n n a -=⨯ ,设11n nb b q -= ,则:111132n n n b q b q --+=⨯ ,解得:11,2b q == ,数列{}n b 的通项公式12n nb -= ,由等比数列求和公式有:21nn T =- ,考查所给的选项:13,21,,n n n n n n n n S T T b T a T b +==-<< .本题选择D 选项.6.B解析:B 【解析】 【分析】令1n =,由11a S =可求出1a 的值,再令2n ≥,由21n n S a =-得出1121n n S a --=-,两式相减可得出数列{}n a 为等比数列,确定出该数列的公比,利用等比数列的通项公式可求出5a 的值. 【详解】当1n =时,1121S a =-,即1121a a =-,解得11a =;当2n ≥时,由21n n S a =-,得1121n n S a --=-,两式相减得122n n n a a a -=-,得12n n a a -=.所以,数列{}n a 是以1为首项,以2为公比的等比数列,则451216a =⨯=,故选:B. 【点睛】本题考查利用n S 来求通项n a ,一般利用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,同时也要注意等差数列和等比数列定义的应用,考查运算求解能力,属于中等题.7.A解析:A 【解析】 【分析】利用对数运算合并,再利用等比数列{}n a 的性质求解。