2018年高中数学会考题
- 格式:doc
- 大小:772.00 KB
- 文档页数:16
2018-2019年福建数学高二水平会考真题及答案解析班级:___________ 姓名:___________ 分数:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题1.函数在处的切线方程是()A.B.C.D.【答案】A【解析】试题分析:∵,∴切线的斜率,切点坐标(0,1)∴切线方程为y-1=-(x-0),即x+y-1=0.故选A.考点:导数的几何意义;函数的求导运算.2.执行右面的程序框图,如果输入的N是6,那么输出的p是( )A.120B.720C.1440D.5040【答案】B试题分析:第一次循环:,第二次循环:,第三次循环:,第四次循环:,第五次循环:,第六次循环:此时条件不成立,输出,选B.考点:本题考查了循环程序框图的运用点评:正确读懂程序框图的含义是解决此类问题的关键,属基础题3.根据右边给出的数塔猜测1234569+8=()A.1111110B.1111111C.1111112D.1111113【答案】C【解析】试题分析:由图得:,所以。
故选C。
考点:归纳推理点评:做归纳推理的题目,关键是寻找给出事实中的规律。
4.用反证法证明命题“,如果能被整除,那么至少有一个能被整除”,则假设内容是().都能被整除.都不能被整除.不能被整除.有1个不能被整除【答案】B【解析】试题分析:根据题意,反证法证明命题“,如果能被整除,那么至少有一个能被整除”,将结论变为否定即可,即为都不能被整除,故选B.考点:反证法点评:主要是考查了反证法证明命题时,将结论变为否定,推理论证即可。
属于基础题。
5.在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B试题分析:根据题意,由于,由于实部小于零,虚部大于零可知点位于第二象限,故选B.考点:复数的运算以及几何意义点评:主要是考查了负数的运算以及几何意义的运用,属于基础题。
2018年云南高中会考数学真题及答案(满分100分,考试时间120分钟)参考公式: 圆锥的侧面积公式Rl S π=圆锥侧,其中R 是圆锥的底面半径,l 是圆锥的母线长. 圆锥的体积公式S 31V =圆锥h , 其中S 是圆锥的底面面积,h 是圆锥的高.第Ⅰ卷一、选择题:(共20个小题,每小题3分,共60分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案前 的字母按规定要求涂抹在“机读答题卡”第1—20题的相应位置上。
1. 设全集I {0,1,2,3}=,集合{0,1,2}M =,{0,2,3}N =,则=N C M I ( )A .{1}B .{2,3}C .{0,1,2}D .∅2. 在等比数列}{n a 中,,8,1685=-=a a 则=11a ( ) A. 4- B. 4± C. 2- D. 2±3. 下列四个函数中,在区间(0,)+∞上是减函数的是 ( )A .3log y x =B .3xy = C .12y x =D .1y x=4. 若54sin =α,且α为锐角,则αtan 的值等于 ( ) A .53B .53-C .34D .34-5.在ABC ∆中,,4,2,2π=∠==A b a 则=∠B ( )A.3π B. 6π C. 6π或65π D. 3π或32π6. 等差数列{}n a 中,若99=S ,则=+65a a( )A.0B.1C.2D.3俯视图7. 若b a c b a >∈,R 、、,则下列不等式成立的是 ( )A.b a 11< B.22b a > C.1122+>+c bc a D.||||c b c a > 8. 已知二次函数2()(2)1f x x =-+,那么 ( )A .(2)(3)(0)f f f <<B .(0)(2)(3)f f f <<C .(0)(3)(2)f f f <<D .(2)(0)(3)f f f <<9.若函数()35191x x f x x x +≤⎧=⎨-+>⎩,则()f x 的最大值为 ( ) A .9B .8C .7D .610.在下列命题中,正确的是 ( )A .垂直于同一个平面的两个平面互相平行B .垂直于同一个平面的两条直线互相平行C .平行于同一个平面的两条直线互相平行D .平行于同一条直线的两个平面互相平行 11.已知0x >,函数xx y 1+=的最小值是 ( ) A.1 B. 2 C. 3 D.4 12. 随机调查某校50个学生在“六一”儿童节的午餐费,结果如下表:这50( ) A.2.4,56.0 B.2.4,56.0 C.4,6.0 D.4,6.0 13. 下列命题中正确命题个数为 ( )○1⋅=⋅a b b a ○20,,⋅=≠⇒00a b a b = ○3⋅=⋅a b b c 且,,≠≠00a b 则=a c ○4,,,≠≠≠000a b c 则()()⋅⋅=⋅⋅a b c a b c A.0 B.1 C.2 D.314.函数x x y 2cos 2sin =是 ( )A .周期为2π的奇函数 B .周期为2π的偶函数 C .周期为π的奇函数 D .周期为π的偶函数15. 如图,一个空几何体的正视图(或称主视图)与侧视图(或称左视图)为全等的等边三角形,俯视图为一个半径为1的圆,那么这个几何体的全面积为( ) A .π B .3πC .2πD .3π+16.已知y x ,满足⎪⎩⎪⎨⎧≤-+≥≥.022,0,0y x y x 则y x z +=的最大值是 ( )A.1B. 1C. 2D.317.以点(2,-1)为圆心且与直线0543=+-y x 相切的圆的方程为 ( )A.3)1()2(22=++-y xB.3)1()2(22=-++y xC.9)1()2(22=++-y xD.9)1()2(22=-++y x 18. 已知()3,4=a ,()2,1=-b 且()()x +⊥-a b a b ,则x 等于 ( ) A.23 B.232 C.233 D.23419. 要得到函数)42sin(π-=x y 的图象,只要将函数x y 2sin =的图象 ( )A .向左平移4π个单位; B . 向右平移4π个单位;C .向左平移8π个单位; D .向右平移8π个单位。
2018-2019年江西高二水平数学会考真题及答案班级:___________ 姓名:___________ 分数:___________题号一二三总分得分1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题1.下面四个命题中正确命题的个数是()①;②任何一个集合必有两个或两个以上的子集;③空集没有子集;④空集是任何一个集合的子集。
A.0个B.1个C.2个D.3个【答案】B【解析】试题分析:①是不含有任何元素的集合,含有元素0,故错误;②含有个元素的集合共有个子集,而,故错误;③空集是它本身的子集,故错误;④空集是任何一个集合的子集,故正确.考点:命题真假的判定.2.下列表示图书借阅的流程正确的是()A.入库阅览借书找书出库还书B.入库找书阅览借书出库还书C.入库阅览借书找书还书出库D.入库找书阅览借书还书出库【答案】B【解析】试题分析:流程图是由图形符号和文字说明构成的图示,流程图可以用来表示一些动态过程,它可直观、明确的表示动态过程的开始到结束的全部步骤。
在绘制流程图之前,要弄清实际问题的解决步骤和事物发展的过程。
可以按以下步骤:①将实际问题的过程划分为若干个步骤;②理清各部分之间的顺序关系;③用简洁的语言表述各步骤;④绘制流程图,并检查是否符合实际问题。
本题是一个图书借阅的流程,把借书的过程分为以上6个步骤,正确的顺序为B选项。
考点:框图中流程图的相关概念3.已知向量,,且,那么等于()A.B.C.D.【答案】A【解析】试题分析:因为,所以,所以,所以,解得,所以,选答案A.考点:空间向量平行的坐标关系.4.与圆都相切的直线有()A.1条B.2条C.3条D.4条【答案】A【解析】试题分析:两圆方程配方得:,,∴圆心距=,∴圆和圆相内切,所以与两圆都相切的直线有1条.考点:平面内两个圆的位置关系.5.下面是2×2 列联表x y y1y2合计x1a21 73x22 25 27 合计b46 100 则表中a 、b处的值分别为()A.94 、96 B.52 、50 C.52 、54 D.54 、52【答案】C【解析】试题分析:根据列联表可知四个变量之间的关系,在每一行中,前两个数字的和等于最后一个数字,在每一列中,前两个数字的和等于最后一个数字,根据这种关系得到结果解:根据列联表可知,∵a+21=73,∴a=52.又∵a+2=b,∴b=54.故答案为C考点:列联表点评:本题是一个列联表的应用,是两个变量之间的关系的判断依据,是一个简单问题,本题可以出在选择和填空中,是一个送分题目.6.设为虚数单位,则复数的虚部为()A.-4B.-4i C.4D.4i【答案】A【解析】试题分析:∵,其虚部为-4,∴复数的虚部为-4,故选A考点:本题考查了复数的概念及运算点评:熟练掌握复数的概念与运算法则是解决此类问题的关键,属基础题7.函数有()A.极小值-1,极大值1B.极小值-2,极大值3C.极小值-1,极大值3D.极小值-2,极大值2【答案】C【解析】试题分析:∵,∴,令得,令得,令得,根据极值的概念知,当时,函数y有极大值3,当时,函数y有极小值-1,故选C考点:本题考查了极值的求法点评:当函数在点处连续时,如果在附近的左侧>0,右侧<0,那么是极大值;如果在附近的左侧<0,右侧>0,那么是极小值.8.函数y=xlnx在区间(0,1)上是()A.单调增函数B.单调减函数C.在(0,)上是减函数,在(,1)上是增函数D.在(0,)上是增函数,在(,1)上是减函数【答案】C【解析】试题分析:因为y=xlnx,所以由>0,得,;由<0,得,,即函数在(0,)上是减函数,在(,1)上是增函数,故选C。
2018年北京市春季普通高中会考数学试卷一、在每小题给出的四个备选答案中,只有一项是符合题目要求的.1.(3分)已知集合A={1,2,3},B={1,2},那么A∩B等于()A.{3}B.{1,2}C.{1,3}D.{1,2,3}2.(3分)已知直线l经过两点P(1,2),Q(4,3),那么直线l的斜率为()A.﹣3 B.C.D.33.(3分)对任意,下列不等式恒成立的是()A.x2>0 B.C. D.lgx>04.(3分)已知向量,,且,那么x的值是()A.2 B.3 C.4 D.65.(3分)给出下列四个函数①;②y=|x|;③y=lgx;④y=x3+1,其中奇函数的序号是()A.①B.②C.③D.④6.(3分)要得到函数的图象,只需将函数y=sinx的图象()A.向左平移个单位B.向右平移个单位C.向上平移个单位D.向下平移个单位7.(3分)某程序框图如图所示,那么执行该程序后输出S的值是()8.(3分)设数列{a n}的前项和为S n,如果a1=1,a n+1=﹣2a n(n∈N*),那么S1,S2,S3,S4中最小的是()A.S1B.S2C.S3D.S49.(3分)等于()A.1 B.2 C.5 D.610.(3分)如果α为锐角,,那么sin2α的值等于()A.B.C.D.11.(3分)已知a>0,b>0,且a+2b=8,那么ab的最大值等于()A.4 B.8 C.16 D.3212.(3分)cos12°cos18°﹣sin12°sin18°的值等于()A.B.C.D.13.(3分)共享单车为人们提供了一种新的出行方式,有关部门对使用共享单车人群的年龄分布进行了统计,得到的数据如表所示:为调查共享单车使用满意率情况,线采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取20﹣30岁的人数为()A.12 B.28 C.69 D.9114.(3分)某几何体的三视图如图所示,其中正视图与侧视图均为正方形,俯视图为圆,那么这个几何体的表面积是()15.(3分)已知向量满足,,,那么向量的夹角为()A.30°B.60°C.120° D.150°16.(3分)某学校高一年级计划在开学第二周的星期一至星期五进行“生涯规划”体验活动,要求每名学生选择连续的两天参加体验活动,那么某学生随机选择的连续两天中,有一天是星期二的概率为()A.B.C.D.17.(3分)函数的零点个数为()A.0 B.1 C.2 D.318.(3分)已知圆M:x2+y2=2与圆N:(x﹣1)2+(y﹣2)2=3,那么两圆的位置关系是()A.内切B.相交C.外切D.外离19.(3分)如图,平面区域(阴影部分)对应的不等式组是()A. B.C. D.20.(3分)在△ABC中,,那么sinA等于()A.B.C.D.21.(3分)《九章算术》的盈不足章第19个问题中提到:“今有良马与驽马发长安,至齐.齐去长安三千里.良马初日行一百九十三里,日增一十三里.驽马初日行九十七里,日减半里…”其大意为:“现在有良马和驽马同时从长安出发到齐去.已知长安和齐的距离是3000里.良马第一天行193里,之后每天比前一天多行13里.驽马第一天行97里,之后每天比前一天少行0.5里…”试问前4天,良马和驽马共走过的路程之和的里数为()A.1235 B.1800 C.2600 D.300022.(3分)在正方体ABCD﹣A1B1C1D1中,给出下列四个推断:①A1C1⊥AD1②A1C1⊥BD③平面A1C1B∥平面ACD1④平面A1C1B⊥平面BB1D1D其中正确的推断有()A.1个 B.2个 C.3个 D.4个23.(3分)如图,在△ABC中,∠BAC=90°,AB=3,D在斜边BC上,且CD=2DB,那的值为()A.3 B.5 C.6 D.924.(3分)为了促进经济结构不断优化,2015年中央财经领导小组强调“着力加强供给侧结构性改革”.2017年国家统计局对外发布报告“前三季度全国工业产能利用率达到五年来最高水平”,报告中指出“在供给侧结构性改革持续作用下,今年以来去产能成效愈加凸显,供求关系稳步改善”.如图为国家统计局发布的2015年以来我国季度工业产能利用率的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,;例如2016年第二季度与2015年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2015年第二季度与2015年第一季度相比较.根据上述信息,下列结论中错误的是()A.2016年第三季度和第四季度环比都有提高B.2017年第一季度和第二季度环比都有提高C.2016年第三季度和第四季度同比都有提高D.2017年第一季度和第二季度同比都有提高25.(3分)已知函数f(x)=|x2﹣2x﹣a|+a在区间[﹣1,3]上的最大值是3,那么实数a的取值范围是()A.(﹣∞,0]B.(﹣∞,﹣1]C.[0,+∞)D.二、解答题(共5小题,满分25分)26.(5分)已知函数f(x)=1﹣2sin2x(1)=;(2)求函数f(x)在区间上的最大值和最小值.27.(5分)如图,在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点(1)求证:PB∥平面EFG;(2)求证:BC⊥EG.28.(5分)已知数列{a n}是等比数列,且,公比q=2.(1)数列{a n}的通项公式为a n=;(2)数列{b n}满足b n=log2a n(n∈N*),求数列{b n}的前n项和S n的最小值.29.(5分)已知圆M:2x2+2y2﹣6x+1=0.(1)圆M的圆心坐标为;(2)设直线l过点A(0,2)且与x轴交于点D.与圆M在第一象限的部分交于两点B,C.若O为坐标原点,且△OAB与△OCD的面积相等,求直线l的斜率.30.(5分)同学们,你们是否注意到:在雨后的清晨,沾满露珠自然下垂的蜘蛛丝;空旷的田野上,两根电线杆之间的电线;峡谷上空,横跨深涧的观光索道的电缆.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.下面我们来研究一类与悬链线有关的函数,这类函数的表达式为f(x)=ae x+be﹣x(其中a,b是非零常数,无理数e=2.71828…).(1)当a=1,f(x)为偶函数时,b=;(2)如果f(x)为R上的单调函数,请写出一组符合条件的a,b值;(3)如果f(x)的最小值为2,求a+b的最小值.2018年北京市春季普通高中会考数学试卷参考答案与试题解析一、在每小题给出的四个备选答案中,只有一项是符合题目要求的.1.(3分)已知集合A={1,2,3},B={1,2},那么A∩B等于()A.{3}B.{1,2}C.{1,3}D.{1,2,3}【解答】解:∵集合A={1,2,3},B={1,2},∴A∩B={1,2}.故选:B.2.(3分)已知直线l经过两点P(1,2),Q(4,3),那么直线l的斜率为()A.﹣3 B.C.D.3【解答】解:直线l的斜率k==,故选:C.3.(3分)对任意,下列不等式恒成立的是()A.x2>0 B.C. D.lgx>0【解答】解:A.x2≥0,因此不正确;B.≥0,因此不正确;C.∵>0,∴+1>1>0,恒成立,正确;D.0<x≤1时,lgx≤0,因此不正确.故选:C.4.(3分)已知向量,,且,那么x的值是()A.2 B.3 C.4 D.6【解答】解:向量,,且,则6x﹣3×4=0,解得x=2.故选:A.5.(3分)给出下列四个函数①;②y=|x|;③y=lgx;④y=x3+1,其中奇函数的序号是()A.①B.②C.③D.④【解答】解:①满足f(﹣x)=﹣f(x),为奇函数;②y=|x|满足f(﹣x)=f (x),为偶函数;③y=lgx为对数函数,为非奇非偶函数;④y=x3+1不满足f(﹣x)=﹣f(x),不为奇函数.故选A.6.(3分)要得到函数的图象,只需将函数y=sinx的图象()A.向左平移个单位B.向右平移个单位C.向上平移个单位D.向下平移个单位【解答】解:将函数y=sinx的图象向右平移个单位,可得到函数的图象,故选:B.7.(3分)某程序框图如图所示,那么执行该程序后输出S的值是()A.3 B.6 C.10 D.15【解答】解:模拟程序的运行,可得i=1,S=0满足条件i<4,执行循环体,S=1,i=2满足条件i<4,执行循环体,S=3,i=3满足条件i<4,执行循环体,S=6,i=4不满足条件i<4,退出循环,输出S的值为6.故选:B.8.(3分)设数列{a n}的前项和为S n,如果a1=1,a n+1=﹣2a n(n∈N*),那么S1,S2,S3,S4中最小的是()A.S1B.S2C.S3D.S4【解答】解:{a n}的前n项和为S n,如果a1=1,a n+1=﹣2a n(n∈N*),则数列{a n}为首项为1,公比为﹣2的等比数列,则S1=a1=1;S2=1﹣2=﹣1;S3=1﹣2+4=3;S4=1﹣2+4﹣8=﹣5.则其中最小值为S4.故选:D.9.(3分)等于()A.1 B.2 C.5 D.6【解答】解:原式===2.故选:B.10.(3分)如果α为锐角,,那么sin2α的值等于()A.B.C.D.【解答】解:∵α为锐角,,∴cosα==,∴sin2α=2sinαcosα=2×=.故选:A.11.(3分)已知a>0,b>0,且a+2b=8,那么ab的最大值等于()A.4 B.8 C.16 D.32【解答】解:a>0,b>0,且a+2b=8,则ab=a•2b≤()2=×16=8,当且仅当a=2b=4,取得等号.则ab的最大值为8.故选:B.12.(3分)cos12°cos18°﹣sin12°sin18°的值等于()A.B.C.D.【解答】解:cos12°cos18°﹣sin12°sin18°=cos(12°+18°)=cos30°=,故选:D.13.(3分)共享单车为人们提供了一种新的出行方式,有关部门对使用共享单车人群的年龄分布进行了统计,得到的数据如表所示:为调查共享单车使用满意率情况,线采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取20﹣30岁的人数为()A.12 B.28 C.69 D.91【解答】解:由分层抽样的定义得应抽取20﹣30岁的人数为200×45.5%=91人,故选:D14.(3分)某几何体的三视图如图所示,其中正视图与侧视图均为正方形,俯视图为圆,那么这个几何体的表面积是()A.4πB.5πC.6πD.2π+4【解答】解:由几何体的三视图得该几何体是底面半径为r=1,高为2的圆柱,∴这个几何体的表面积:S=2×πr2+2πr×2=2π+4π=6π.故选:C.15.(3分)已知向量满足,,,那么向量的夹角为()A.30°B.60°C.120° D.150°【解答】解:根据题意,设向量的夹角为θ,又由,,,则cosθ==,又由0°≤θ≤180°,则θ=60°;故选:B.16.(3分)某学校高一年级计划在开学第二周的星期一至星期五进行“生涯规划”体验活动,要求每名学生选择连续的两天参加体验活动,那么某学生随机选择的连续两天中,有一天是星期二的概率为()A.B.C.D.【解答】解:某学校高一年级计划在开学第二周的星期一至星期五进行“生涯规划”体验活动,要求每名学生选择连续的两天参加体验活动,基本事件有4个,分别为:(星期一,星期二),(星期二,星期三),(星期三,星期四),(星期四,星期五),有一天是星期二包含的基本事件有2个,分别为:(星期一,星期二),(星期二,星期三),∴某学生随机选择的连续两天中,有一天是星期二的概率为p=.故选:D.17.(3分)函数的零点个数为()A.0 B.1 C.2 D.3【解答】解:根据题意,对于函数,其对应的方程为x﹣﹣2=0,令t=,有t≥0,则有t2﹣t﹣2=0,解可得t=2或t=﹣1(舍),若t==2,则x=4,即方程x﹣﹣2=0有一个根4,则函数有1个零点;故选:B.18.(3分)已知圆M:x2+y2=2与圆N:(x﹣1)2+(y﹣2)2=3,那么两圆的位置关系是()A.内切B.相交C.外切D.外离【解答】解:圆M:x2+y2=2的圆心为M(0,0),半径为r1=;圆N:(x﹣1)2+(y﹣2)2=3的圆心为N(1,2),半径为r2=;|MN|==,且﹣<<+,∴两圆的位置关系是相交.故选:B.19.(3分)如图,平面区域(阴影部分)对应的不等式组是()A. B.C. D.【解答】解:经过(2,0),(0,2)点的直线方程为+=1,即x+y﹣2=0,经过(2,0),(0,﹣2)点的直线方程为﹣=1,即x﹣y﹣2=0,经过(﹣1,0),(0,2)点的直线方程为﹣x+=1,即2x﹣y+2=0,则阴影部分在x+y﹣2=0的下方,即对应不等式为x+y﹣2≤0阴影部分在2x﹣y+2=0,的下方,即对应不等式为2x﹣y+2≥0阴影部分在x﹣y﹣2=0的上方,即对应不等式为x﹣y﹣2≤0,即对应不等式组为,故选:A20.(3分)在△ABC中,,那么sinA等于()A.B.C.D.【解答】解:在△ABC中,,则:,解得:.故选:B.21.(3分)《九章算术》的盈不足章第19个问题中提到:“今有良马与驽马发长安,至齐.齐去长安三千里.良马初日行一百九十三里,日增一十三里.驽马初日行九十七里,日减半里…”其大意为:“现在有良马和驽马同时从长安出发到齐去.已知长安和齐的距离是3000里.良马第一天行193里,之后每天比前一天多行13里.驽马第一天行97里,之后每天比前一天少行0.5里…”试问前4天,良马和驽马共走过的路程之和的里数为()A.1235 B.1800 C.2600 D.3000【解答】解:∵长安和齐的距离是3000里.良马第一天行193里,之后每天比前一天多行13里.驽马第一天行97里,之后每天比前一天少行0.5里,∴前4天,良马和驽马共走过的路程之和的里数为:S4=(4×193+)+[4×]=1235.故选:A.22.(3分)在正方体ABCD﹣A1B1C1D1中,给出下列四个推断:①A1C1⊥AD1②A1C1⊥BD③平面A1C1B∥平面ACD1④平面A1C1B⊥平面BB1D1D其中正确的推断有()A.1个 B.2个 C.3个 D.4个【解答】解:在正方体ABCD﹣A1B1C1D1中,在①中,A1C1与AD1成60°角,故①错误;在②中,∵A1C1∥AC,AC⊥BD,∴A1C1⊥BD,故②正确;在③中,∵A1C1∥AC,AD1∥BC1,A1C1∩BC1=C1,AC∩AD1=A,A1C1、BC1⊂平面A1C1B,AC、AD1⊂平面ACD1,∴平面A1C1B∥平面ACD1,故③正确;在④中,∵A1C1⊥B1D1,A1C1⊥BB1,B1D1∩BB1=B1,∴平面A1C1B⊥平面BB1D1D,故④正确.故选:C.23.(3分)如图,在△ABC中,∠BAC=90°,AB=3,D在斜边BC上,且CD=2DB,那的值为()A.3 B.5 C.6 D.9【解答】解:∵=﹣,∠BAC=90°,AB=3,CD=2DB∴•=•(+)=•(+)=•(+﹣)=•(+)=2+•=×9+0=6,故选:C24.(3分)为了促进经济结构不断优化,2015年中央财经领导小组强调“着力加强供给侧结构性改革”.2017年国家统计局对外发布报告“前三季度全国工业产能利用率达到五年来最高水平”,报告中指出“在供给侧结构性改革持续作用下,今年以来去产能成效愈加凸显,供求关系稳步改善”.如图为国家统计局发布的2015年以来我国季度工业产能利用率的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,;例如2016年第二季度与2015年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2015年第二季度与2015年第一季度相比较.根据上述信息,下列结论中错误的是()A.2016年第三季度和第四季度环比都有提高B.2017年第一季度和第二季度环比都有提高C.2016年第三季度和第四季度同比都有提高D.2017年第一季度和第二季度同比都有提高【解答】解:由折线图知:在A中,2016年第三季度和第四季度环比都有提高,故A正确;在B中,2017年第一季度和第二季度环比都有提高,故B正确;在C中,2016年第三季度和第四季度同比都下降,故C错误;在D中,2017年第一季度和第二季度同比都有提高,故D正确.故选:C.25.(3分)已知函数f(x)=|x2﹣2x﹣a|+a在区间[﹣1,3]上的最大值是3,那么实数a的取值范围是()A.(﹣∞,0]B.(﹣∞,﹣1]C.[0,+∞)D.【解答】解:f(x)=|x2﹣2x﹣a|+a=|(x﹣1)2﹣1﹣a|,∵x∈[﹣1,3],∴x2﹣2x∈[﹣1,3],当a>3时,x2﹣2x﹣a<0,∴f(x)=|x2﹣2x﹣a|+a=﹣x2+2x+a+a=﹣x2+2x+2a=﹣(x﹣1)2+1﹣2a,当x=1时,取的最大值,即1﹣2a=3,解得a=﹣1,与题意不符;当a≤﹣1时,x2﹣2x﹣a≥0,∴f(x)=|x2﹣2x﹣a|+a=x2﹣2x﹣a+a=x2﹣2x=(x﹣1)2﹣1,当x=﹣1或3时,取的最大值,(3﹣1)2﹣1=3,综上所述a的取值范围为(﹣∞,﹣1]故选:B.二、解答题(共5小题,满分25分)26.(5分)已知函数f(x)=1﹣2sin2x(1)=;(2)求函数f(x)在区间上的最大值和最小值.【解答】解:函数f(x)=1﹣2sin2x=cos2x,(1)=cos(2×)=;故答案为:;(2)x∈[﹣,],∴2x∈[﹣,],∴cos2x∈[0,1],∴当x=﹣时,f(x)取得最小值0,x=0时,f(x)取得最大值1,∴函数f(x)在区间上的最大值为1,最小值为0.27.(5分)如图,在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点(1)求证:PB∥平面EFG;(2)求证:BC⊥EG.【解答】证明:(1)∵点F,G分别为BC,PC,的中点,∴GF∥PB,∵PB⊄平面EFG,FG⊂平面EFG,∴PB∥平面EFG.(2)∵在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点,∴EF∥AC,GF∥PB,∴EF⊥BC,GF⊥BC,∵EF∩FG=F,∴BC⊥平面EFG,∵EG⊂平面EFG,∴BC⊥EG.28.(5分)已知数列{a n}是等比数列,且,公比q=2.(1)数列{a n}的通项公式为a n=2n﹣4;(2)数列{b n}满足b n=log2a n(n∈N*),求数列{b n}的前n项和S n的最小值.【解答】解:(1)数列{a n}是等比数列,且,公比q=2,可得a n=•2n﹣1=2n﹣4;故答案为:2n﹣4;(2)b n=log2a n=log22n﹣4=n﹣4,S n=n(﹣3+n﹣4)=(n2﹣7n)=[(n﹣)2﹣],可得n=3或4时,S n取得最小值,且为﹣6.29.(5分)已知圆M:2x2+2y2﹣6x+1=0.(1)圆M的圆心坐标为(,0);(2)设直线l过点A(0,2)且与x轴交于点D.与圆M在第一象限的部分交于两点B,C.若O为坐标原点,且△OAB与△OCD的面积相等,求直线l的斜率.【解答】解:(1)圆M:2x2+2y2﹣6x+1=0.转化为:.则圆M的圆心坐标为:().(2)直线l过点A(0,2)且与x轴交于点D.则:设直线的方程为:y=kx+2.与圆M在第一象限的部分交于两点B,C.且△OAB与△OCD的面积相等,则:AB=CD.即:AM=DM.设点A(x,0)则:,整理得:x2﹣3x﹣4=0,解得:x=4或﹣1(负值舍去).则:A(4,0)由于点A在直线y=kx+2上,解得:k=﹣故直线的斜率为﹣.故答案为:(,0);直线的斜率为﹣.30.(5分)同学们,你们是否注意到:在雨后的清晨,沾满露珠自然下垂的蜘蛛丝;空旷的田野上,两根电线杆之间的电线;峡谷上空,横跨深涧的观光索道的电缆.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.下面我们来研究一类与悬链线有关的函数,这类函数的表达式为f(x)=ae x+be﹣x(其中a,b是非零常数,无理数e=2.71828…).(1)当a=1,f(x)为偶函数时,b=1;(2)如果f(x)为R上的单调函数,请写出一组符合条件的a,b值;(3)如果f(x)的最小值为2,求a+b的最小值.【解答】解:(1)当a=1时,f(x)=e x+be﹣x,∵f(x)是偶函数,∴f(﹣x)=f(x),即e﹣x+be x=e x+be﹣x,则b=1.(2)当a=1时,b=﹣1时,f(x)=e x﹣e﹣x,为增函数.(3)当ab≤0时,f(x)为单调函数,此时函数没有最小值,若f(x)有最小值为2,则必有a>0,b>0,此时f(x)=ae x+be﹣x≥2=2=2,即=1,即ab=1,则a+b≥2=2,即a+b的最小值为2.故答案为:1。
2018年北京普通高中会考数学真题及答案第一部分 选择题(每小题3分,共75分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的. 1.已知集合A={1,2,3},B={1,2},那么A ∩B 等于( ) A .{3} B .{1,2}C .{1,3}D .{1,2,3}2.已知直线l 经过两点P (1,2),Q (4,3),那么直线l 的斜率为( ) A .﹣3 B .C .D .33.某小学共有学生2000人,其中一至六年级的学生人数分别为400,400,400,300,300,200.为做好小学放学后“快乐30分”活动,现采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取一年级学生的人数为( ) A .120 B .40 C .30 D .204.已知向量,,且,那么x 的值是( )A .2B .3C .4D .65.给出下列四个函数①;②y=|x|; ③y=lgx ; ④y=x 3+1,其中奇函数的序号是( ) A .①B .②C .③D .④6.要得到函数的图象,只需将函数y=sinx 的图象( ) A .向左平移个单位 B .向右平移个单位 C .向上平移个单位D .向下平移个单位7.在△中,,,,那么角等于( ) ABC 2a =b =3c =B A .π6B .π4C .π3D .5π128.给出下列四个函数: ; ; ; . ○11y x =-○22y x =○3ln y x =○43y x =其中偶函数的序号是( ) A . ○1B . ○2C . ○3D . ○49.等于( )A .1B .2C .5D .610.如果α为锐角,,那么sin2α的值等于( ) A .B .C .D .11.等于22log8log4D岁的人数为( )A.12 B .28 C.69 D.9114.某几何体的三视图如图所示,那么该几何体的体积是()15.已知向量满足,,,那么向量的夹角为( )A.30° B.60° C.120° D.150°16.某学校高一年级计划在开学第二周的星期一至星期五进行“生涯规划”体验活动,要求每名学生选择连续的两天参加体验活动,那么某学生随机选择的连续两天中,有一天是星期二的概率为( )A. B. C. D.17.函数的零点个数为( )A.0 B.1 C.2 D.318.已知圆M:x2+y2=2与圆N:(x﹣1)2+(y﹣2)2=3,那么两圆的位置关系是( )A.内切 B.相交 C.外切 D.外离19.已知圆与圆相外切,那么等于()221x y+=222(3)(0)x y r r-+=>rA.1B.2 C.3D.420.在△ABC中,,那么sinA等于( )A.B. C. D.1021.某地区有网购行为的居民约万人. 为了解他们网上购物消费金额占168日常消费总额的比例情况,现从中随机抽取人进行调查,其数据如右表20%所示. 由此估计,该地区网购消费金额占日常消费总额的比例在及以下的人数大约是1.68 3.21 4.41 5.59A.万 B.万 C.万 D.万22.在正方体ABCD﹣A1B1C1D1中,给出下列四个推断:①A1C1⊥AD1 ②A1C1⊥BD ③平面A1C1B∥平面ACD1 ④平面A1C1B⊥平面BB1D1D其中正确的推断有( )A.1个 B.2个 C.3个 D.4个23.如图,在△ABC中,∠BAC=90°,AB=3,D在斜边BC上,且CD=2DB,那的值为( )A.3 B.5 C.6 D.924.从2008年京津城际铁路通车运营开始,高铁在过去几年里快速发展,并在国民经济和日常生活中扮演着日益重要的角色. 下图是2009年至2016年高铁运营总里程数的折线图(图中的数据均是每年12月31日的统计结果).根据上述信息,下列结论中正确的是()A.截止到2015年12月31日,高铁运营总里程数超过2万公里B.2011年与2012年新增高铁运营里程数之和超过了0.5万公里C.从2010年至2016年,新增高铁运营里程数最多的一年是2014年D.从2010年至2016年,新增高铁运营里程数逐年递增25.一个几何体的三视图如图所示,那么该几何体是( )A.三棱锥B.四棱锥C.三棱柱D.四棱柱选择题答题卡题号 1 2 3 4 5 6 7 8答案 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25第二部分 解答题(每小题5分,共25分)26.已知函数f (x )=1﹣2sin 2x (1)= ;(2)求函数f (x )在区间上的最大值和最小值.27.如图,在三棱锥P ﹣ABC 中,PB ⊥BC ,AC ⊥BC ,点E ,F ,G 分别为AB ,BC ,PC ,的中点(1)求证:PB ∥平面EFG ; (2)求证:BC ⊥EG .28. 如图,在三棱锥中,,.,分别是,的中点.P ABC -PB PC =AB AC =D E BC PB (Ⅰ)求证:平面; //DE PAC (Ⅱ)求证:平面平面. ABC ⊥PAD29.已知点P(﹣2,2)在圆O:x2+y2=r2(r>0)上,直线l与圆O交于A,B两点.(1)r= ;(2)如果△PAB为等腰三角形,底边,求直线l的方程.30.已知圆M:2x2+2y2﹣6x+1=0.(1)圆M的圆心坐标为 ;(2)设直线l过点A(0,2)且与x轴交于点D.与圆M在第一象限的部分交于两点B,C.若O为坐标原点,且△OAB与△OCD的面积相等,求直线l的斜率.参考答案选择题答题卡题号 1 2 3 4 5 6 7 8 答案 B C B A A B C B9 10 11 12 13 14 15 16 17B A A D D A B D B18 19 20 21 22 23 24 25B B B DC C C A第二部分解答题(每小题5分,共25分)26.已知函数f(x)=1﹣2sin2x(1)= ;(2)求函数f(x)在区间上的最大值和最小值.【解答】解:函数f(x)=1﹣2sin2x=cos2x,(1)=cos(2×)=;故答案为:;(2)x∈[﹣,],∴2x∈[﹣,],∴cos2x∈[0,1],∴当x=﹣时,f(x)取得最小值0,x=0时,f(x)取得最大值1,∴函数f(x)在区间上的最大值为1,最小值为0.27.如图,在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点(1)求证:PB∥平面EFG;(2)求证:BC⊥EG.【解答】证明:(1)∵点F,G分别为BC,PC,的中点,∴GF∥PB,∵PB⊄平面EFG,FG⊂平面EFG,∴PB∥平面EFG.(2)∵在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点,∴EF∥AC,GF∥PB,∴EF⊥BC,GF⊥BC,∵EF∩FG=F,∴BC⊥平面EFG,∵EG⊂平面EFG,∴BC⊥EG.28. 如图,在三棱锥中,,.,分别是,的中点.P ABC -PB PC =AB AC =D E BC PB (Ⅰ)求证:平面; //DE PAC (Ⅱ)求证:平面平面.ABC ⊥PAD (Ⅰ)证明:因为 ,分别是,的中点,D E BC PB 所以 .//DE PC 因为 平面,平面,DE ⊄PAC PC ⊂PAC 所以 平面. ……………………………………2分//DE PAC (Ⅱ)证明:因为 ,,是的中点,PB PC =AB AC =D BC 所以 ,. PD BC ⊥AD BC ⊥因为 , PD AD D = 所以 平面. BC ⊥PAD 因为 平面,BC ⊂ABC 所以 平面平面. ……………………………………5分ABC ⊥PAD29.已知点P (﹣2,2)在圆O :x 2+y 2=r 2(r >0)上,直线l 与圆O 交于A ,B(1)r= ;(2)如果△PAB 为等腰三角形,底边,求直线l 的方程.【解答】解:(1)∵点P (﹣2,2)在圆O :x 2+y 2=r 2(r >0)上, ∴r=2.…(1分)(2)因为△PAB 为等腰三角形,且点P 在圆O 上, 所以PO ⊥AB . 因为PO 的斜率, 所以可设直线l 的方程为y=x+m .由得2x 2+2mx+m 2﹣8=0.△=4m 2﹣8×(m 2﹣8)=64﹣4m 2>0, 解得﹣4<m <4.设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2), 可得. 所以.解得m=±2. 所以直线l 的方程为x ﹣y+2=0,x ﹣y ﹣2=0.…(5分) 30.已知圆M :2x 2+2y 2﹣6x+1=0. (1)圆M 的圆心坐标为 ;(2)设直线l过点A(0,2)且与x轴交于点D.与圆M在第一象限的部分交于两点B,C.若O为坐标原点,且△OAB与△OCD的面积相等,求直线l的斜率.【解答】解:(1)圆M:2x2+2y2﹣6x+1=0.转化为:.则圆M的圆心坐标为:().(2)直线l过点A(0,2)且与x轴交于点D.则:设直线的方程为:y=kx+2.与圆M在第一象限的部分交于两点B,C.且△OAB与△OCD的面积相等,则:AB=CD.即:AM=DM.设点A(x,0)则:,整理得:x2﹣3x﹣4=0,解得:x=4或﹣1(负值舍去).则:A(4,0)由于点A在直线y=kx+2上,解得:k=﹣故直线的斜率为﹣.故答案为:(,0);直线的斜率为﹣.。
2018-2019年山东高二水平数学会考真题及答案解析班级:___________ 姓名:___________ 分数:___________题号一二三总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上评卷人得分一、选择题1.条件,条件,则p是q的().A.充分不必要条件B.必要不充分条件充要条件 D.既不充分又不必要条件【答案】A【解析】试题分析:,,的充分不必要条件.考点:四种条件的判定.2.已知等差数列的前n项和为,满足( )A.B.C.D.【答案】D【解析】试题分析:,又,所以,那么.考点:等差数列的前n项和.3.下列函数中,在x=0处的导数不等于零的是()A.B.C.y=D.【答案】A【解析】试题分析:因为,,所以,,所以,在x=0处的导数为1,故选A。
考点:导数计算。
点评:简单题,利用导数公式加以验证。
4.设,若,则等于()A.e2B.e C.D.ln2【答案】B【解析】试题分析:因为,所以所以,解得考点:本小题主要考查函数的导数计算.点评:导数计算主要依据是导数的四则运算法则,其中乘法和除法运算比较麻烦,要套准公式,仔细计算.5.曲线的直角坐标方程为()A.B.C.D.【答案】B【解析】试题分析:化为考点:极坐标方程点评:极坐标与直角坐标的关系为6.是虚数单位,复数( )A.B.C.D.【答案】A【解析】试题分析:考点:复数运算点评:复数运算中7.关于直线与平面,有下列四个命题:①若,且,则;②若且,则;③若且,则;④若,且,则.其中真命题的序号是()A.①②B.③④C.①④D.②③【答案】D【解析】试题分析:直线m//平面α,直线n//平面β,当α∥β时,直线m,n有可能平行,也有可能异面,所以①不正确;∵,α⊥β,所以,故②正确;据此结合选项知选D.考点:本题主要考查空间直线与平面的位置关系。
点评:熟练掌握空间直线与平面之间各种关系的几何特征是解答本题的关键。
高中会考】2018年6月高中数学会考标准试卷(含答案)2018年6月高中数学会考标准试卷满分100分,考试时间120分钟)考生须知1.考生要认真填写学校、班级、姓名、考试编号。
2.本试卷共6页,分两部分。
第一部分选择题,20个小题;第二部分非选择题,包括两道大题,共7个小题。
3.试题所有答案必须填涂或书写在答题卡上,在试卷上做答无效。
4.考试结束后,考生应将试卷答题卡放在桌面上,待监考老师收回。
参考公式:圆锥的侧面积公式S=πRl,其中R是圆锥的底面半径,l是圆锥的母线长。
圆锥的体积公式V=1/3Sh,其中S是圆锥的底面面积,h是圆锥的高。
第Ⅰ卷(机读卷60分)一、选择题:(共20个小题,每小题3分,共60分)在每个小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案前的字母按规定要求涂抹在“机读答题卡”第1—20题的相应位置上。
1.设全集$I=\{0,1,2,3\}$,集合$M=\{0,1,2\}$,$N=\{0,2,3\}$,则$M\cap C_I^N=$()A.$\{1\}$ B.$\{2,3\}$ C.$\{0,1,2\}$ D.$\varnothing$2.在等比数列$\{a_n\}$中,$a_5=-16$,$a_8=8$,则$a_{11}=$()A。
$-4$ B。
$\pm4$ C。
$-2$ D。
$\pm2$3.下列四个函数中,在区间$(0,+\infty)$上是减函数的是()A.$y=\log_3x$ B.$y=3$ C.$y=x^{\frac{1}{2}}$ D.$y =\frac{1}{x}$4.若$\sin\alpha=\frac{4}{5}$,且$\alpha$为锐角,则$\tan\alpha$的值等于()A.$\frac{3}{4}$ B。
$-\frac{4}{3}$ C。
$-\frac{3}{4}$ D。
$\frac{4}{3}$5.在$\triangle ABC$中,$a=2$,$b=2$,$\angleA=\frac{\pi}{4}$,则$\angle B=$()A.$\frac{\pi}{3}$ B。
深圳市2018届高中毕业会考试卷数 学考生须知:1.全卷分试题卷和答题卷,共6页,有三大题,30小题,满分为100分,考试时间90分钟.2.本卷答案必须做在答题卷的相应位置上,做在试题卷上无效.3.请用黑色钢笔或圆珠笔将姓名、准考证号分别填写在密封区内的相应位置上.试题卷一、选择题(本题有20小题,每小题3分,共60分.选出各题中一个符合题意的正确选项,不选、多选、错选均不给分) 1.tan4π= (A )1 (B )-1 (C )22 (D )-22 2.已知 f ( x )=x 2+1 ,则 f ( 0 )=(A )-1 (B )0 (C ) 1 (D )2 3.直线 y =-2 x +1在y 轴上的截距是(A )0 (B )1 (C ) -1 (D )214.如图,在平行四边形ABCD 中成立的是 (A )AB =CD (B )AB =BC(C )AD =CB (D )AD =BC 5.铁路旅行规定:旅客每人免费携带品的外部尺寸长、宽、高之和不超过160厘米.设携带品外部尺寸长、宽、高分别为a ,b ,c (单位:厘米),这个规定用数学关系式可表示为(A )a + b + c < 160 (B )a + b + c > 160 (C )a + b + c ≤ 160 (D )a + b + c ≥ 160 6.半径为1的球的表面积等于(A )4 (B )8 (C )4π (D )8π 7.已知点M (-2,3),N ( 2,0 ),则│MN │(A )3 (B )5 (C )9 (D )258.双曲线22149x y -=的离心率是 (A )32(B )49 (C )25 (D )213ABCD9.不等式( x + 1 )( x -3 )<0的解集是(A ) (-1,3) (B ) (-∞,-1)∪(3,+∞) (C ) (-3,1) (D ) (-∞,-3)∪(1,+∞) 10.f ( x )=cos 2 x ,x ∈R 是(A )最小正周期为2π的偶函数 (B )最小正周期为2π的奇函数 (C )最小正周期为π的偶函数 (D )最小正周期为π的奇函数 11.函数y =2log (1)x -的定义域是(A )(-1 ,1) (B )( 1,+ ∞)(C )(-∞,1) (D )(-∞,1)∪(1,+∞) 12.6(1)x -的展开式中,含3x 的项是(A )-203x (B )203x (C )-153x (D )153x 13.若直线l 是平面α的一条斜线,则在平面α内与l 垂直的直线(A )有且只有一条 (B )有无数条 (C )有且只有两条 (D )不存在 14.如果a <3 ,则(A ) 2a >9 (B )2a <9 (C )3a >27 (D )3a <27 15.下列方程所表示的曲线中,关于x 轴和y 轴都对称的是 (A )221x y -= (B )2y = x (C )22(1)x y -+=1 (D )x -y +1= 016.条件p :平面α和平面β有三个公共点,条件q :平面α与平面β重合,则p 是q 的(A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 17.将函数y =sin x ,x ∈R 的图象按a 平移后,得y =sin ( x +3π) + 2,x ∈R 的 图象,则a =(A )(-3π,-2) (B )(3π,-2) (C )(-3π,2) (D )(3π,2)18.椭圆221x y m+=的准线与y 轴平行,那么m 的取值范围为 (A )m < 0 (B )m > 0(C )0 < m < 1 (D )m > 119.有5把钥匙,其中有2把能打开锁,现从中任取1把能打开锁的概率是 (A )15 (B )25 (C )35 (D )1220.某公司员工义务献血,在体检合格的人中,O 型血的有10人,A 型血的 有5人,B 型血的有8人,AB 型血的有3人,从四种血型的人中各选1 人去献血,不同的选法种数为(A )1200 (B )600 (C )300 (D )26二、填空题(本题有6小题,每小题3分,共18分) 21.若A = {1,2 },B = {0,1 },则A ∪B = .22. 计算:25C - 35C = .23.化简:22sin tan cot cos θ+θ⋅θ+θ = .24.已知二面角α-AB -β为 60,在平面β内有一点P ,它到棱AB 的距离为2,则点P 到平面α的距 离为 .25.已知a >0,b >0,a +b =1,则a b 的最大值是 . 26.已知抛物线24y x =的准线为l ,过抛物线焦点F 的直线交抛物线于A ,B 两点,若AA 1⊥l 于A 1 ,BB 1⊥l 于B 1,则∠A 1FB 1= .三、解答题(本题有4小题,共38分) 27.(本题5分)已知a =(2,1), b =(λ,- 2),若a ⊥b ,求λ的值 . 28.(本题5分)已知{ a n }是各项为正数的等比数列,且a 1 =1,a 2 + a 3 =6, 求该数列前10项的和S 10. 29.(本题6分)如图,在直三棱柱ABC —A 1B 1C 1 中,AB =AC =1,AA 1 =2,AB ⊥AC .求异面直线BC 1与AC 所成角的度数. 30.(本题6分)求圆心在直线4 x +y =0上,并过点P (4,1),Q (2,-1)的圆的方程.(第31题)A 1ABB 1CC 1 P · A Bαβ(第26题)深圳市2018届高中毕业会考试卷数学答题卷二、填空题(本题有6小题,每小题3分,共18分) 21. ; 22.________; 23. ; 24. ; 25. ; 26. .三、解答题(本题有5小题,共38分) 27.(本题6分) 解:28.(本题6分)解:29.(本题8分)解:30.(本题8分)解:(第31题)A1A BB1CC1深圳市2018届高中毕业会考试卷数学参考答案和评分标准一、选择题(60分)二、填空题(18分)三、解答题(12分)27.(本题6分)解:∵a⊥b,∴a·b= 0 ,……………………………………2分又∵a=(2,1),b=(λ,-2)得a·b=2λ-2 = 0 ,……………………………………1分∴λ= 1 .……………………………………1分28.(本题6分)解:设该数列的公比为q,由已知a2 + a3 = 6 ,即a1 ( q + q2 ) = 6 ,………………………………2分∵a1 = 1 ,∴q2 + q-6 = 0 ,得q1 = 2 ,q2 = -3(舍去),∴数列{n a}的首项为a1 = 1,公比q = 2,…………………………1分∴S10 =()qqa--1110110231221211010=-=--=.…………………………1分29.(本题4分)解法一:在直三棱柱ABC —A 1B 1C 1中,AC // A 1C 1 ,∴∠B C 1A 1就是BC 1与AC 所成的角. ……………1分 连结A 1B ,在△A 1B C 1中,由已知得BA 1=3,A 1C 1=1,BC 1=2 , ………………2分由余弦定理得 cos ∠BC 1A 1 =()21212321222=⨯⨯-+, ∴∠B C 1A 1=60°, ………………………………………2分 因此直线BC 1与AC 所成的角为 60.……………………1分 解法二:如图,建立空间直角坐标系O -x y z , ……1分则A (0,0,0),C (-1,0,0),B (0,1,0),C 1(-1,0,2). ………………1分∴=AC (-1,0,0),1BC =(-1,-1,2), =2, ………………………………2分 ∴()()120)1(0111=⨯+-⨯+-⨯-=⋅BC AC ,……………1分 ∴cos <1,BC AC > =21=BC AC , 因此直线BC 1与AC 所成的角为60°. ………………1分 30.(本题4分)解:∵点P ,Q 在圆上,∴圆心在PQ 的垂直平分线上,PQ 的垂直平分线的方程为x + y -3 = 0. ……………………2分 又圆心在直线 4 x + y = 0上, ∴它们的交点为圆心. 由⎩⎨⎧=-=⎩⎨⎧=-+=+,4,1,03,04y x y x y x 得即圆心坐标为(-1,4),……………2分 半径()()34141222=+++=r , …………………………1分因此所求圆的方程为()()344122=-++y x .………………………………1分(第31题)A 1ABB 1CC 1y。
2018年安徽省普通高中学业水平测试真题(数学)一、选择题(共18题,每小题3分)1.已知集合}1,0{},1,0,1{=-=Q P ,则=Q P A 、{0}B 、1}{0,C 、0}{-1,D 、1}0{-1,,2.=-)60cos(0A 、21B 、23C 、21-D 、23-3.函数x x x f -=2)(的零点是A 、0B 、1C 、10,D 、(1,0)(0,0),4.坐标原点到直线0543=++y x 的距离是A 、1B 、2C 、3D 、45.阅读以下流程图:如果输入4=x ,则该程序的循环体执行的次数为A 、1次B 、2次C 、3次D 、4次6.圆心在直线02=-+y x 上的圆的方程是A 、4)1()1(22=+++y x B 、4)1()1(22=-++y x C 、4)1()1(22=-+-y x D 、4)1()1(22=++-y x 7.某校学生一周课外自习总时间)(h 的频率频率分布直方图如图,则该校学生一周课外自习时间落在区间)9,5[内的频率是A 、0.18B 、32.0C 、0.16D 、0.648.下列几何体各自的三视图中,有且仅有两个视图相同的几何体是A 、圆锥B 、正方体C 、正三棱柱D 、球9.下列各式中,值为23的是A 、02215cos 15sin +B 、0015cos 15sin 2C 、020215sin 15cos -D 、115sin 202-10.已知向量),,5(),2,1(k b a =-=若b a //,则实数k 的值为A 、5B 、-5C 、10D 、-1011.已知角α的终边上一点P 的坐标是)cos ,(sin θθ-,则=αsin A 、θcos -B 、θcos C 、θsin -D 、θsin 12.抛掷一颗骰子,事件M 表示“向上的一面的数是奇数”,事件N 表示“向上的一面的数不超过3”,事件Q 表示“向上的一面的数是5”,则A 、M 为必然事件B 、Q 为不可能事件C 、M 与N 为对立事件D 、Q 与N 互斥事件13.如图,ABC ∆中,如果O 为BC 边上中线AD 上的点,且0=++→→→OC OB OA ,那么A 、→→=OD AO B 、→→=OD AO 2C 、→→=ODAO 3D 、→→=ODAO 214.将甲乙两名同学5次物理测验的成绩用茎叶图表示如图,若甲乙两人成绩的中位数分别为乙甲,x x ,则下列说法正确的是A 、乙甲x x <;乙比甲成绩稳定B 、乙甲x x >;甲比乙成绩稳定C 、乙甲x x >;乙比甲成绩稳定D 、乙甲x x <;甲比乙成绩稳定15.不等式0)2)(1(>--x x 的解集在数轴上表示正确的是16.如图,有一条长为a 的斜坡AB ,它的坡角为045,现保持坡高AC 不变,将坡角改为030则斜坡AD 的长为A 、aB 、a2C 、a3D 、a217.当R b a ∈,时,下列各式总能成立的是A 、ba b a +=+66)(B 、224422)(ba b a +=+C 、ba b a -=-4444D 、2233232)(ba b a -=-18.已知0,0>>y x ,且1=+y x ,则yx 14+的最小值为A 、7B 、8C 、9D 、10二、填空题(本大题共4小题,每小题4分)19.从甲乙丙三名教师中任选两名到一所中学支教,甲被选中的概率是()20.若)2|)(|21sin()(πϕϕ<+=x x f 的图像(部分)如图,则ϕ的值是()21.已知过点)4,(),,2(m B m A -和的直线与直线012=-+y x 垂直,则m 的值是22.设c b a ,,均为正数,且aa 21log )21(=,b b 2log )21(=,cc 21log 2=,则c b a ,,之间的大小关系为()三、解答题(本大题三小题,满分30分)23.(10分)等差数列}{n a 中,21=a 且4222a a =,求}{n a 数列的前10项和10S 。
北京市2018届春季普通高中会考数学试卷一、选择题:在每小题给出的四个备选答案中,只有一项是符合题目要求的.1.(3分)已知集合A={1,2,3},B={1,2},那么A∩B等于()A.{3} B.{1,2} C.{1,3} D.{1,2,3}2.(3分)已知直线l经过两点P(1,2),Q(4,3),那么直线l的斜率为()A.﹣3 B.C.D.33.(3分)对任意,下列不等式恒成立的是()A.x2>0 B.C.D.lg x>04.(3分)已知向量,,且,那么x的值是()A.2 B.3 C.4 D.65.(3分)给出下列四个函数①;②y=|x|;③y=lg x;④y=x3+1,其中奇函数的序号是()A.①B.②C.③D.④6.(3分)要得到函数的图象,只需将函数y=sin x的图象()A.向左平移个单位B.向右平移个单位C.向上平移个单位D.向下平移个单位7.(3分)某程序框图如图所示,那么执行该程序后输出S的值是()A.3 B.6 C.10 D.158.(3分)设数列{a n}的前项和为S n,如果a1=1,a n+1=﹣2a n(n∈N*),那么S1,S2,S3,S4中最小的是()A.S1B.S2 C.S3V.S49.(3分)等于()A.1 B.2 C.5 D.610.(3分)如果α为锐角,,那么sin2α的值等于()A.B.C.D.11.(3分)已知a>0,b>0,且a+2b=8,那么ab的最大值等于()A.4 B.8 C.16 D.3212.(3分)cos12°cos18°﹣sin12°sin18°的值等于()A.B.C.D.13.(3分)共享单车为人们提供了一种新的出行方式,有关部门对使用共享单车人群的年龄分布进行了统计,得到的数据如表所示:年龄12﹣20岁20﹣30岁30﹣40岁40岁及以上比例14% 45.5% 34.5% 6%为调查共享单车使用满意率情况,线采用分层抽样的方法从中抽取容量为200的样本进行调查,那么应抽取20﹣30岁的人数为()A.12 B.28 C.69 D.9114.(3分)某几何体的三视图如图所示,其中正视图与侧视图均为正方形,俯视图为圆,那么这个几何体的表面积是()A.4πB.5πC.6πD.2π+415.(3分)已知向量满足,,,那么向量的夹角为()A.30°B.60°C.120°D.150°16.(3分)某学校高一年级计划在开学第二周的星期一至星期五进行“生涯规划”体验活动,要求每名学生选择连续的两天参加体验活动,那么某学生随机选择的连续两天中,有一天是星期二的概率为()A.B.C.D.17.(3分)函数的零点个数为()A.0 B.1 C.2 D.318.(3分)已知圆M:x2+y2=2与圆N:(x﹣1)2+(y﹣2)2=3,那么两圆的位置关系是()A.内切B.相交C.外切D.外离19.(3分)如图,平面区域(阴影部分)对应的不等式组是()A.B.C.D.20.(3分)在△ABC中,,那么sin A等于()A.B.C.D.21.(3分)《九章算术》的盈不足章第19个问题中提到:“今有良马与驽马发长安,至齐.齐去长安三千里.良马初日行一百九十三里,日增一十三里.驽马初日行九十七里,日减半里…”其大意为:“现在有良马和驽马同时从长安出发到齐去.已知长安和齐的距离是3000里.良马第一天行193里,之后每天比前一天多行13里.驽马第一天行97里,之后每天比前一天少行0.5里…”试问前4天,良马和驽马共走过的路程之和的里数为()A.1235 B.1800 C.2600 D.300022.(3分)在正方体ABCD﹣A1B1C1D1中,给出下列四个推断:①A1C1⊥AD1②A1C1⊥BD③平面A1C1B∥平面ACD1④平面A1C1B⊥平面BB1D1D其中正确的推断有()A.1个B.2个C.3个D.4个23.(3分)如图,在△ABC中,∠BAC=90°,AB=3,D在斜边BC上,且CD=2DB,那的值为()A.3 B.5 C.6 D.924.(3分)为了促进经济结构不断优化,2015年中央财经领导小组强调“着力加强供给侧结构性改革”.2017年国家统计局对外发布报告“前三季度全国工业产能利用率达到五年来最高水平”,报告中指出“在供给侧结构性改革持续作用下,今年以来去产能成效愈加凸显,供求关系稳步改善”.如图为国家统计局发布的2015年以来我国季度工业产能利用率的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,;例如2016年第二季度与2015年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2015年第二季度与2015年第一季度相比较.根据上述信息,下列结论中错误的是()A.2016年第三季度和第四季度环比都有提高B.2017年第一季度和第二季度环比都有提高C.2016年第三季度和第四季度同比都有提高D.2017年第一季度和第二季度同比都有提高25.(3分)已知函数f(x)=|x2﹣2x﹣a|+a在区间[﹣1,3]上的最大值是3,那么实数a的取值范围是()A.(﹣∞,0] B.(﹣∞,﹣1] C.[0,+∞)D.二、解答题26.(5分)已知函数f(x)=1﹣2sin2x(1)=;(2)求函数f(x)在区间上的最大值和最小值.27.(5分)如图,在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点.(1)求证:PB∥平面EFG;(2)求证:BC⊥EG.28.(5分)已知数列{a n}是等比数列,且,公比q=2.(1)数列{a n}的通项公式为a n=;(2)数列{b n}满足b n=log2a n(n∈N*),求数列{b n}的前n项和S n的最小值.29.(5分)已知圆M:2x2+2y2﹣6x+1=0.(1)圆M的圆心坐标为;(2)设直线l过点A(0,2)且与x轴交于点D.与圆M在第一象限的部分交于两点B,C.若O为坐标原点,且△OAB与△OCD的面积相等,求直线l的斜率.30.(5分)同学们,你们是否注意到:在雨后的清晨,沾满露珠自然下垂的蜘蛛丝;空旷的田野上,两根电线杆之间的电线;峡谷上空,横跨深涧的观光索道的电缆.这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.下面我们来研究一类与悬链线有关的函数,这类函数的表达式为f(x)=a e x+b e﹣x(其中a,b是非零常数,无理数e=2.71828…).(1)当a=1,f(x)为偶函数时,b=;(2)如果f(x)为R上的单调函数,请写出一组符合条件的a,b值;(3)如果f(x)的最小值为2,求a+b的最小值.【参考答案】一、选择题1.B【解析】∵集合A={1,2,3},B={1,2},∴A∩B={1,2}.故选:B.2.C【解析】直线l的斜率k==,故选:C.3.C【解析】A.x2≥0,因此不正确;B.≥0,因此不正确;C.∵>0,∴+1>1>0,恒成立,正确;D.0<x≤1时,lg x≤0,因此不正确.故选:C.4.A【解析】向量,,且,则6x﹣3×4=0,解得x=2.故选:A.5.A【解析】①满足f(﹣x)=﹣f(x),为奇函数;②y=|x|满足f(﹣x)=f(x),为偶函数;③y=lg x为对数函数,为非奇非偶函数;④y=x3+1不满足f(﹣x)=﹣f(x),不为奇函数.故选A.6.B【解析】将函数y=sin x的图象向右平移个单位,可得到函数的图象,故选:B.7.B【解析】模拟程序的运行,可得i=1,S=0满足条件i<4,执行循环体,S=1,i=2满足条件i<4,执行循环体,S=3,i=3满足条件i<4,执行循环体,S=6,i=4不满足条件i<4,退出循环,输出S的值为6.故选:B.8.D【解析】{a n}的前n项和为S n,如果a1=1,a n+1=﹣2a n(n∈N*),则数列{a n}为首项为1,公比为﹣2的等比数列,则S1=a1=1;S2=1﹣2=﹣1;S3=1﹣2+4=3;S4=1﹣2+4﹣8=﹣5.则其中最小值为S4.故选:D.9.B【解析】原式===2.故选:B.10.A【解析】∵α为锐角,,∴cosα==,∴sin2α=2sinαcosα=2×=.故选:A.11.B【解析】a>0,b>0,且a+2b=8,则ab=a•2b≤()2=×16=8,当且仅当a=2b=4,取得等号.则ab的最大值为8.故选:B.12.D【解析】cos12°cos18°﹣sin12°sin18°=cos(12°+18°)=cos30°=,故选:D.13.D【解析】由分层抽样的定义得应抽取20﹣30岁的人数为200×45.5%=91人,故选:D14.C【解析】由几何体的三视图得该几何体是底面半径为r=1,高为2的圆柱,∴这个几何体的表面积:S=2×πr2+2πr×2=2π+4π=6π.故选:C.15.B【解析】根据题意,设向量的夹角为θ,又由,,,则cosθ==,又由0°≤θ≤180°,则θ=60°;故选:B.16.D【解析】某学校高一年级计划在开学第二周的星期一至星期五进行“生涯规划”体验活动,要求每名学生选择连续的两天参加体验活动,基本事件有4个,分别为:(星期一,星期二),(星期二,星期三),(星期三,星期四),(星期四,星期五),有一天是星期二包含的基本事件有2个,分别为:(星期一,星期二),(星期二,星期三),∴某学生随机选择的连续两天中,有一天是星期二的概率为p=.故选:D.17.B【解析】根据题意,对于函数,其对应的方程为x﹣﹣2=0,令t=,有t≥0,则有t2﹣t﹣2=0,解可得t=2或t=﹣1(舍),若t==2,则x=4,即方程x﹣﹣2=0有一个根4,则函数有1个零点;故选:B.18.B【解析】圆M:x2+y2=2的圆心为M(0,0),半径为r1=;圆N:(x﹣1)2+(y﹣2)2=3的圆心为N(1,2),半径为r2=;|MN|==,且﹣<<+,∴两圆的位置关系是相交.故选:B.19.A【解析】经过(2,0),(0,2)点的直线方程为+=1,即x+y﹣2=0,经过(2,0),(0,﹣2)点的直线方程为﹣=1,即x﹣y﹣2=0,经过(﹣1,0),(0,2)点的直线方程为﹣x+=1,即2x﹣y+2=0,则阴影部分在x+y﹣2=0的下方,即对应不等式为x+y﹣2≤0阴影部分在2x﹣y+2=0,的下方,即对应不等式为2x﹣y+2≥0阴影部分在x﹣y﹣2=0的上方,即对应不等式为x﹣y﹣2≤0,即对应不等式组为,故选:A20.B【解析】在△ABC中,,则:,解得:.故选:B.21.A【解析】∵长安和齐的距离是3000里.良马第一天行193里,之后每天比前一天多行13里.驽马第一天行97里,之后每天比前一天少行0.5里,∴前4天,良马和驽马共走过的路程之和的里数为:S4=(4×193+)+[4×]=1235.故选:A.22.C【解析】在正方体ABCD﹣A1B1C1D1中,在①中,A1C1与AD1成60°角,故①错误;在②中,∵A1C1∥AC,AC⊥BD,∴A1C1⊥BD,故②正确;在③中,∵A1C1∥AC,AD1∥BC1,A1C1∩BC1=C1,AC∩AD1=A,A1C1、BC1⊂平面A1C1B,AC、AD1⊂平面ACD1,∴平面A1C1B∥平面ACD1,故③正确;在④中,∵A1C1⊥B1D1,A1C1⊥BB1,B1D1∩BB1=B1,∴平面A1C1B⊥平面BB1D1D,故④正确.故选:C.23.C【解析】∵=﹣,∠BAC=90°,AB=3,CD=2DB∴•=•(+)=•(+)=•(+﹣)=•(+)=2+•=×9+0=6,故选:C24.C【解析】由折线图知:在A中,2016年第三季度和第四季度环比都有提高,故A正确;在B中,2017年第一季度和第二季度环比都有提高,故B正确;在C中,2016年第三季度和第四季度同比都下降,故C错误;在D中,2017年第一季度和第二季度同比都有提高,故D正确.故选:C.25.B【解析】f(x)=|x2﹣2x﹣a|+a=|(x﹣1)2﹣1﹣a|,∵x∈[﹣1,3],∴x2﹣2x∈[﹣1,3],当a>3时,x2﹣2x﹣a<0,∴f(x)=|x2﹣2x﹣a|+a=﹣x2+2x+a+a=﹣x2+2x+2a=﹣(x﹣1)2+1﹣2a,当x=1时,取的最大值,即1﹣2a=3,解得a=﹣1,与题意不符;当a≤﹣1时,x2﹣2x﹣a≥0,∴f(x)=|x2﹣2x﹣a|+a=x2﹣2x﹣a+a=x2﹣2x=(x﹣1)2﹣1,当x=﹣1或3时,取的最大值,(3﹣1)2﹣1=3,综上所述a的取值范围为(﹣∞,﹣1]故选:B.二、解答题26.解:函数f(x)=1﹣2sin2x=cos2x,(1)=cos(2×)=;故答案为:;(2)x∈[﹣,],∴2x∈[﹣,],∴cos2x∈[0,1],∴当x=﹣时,f(x)取得最小值0,x=0时,f(x)取得最大值1,∴函数f(x)在区间上的最大值为1,最小值为0.27.证明:(1)∵点F,G分别为BC,PC,的中点,∴GF∥PB,∵PB⊄平面EFG,FG⊂平面EFG,∴PB∥平面EFG.(2)∵在三棱锥P﹣ABC中,PB⊥BC,AC⊥BC,点E,F,G分别为AB,BC,PC,的中点,∴EF∥AC,GF∥PB,∴EF⊥BC,GF⊥BC,∵EF∩FG=F,∴BC⊥平面EFG,∵EG⊂平面EFG,∴BC⊥EG.28.解:(1)数列{a n}是等比数列,且,公比q=2,可得a n=•2n﹣1=2n﹣4;故答案为:2n﹣4;(2)b n=log2a n=log22n﹣4=n﹣4,S n=n(﹣3+n﹣4)=(n2﹣7n)=[(n﹣)2﹣],可得n=3或4时,S n取得最小值,且为﹣6.29.解:(1)圆M:2x2+2y2﹣6x+1=0.转化为:.则圆M的圆心坐标为:().(2)直线l过点A(0,2)且与x轴交于点D.则:设直线的方程为:y=kx+2.与圆M在第一象限的部分交于两点B,C.且△OAB与△OCD的面积相等,则:AB=CD.即:AM=DM.设点A(x,0)则:,整理得:x2﹣3x﹣4=0,解得:x=4或﹣1(负值舍去).则:A(4,0)由于点A在直线y=kx+2上,解得:k=﹣故直线的斜率为﹣.故答案为:(,0);直线的斜率为﹣.30.解:(1)当a=1时,f(x)=e x+b e﹣x,∵f(x)是偶函数,∴f(﹣x)=f(x),即e﹣x+b e x=e x+b e﹣x,则b=1.(2)当a=1时,b=﹣1时,f(x)=e x﹣e﹣x,为增函数.(3)当ab≤0时,f(x)为单调函数,此时函数没有最小值,若f(x)有最小值为2,则必有a>0,b>0,此时f(x)=a e x+b e﹣x≥2=2=2,即=1,即ab=1,则a+b≥2=2,即a+b的最小值为2.故答案为:1.。
2018年高中数学会考题
2018届吉林省普通高中学业模拟考试(数学)
注意事项:
1.答题前将自己的姓名、考号、考籍号、科考号、试卷科目等项目填写或涂在答题卡在试卷规定的位置上。
考试结束时,将试卷和答题卡一并交回。
2.本试题分两卷,第Ⅰ卷为选择题,第Ⅱ卷为书面表达题。
试卷满分为120分。
答题时间为100分钟。
3.第Ⅰ卷的选择题答案都必须涂在答题卡上。
每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后·再选涂其他答案标号。
选择题答案写试卷上无效。
4.第Ⅱ卷的答案直接写在试卷规定的位置上,注意字迹清楚,卷面整洁。
第Ⅰ卷 选择题(共50分)
一、选择题:本大题共15小题,只有一项是正确的.第1-10每小题3分,第11-15
每小题4分,共50分)
1.已知集合{0,2},{|02}M N x x ==≤<,则M ∩N 等于 ( ) A .{0,1,2}
B .{0,1}
C .{0,2}
D .{0}
2.下列结论正确的是( )
A
.
若
ac>bc
,
则
a>b
B .若a 2>b 2,则a>b
C .若a>b,c<0,则 a+c<b+c
D .若a <b ,则a<b
3在直角坐标系中,直线0
33=-+
y x 的倾斜角是
( )
A .6π
B .3
π
C .65π
D .32π
4.已知奇函数()f x 在区间[3,7]上是增函数,且
最小值为5,那么函数()f x 在区间
[-7,-3]上( )
A .是减函数且最小值为-5
B .是减
函数且最大值为-5
C .是增函数且最小值为-5
D .是增
函数且最大值为-5
5. 函数2
()1log f x x =-的零点是( )
A. 1
B. (1,1)
C. 2
D.
(2,0)
6.在等比数列{}n
a 中,若3
2
a
=,则12345
a a a a a = ( )
A. 8
B. 16
C. 32
D. 42
7.甲、乙、丙三名同学站成一排,甲站在中间的概率是()
A. 1
6 B. 1
3
C. 1
2 D. 2
3
8.一个几何体的三视图如图,则组成该组合体的简单几何体为 ( )
A .圆柱和圆锥
B .正方体和圆锥
C .四棱柱和圆锥
D .正方体和球
9.若sin α2=3
3
,则cos α=( )
A .13
B .-1
3
C. -23
D. 23
10.要得到)42sin(3π+=x y 的图象只需将y=3sin2x 的图象 ( )
A .向左平移8
π个单位 B .向右平移
8
π个单位 C
.
向
左
平
移
4
π个单位
D .向右平移4
π个单位
11.函数f (x )=ax 2+2(a -1)x +2在区间(-∞,4)上为减函数,则a 的取值范围为 ( )
A . 0<a ≤51
B .0≤a ≤51
C .0<a ≤51
D .a >5
1
12. 输入-5,按图中所示程序框图运行后,输出的结果是( )
A. -5
B.0
C. -1
D.1
第12题图
1
13.为了从甲乙两人中选一人参加数学竞赛,老师将二人最近6次数学测试的分数进行统
计,甲乙两人的平均成绩分别是x
甲、x
乙
,则下
列说法正确的是()
A. x甲>x乙,乙比甲成绩稳定,应选乙参加比赛
B. x 甲>x 乙
,甲比乙成绩稳定,应选甲参加比
赛
C. x 甲<x 乙
,甲比乙成绩稳定,应选甲参加比
赛
D. x 甲<x 乙
,乙比甲成绩稳定,应选乙参加比
赛
第13题图
14.已知⎩⎨⎧≤>=03
0log )(2x x x x f x
,则)]4
1
([f f 的值是( ) A
.
9
1
B .9
C .
9
-
D .91-
15.已知,x y 是正数,且19
1x y
+=,则x y +的最小值是( )
A.6
B.12
C.16
D.24
2016 年 吉 林 省 普 通 高 中 会 考
数 学
注意事项:
1.第Ⅱ卷共4页,用蓝、黑色钢笔或圆珠笔直接答在试卷上。
2.答题前将密封线内的项目写清楚,并在第6页右下方“考生座位序号”栏内正确填入自己的座位序号。
第Ⅱ卷(非选择题 共70分)
题号 二 三 总分
得分
二、填空题:本大题共4小题,每小题5分,共20分.把正确答案填写在题中的横线上.
16.知平面向量(3,1)
a=
r,
(,3)
b x
=-
r,且
a b
⊥
r
r,则x=___________
17. 学校为了调查学生在课外读
物方面的支出情况,抽取了一个容
量为100的样本,其频率
分布直方图如图所示,则据此估计
支出在[50,60)元的同学人数为 .
17题图
得分评卷
人
18.有4条线段,长度分别为1,3,5,7,从这四条线段中任取三条,则所取三条线段能构
成一个三角形的概率为
19.若x,y∈R,且
⎩⎪
⎨
⎪⎧x≥1,
x-2y+3≥0,
y≥x,
且z=x
+2y的最小值等于
三、解答题:(本大题共5小题,每小题10分,
共50分.解答应写出文字说明、证明过程或
演算步骤)
20.(本题满分10分)如图,已知棱锥S-ABCD,底面为正方形,SA⊥底面ABCD,AB=AS=1,M、N分别为AB、SC的中点.
(1)求四棱锥S-ABCD的表面积;
(2)求证:MN∥平面SAD.
21.(本小题满分10分)在ABC
∆中,c b a,,分别是
角C B A,,的对边,且2222
+-=.
b c a bc
(1)求角A的大小
(2)若9
S=求边b和c的长。
∆的面积52
+=,且ABC
b c
22(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==
(I )求{}n
a 的通项公式; (II)设{}1,.n n n n b
b n S na =求数列的前项和
23.圆8)1(22=++y x 内有一点P(-1,2),AB 过点P, ① 若弦长72||=AB ,求直线AB 的倾斜角α; ②若圆上恰有三点到直线AB 的距离等于2,求直线AB 的方程.
24.设函数()25(2)5(2)
x ax a x f x ax x ⎧-+≥=⎨+<⎩(a 为常数), (1)对任意12,x x R ∈,当 12x
x ≠若f(x)单调递增时,
求实数a 的取值范围; (2) 在(1)的条件下,求2()43g x x
ax =-+在区间[1,3]上的最小值()h a 。