传递矩阵法的Z_n误差分析
- 格式:pdf
- 大小:427.54 KB
- 文档页数:3
误差传递公式的原理和计算方法一、误差传递公式的原理。
1.1 误差传递的基本概念。
误差传递啊,就是说在进行一系列的测量或者计算的时候,一个量的误差会对最终结果产生影响,而且这种影响不是孤立的,就像多米诺骨牌一样,一个倒了会牵连其他的。
比如说我们测量一个物体的体积,是通过长、宽、高的测量值计算的,如果长的测量有误差,那这个误差就会传递到体积的计算结果里。
这就好比是“牵一发而动全身”,一个小环节出问题,整个结果都可能受到波及。
1.2 原理的直观理解。
从本质上讲呢,误差传递公式是基于函数关系的。
想象一下,我们有一个函数,比如说y = f(x₁, x₂, x₃...),这里的x₁, x₂, x₃等是自变量,y是因变量。
每个自变量都有自己的误差,这些误差就像调皮的小捣蛋鬼,在函数这个大舞台上开始捣乱,让y的值也变得不那么准确了。
误差传递公式就是要搞清楚这些小捣蛋鬼是怎么影响y的,就像是要摸清一场混乱背后的规律一样。
二、误差传递公式的计算方法。
2.1 简单函数的误差传递。
对于一些简单的函数,像y = ax + b这种线性函数(这里a和b是常数)。
如果x有一个误差Δx,那么y的误差Δy就可以通过公式Δy = aΔx来计算。
这就像一加一等于二那么直白。
举个例子,假如你去买苹果,每个苹果2元(a = 2),你本来打算买x个,但是你数错了,多或者少了Δx个,那你花费的钱y就会多或者少2Δx 元。
这就是简单函数误差传递在生活中的一个小体现,简单得就像“小菜一碟”。
2.2 复杂函数的误差传递。
当函数变得复杂起来,比如说y = x₁² + sin(x₂)这种。
那误差传递公式就稍微复杂点了。
一般来说,我们会用到偏导数的概念。
先分别求出y对x₁和x₂的偏导数,然后根据误差传递公式Δy = (∂y/∂x₁)Δx₁+(∂y/∂x₂)Δx₂。
这就像是要在一个错综复杂的迷宫里找到出路,得小心翼翼地分析每个岔路口(偏导数)对最终结果(误差)的影响。
误差传播分析和容错效果误差传播分析是在各种科学研究和实际应用中常用的一种分析方法。
它用于研究在测量、计算或实验过程中产生的误差如何传播到最终结果,并评估这些误差对结果的影响。
误差传播分析的目的是帮助我们理解和控制误差,从而提高数据的可靠性和研究结果的准确性。
误差传播分析的基本原理是根据误差的数学性质和统计规律,通过对误差的传播规律进行建模和计算。
在实际应用中,误差往往是由多个环节的测量、计算或实验引起的。
因此,误差传播分析需要考虑不同环节的误差来源和传播方式。
首先,我们需要识别和量化每个环节中的误差来源。
这些误差来源可以分为系统误差和随机误差。
系统误差是由系统的固有性质或外部条件引起的,它们可能导致测量值的偏倚或偏离真实值。
随机误差是由各种不确定因素引起的,它们在多次测量或实验中会导致结果的变动。
然后,我们需要确定误差的传播方式。
误差可以通过线性传播或非线性传播的方式进行传播。
线性传播是指误差在不同环节之间按照线性关系进行传播。
非线性传播是指误差在不同环节之间按照非线性关系进行传播。
为了进行误差传播分析,我们可以使用数学模型和统计方法。
数学模型可以帮助我们建立误差的传播关系,并进行误差的计算和预测。
统计方法可以帮助我们评估误差的大小和不确定性,并进行误差的分布分析。
误差传播分析的结果通常以误差边界(error bounds)或置信区间(confidence interval)的形式呈现。
误差边界是指误差的上、下限,它给出了误差的范围。
置信区间是指给定置信水平下误差的范围,它可以帮助我们评估误差的可靠性。
容错效果是指在误差传播过程中,系统的容错性能。
容错效果的好坏会影响最终结果的准确性和可靠性。
如果系统具有较好的容错效果,那么即使系统中存在一定误差,最终结果仍然可以保持较高的准确性。
如果系统的容错效果较差,那么即使系统中的误差很小,最终结果可能会变得不可靠。
在实际应用中,对误差传播分析和容错效果的研究非常重要。
误差传递公式的推导设间接测得量),,(321x x x f N =,式中321,,x x x 均为彼此相互独立的直接测得量,每一直接测得量为等精度多次测量,且只含随机误差,那么间接测得量N 的最可信赖值(用平均值N 表示)为),,(321x x x f N =①算术合成法求误差传递公式 绝对误差传递公式:332211x x fx x f x x f N ∆∂∂+∆∂∂+∆∂∂=∆ 相对误差传递公式:332211ln ln ln x x f x x f x x f N N ∆∂∂+∆∂∂+∆∂∂=∆②方和根合成法求标准偏差传递公式标准偏差传递公式:223222221321x x x N S x f S x f S x f S ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂=相对偏差传递公式:223222221321ln ln ln x x x NS xf S xfS x f N S ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂=例1:已知c b a z 31-+=,其中a a a ∆±=,b b b ∆±=,c c c ∆±=,求z 的平均值和误差传递公式。
解:平均值:c b a z 31-+=; z 分别对各直接量求一阶偏导数:1=∂∂a z ,1=∂∂b z ,31-=∂∂c z , 得误差传递公式:c b a c c z b b z a a z z ∆+∆+∆=∆∂∂+∆∂∂+∆∂∂=∆31。
例2:已知hd m24πρ=,其中m m m ∆±=,d d d ∆±=,h h h ∆±=,求h 的平均值和误差传递公式。
解:平均值:hd m24πρ=;对公式hd m24πρ=两边取自然对数: h d m ln ln 2ln 4ln ln --+=πρ,ρln 分别对各直接量求一阶偏导数:m m 1ln =∂∂ρ,d d 2ln -=∂∂ρ,hh 1ln -=∂∂ρ, 得误差传递公式:h hd d m m h h d d m m ∆+∆+∆=∆∂∂+∆∂∂+∆∂∂=∆121ln ln ln ρρρρρ。
万方数据第5期张利民等:利用ANSYS进行转子临界转速计算352算例图1COMBI214单元2.1算例1如图2所示的转子一支承系统,其中转子总长为1.03m,轴和盘的材料属性如下:杨氏模量E=2.06×1011Pa,密度p=7800kg/m3,泊松比移=0.3。
轴为实心轴,直径D=0.06m;盘的厚度h=0.03m;直径D。
=0.2m;每个盘上有36个叶片,叶片厚0.022m,宽0.02m,高0.04m;假设轴承周向刚度对称并忽略阻尼,刚度为3×107N/m。
模型,确定同一阶振型的正迸动与反进动固有频率‘41。
由ANSYS算出的数据绘制一维模型的CAMPBELL图如下:^雹V馨啜‘围4一维模型的CAMPBELL圈根据CAMPBELL图可知,前四阶临界转速为:95Hz、154Hz、186Hz、381Hz。
由于篇幅原因只给出了第一阶振型和第四阶振型。
图2双支承转子一支承系统图5(a)一维模型第一阶振型2.1.I一雒模型求解法在ANSYSl2.0软件中建立该转子一支承系统的一维模型如图3所示。
圈3一维梗型利用有限元方法计算转子临界转速时,转子会出现正进动和反进动。
由于陀螺效应的作用,堕着转子自转角速譬的提亭,辱进动固有频考会Its(b)一维模型第四阶振型降低,而正进动固有频率将提高。
根据临界转速2.1.2三维模型求解法的定义,应只对正进动固有频率进行分析。
在后在ANSYSl2.0中建立的三维模型如图6所万方数据沈阳航空工业学院学报第27卷刁≮:图6三维模型用ANSYS建立带叶片的转子支承系统的三维模型时,为了准确地加载弹簧阻尼单元,需要在指定的位置加入硬点。
由于硬点只能加载到面单元和线单元上,所以如果想把硬点加载到转轴中心线上需要用ANSYS中的Divide命令把三维模型用面切开。
这样就可以在面上创建硬点。
三维模型的CAMPBELL图如图7所示:^蛊V*爨图7三维模型的CAMPBELL图图8(b)三维模型第四阶振型99Hz、157Hz、190Hz、390Hz。
索力振动测量的传递矩阵法刘志军;芮筱亭;杨富锋;于海龙;姜世平【摘要】振动法测量拉索张力需要准确描述索力与自振频率的关系,在建立拉索振动的离散模型基础上应用传递矩阵法计算拉索固有频率,通过求解特征方程建立了索力与振动频率的关系;然后将计算得到的模态频率与测试得到的模态频率比较,通过修正拉索张力计算值使计算频率与实测频率误差最小,最后修正的拉索张力则为拉索实际张力.通过对实际工程的测试结果分析表明,该方法具有准确、实用和易编程的特点,完全能满足工程应用要求.%The relation between cable tension and natural vibration frequencies needs to be defined accurately for measurement of cable tension with vibration method. Transfer matrix method of a multibody system was used to compute natural vibration frequencies of a cable based on a cable-vibration discrete model. The relation between cable tension and natural vibration frequencies was described by solving a characteristic equation. The computed value of cable tension was modified until the difference between the theoretical calculation frequencies and the measured ones reached the minimum. The final computed value of cable tension was regarded as the actual cable tension. The field measurement results were analyzed and it was indicated that the proposed method has higher computational efficiency because of lower order of system matrices and can effectively satisfy the requirements for measurement precision of cable tension.【期刊名称】《振动与冲击》【年(卷),期】2011(030)010【总页数】4页(P270-273)【关键词】传递矩阵法;索力;固有频率【作者】刘志军;芮筱亭;杨富锋;于海龙;姜世平【作者单位】南京理工大学发射动力学研究所,南京210094;南京理工大学发射动力学研究所,南京210094;南京理工大学发射动力学研究所,南京210094;南京理工大学发射动力学研究所,南京210094;南京理工大学发射动力学研究所,南京210094【正文语种】中文【中图分类】U448.27拉索作为结构的主要承重构件在工程中得到了广泛应用,拉索张力的大小直接关系到结构的受力状况。
传递矩阵法是研究转子系统动力学问题的有效手段。
传递矩阵法还具有其它方法(如摄动有限元素法)无法比拟的优点,例如,在做转子系统的临界转速、阻尼固有频率和稳定性计算分析时,由于流体密封交叉刚度、油膜轴承、阻尼项往往是不对称的,再加上陀螺力矩的影响;这样,用随机有限元素法形成的单元刚度矩阵和系统总体刚度矩矩阵往往也是不对称的,阻尼也不可以简单地以小阻尼或比例阻尼系统来替代,求解这样一个非对称系统的复特征值问题,目前还没有一个较为理想的方法。
而传递矩阵法没有随机有限元法在求解这些的问题时带来的这些困难。
因此,传递矩阵法在转子系统动力学问题的研究中占有主导的地位。
传输矩阵法一、 传输矩阵法概述 1. 传输矩阵在介绍传输矩阵的模型之前,首先引入一个简单的电路模型。
如图1(a)所示, 在(a)中若已知A 点电压及电路电流,则我们只需要知道电阻R ,便可求出B 点电压。
传输矩阵具有和电阻相同的模型特性。
(a)(b)图1 传输矩阵模型及电路模拟模型如图1(b)所示,有这样的关系式存在:E 0=M(z)E 1。
M(z)即为传输矩阵,它将介质前后空间的电磁场联系起来,这和电阻将A 、B 两点的电势联系起来的实质是相似的。
图2 多层周期性交替排列介质传输矩阵法多应用于多层周期性交替排列介质(如图2所示), M(z)反映的介质前后空间电磁场之间的关系,而其实质是每层薄膜特征矩阵的乘积,若用j M 表示第j 层的特征矩阵,则有:1 2 3 4 …… j …… N(1)其中, (2)j δ为相位厚度,有 (3)如公式(2)所示,j M 的表示为一个2×2的矩阵形式,其中每个矩阵元都没有任何实际物理意义,它只是一个计算结果,其推导过程将在第二部分给出。
2. 传输矩阵法在了解了传输矩阵的基础上,下面将介绍传输矩阵法的定义:传输矩阵法是将磁场在实空间的格点位置展开,将麦克斯韦方程组化成传输矩阵形式,变成本征值求解问题。
从其定义可以看出,传输矩阵法的实质就是将麦克斯韦方程转化为传输矩阵,也就是传输矩阵法的建模过程,具体如下:利用麦克斯韦方程组求解两个紧邻层面上的电场和磁场,从而可以得到传输矩阵,然后将单层结论推广到整个介质空间,由此即可计算出整个多层介质的透射系数和反射系数。
传输矩阵法的特点:矩阵元少(4个),运算量小,速度快;关键:求解矩阵元;适用介质:多层周期性交替排列介质。
二、 传输矩阵的基础理论——薄膜光学理论 1.麦克斯韦方程组麦克斯韦方程组由四个场量:D 、E 、B 、H ,两个源量:J 、ρ以及反映它们之间关系的方程组成。
而且由媒质方程中的参数ε、μ、σ反映介质对电磁场的影响。