R×C列联表资料的统计分析
- 格式:ppt
- 大小:1.64 MB
- 文档页数:71
定性资料常用的统计学方法一、χ2检验χ2检验(chi-square test)是一种主要用于分析分类变量数据的假设检验方法,该方法主要目的是推断两个或多个总体率或构成比之间有无差别。
(一)四格表资料的χ2检验例17:为了解吲达帕胺片治疗原发性高血压的疗效,将70名高血压患者随机分为两组,试验组用吲达帕胺片加辅助治疗,对照组用安慰剂加辅助治疗,观察结果见表4 -5-1,试分析吲达帕胺片治疗原发性高血压的有效性。
表4 -5-1 两种疗法治疗原发性高血压的疗效1.四格表χ2检验的原理:对于四格表资料,χ2检验的基本公式为:式中,A为实际频数(actual frequency),T为理论频数(theoreticalfrequency)。
理论频数T根据检验假设H0:π1=π2确定,其中π1和π2分别为两组的总体率。
计算理论频数T的公式为:式中Tij 为第i行第j列的理论频数,ni+和n+j分别为相应行与列的周边合计数,n为总例数。
现以例17为例说明χ2检验的步骤:(1)建立检验假设并确定检验水准。
H0:π1=π2,即试验组与对照组的总体有效率相等H1:π1≠π2,即试验组与对照组的总体有效率不等α=0.05(2)计算检验统计量。
按式(4 -5-2)计算T11,然后利用四格表的各行列的合计数计算T12、T21和T22,即T11=(44×41)/70=25.77,T12=44-25.77=18.23T21=41-25.77=15.23,T22=26-15.23=10.77按式(4 -5-3)计算χ2值(3)确定P值,作出推断结论。
以ν=1查χ2分布界值表,得P<0.005。
按α=0.05水准,拒绝H,接受H1,可以认为两组治疗原发性高血压的总体有效率不等,即可以认为吲达帕胺片治疗原发性高血压优于对照组。
2.四格表资料χ2检验的专用公式:在对两样本率比较时,当总例数n≥40且所有格子的T≥5时,可用χ2检验的通用公式(4 -5-1)。
【宝典】R×C列联表(分类数据)的统计分析方法选择与SPSS实现分类资料在医学统计中很常见,有些统计学书上称为计数资料,比如(有效、无效),(发病、不发病),(男、女),血型(A、B、O、AB)等等。
分类资料一般根据频数整理成列联表的形式,一般的列联表多是二维的(也称行列表,或R×C列联表,高维列联表下次讨论),列联表根据变量是否有序可以分为双向无序、单项有序、双向有序列联表,统计方法是不同的,分析如下:一、双向无序列联表(一)成组四格表是指行、列变量均为无序的列联表,例如要研究吸烟和肺癌之间的关系,行变量为是否吸烟:吸烟、不吸烟,列变量为肺癌发病:发病,不发病,如下表:发生肺癌未发生肺癌吸烟a b不吸烟 c d对于这种数据,我们的统计目的是分析行列变量的独立性,即:肺癌发病是否与吸烟有关,可选用的方法有以下两种:1、Pearson卡方检验:基于卡方分布,H0为行、列变量相互独立,SPSS中“分析->描述性统计->交叉表”可实现。
四格表使用条件:专用公式①样本总数大于40;②各个单元格理论值均大于5。
校正公式:①样本总数大于40;②理论值1<T<5;Fisher确切概率法:①样本总数小于40,或T<1,无需选择,软件自动计算成组四格表Fisher。
2、Fisher精确概率:基于超几何分布,当数据不满足Pearson卡方检验时使用。
SPSS 中“分析->描述性统计->交叉表”可实现。
注意SPSS仅提供了2×2表的精确概率,需要计算R×C列联表的精确概率,可以选择精确按钮中的蒙特卡罗近似法实现。
(一)成组R×C表(双向无序)A型B型O型AB型A地区 a b c dB地区 e f j hC地区i j k l1.Pearson卡方检验条件:不能有任何一个格子的理论频数T<1,同时1<T<5的格子数不能超过总格子数的1/5.如若不符合:可以增加研究样本量(通常少用);对理论频数较小的行或者列进行合并或者删除;采用R×C表的Fisher确切概率法(通常采用蒙特卡洛近似法)2.R×C表Fisher确切概率法操作:分析—描述—交叉表—设置好行列变量—点击精确—选择蒙特卡洛。
A14-如何在SAS中实现R×C列联表的两两比较内容来自网络,侵删在分析R×C列联表时,在卡方检验有统计意义的情况下常常需要做进一步的多重比较。
可以采用的方法为1)卡方分割(具体见本人另外一篇文章《R×C行列表卡方值分割的概念及运用》)将原表卡方值分割成独立的子卡方值,分割后的子卡方值和对应的自由度相加会和原表的卡方值和自由度相等。
2)或者采用彼此之间非独立的两两比较。
但是两两比较的卡方值和对应的自由度相加不会等于原表卡方值和自由度,所以此类比较不能称为卡方分割法。
尽管后者更为灵活但需要调整多重比较的次数以避免增加第一类错误。
本文将具体讲解如何在SAS中实现R×C列联表的两两比较。
1.研究数据-血型和疾病类型假定某医学课题想研究血型(O,A,B)和疾病类型(Peptic Ulcer, Gastric Cancer,Control)是否相互关联, 具体临床数据见表1。
表1:血型和疾病类型行列表Disease TypeBloodType Peptic Ulcer(I)-1 Gastric Cancer(II)-2 Control(III)-3 Total O-1983(14.024)383(4.9139)2892(1.4159)4258A-2679(9.0743)416(4.5484)2625(0.679)3720B-3134(4.6663)84(0.2695)570(0.9519)788Totals17968836087N=87662.初步分析我们先用SAS/PROC FREQ 和PROC CORRESP 先对数据做初步的分析,来判断行列变量之间的关系。
CELLCHI2 选项是计算按公式2-1计算每个单元格在总体值的组成。
2χij ijijji E OE C 2,)(-=(2-1)proc freq data=paper14;weight count;table r*c/chisq cellchi2nopercent;run;proc corresp data=paper14;weight count;les r, c;tabrun;表2 – 卡方检验结果Table of r by cr cFrequencyCell Chi-SquareRow PctCol Pct 123Total198314.02423.0954.733834.91398.9943.3728921.415967.9247.51425826799.074318.2537.814164.548411.1847.1126250.67970.5643.12372031344.666317.017.46840.269510.669.515700.951972.349.36788Total 179688360878766 Statistics for Table of r by cStatistic DF Value Prob ------------------------------------------------------ Chi-Square 4 40.5434 <.0001 Likelihood Ratio Chi-Square 4 40.6401 <.0001 Mantel-Haenszel Chi-Square 1 21.0035 <.0001 Sample Size = 8766从表2中可以看出第1行(血型O)的卡方检验分值在所有行中所占比重最高((14.024+4.9139+1.4159)/40.5434≈50%);第1列(Peptic Ulcer(I))的卡方检验分值在所有列中所占比重最高((14.024+9.0743+4.6663)/40.5434≈68.5%)。
生物统计学各章题目一填空1.变量按其性质可以分为(连续)变量和(非连续)变量。
2.样本统计数是总体(参数)的估计值。
3.生物统计学是研究生命过程中以样本来推断(总体)的一门学科。
4.生物统计学的基本内容包括(试验设计)和(统计分析)两大部分.5.生物统计学的发展过程经历了(古典记录统计学)、(近代描述统计学)和(现代推断统计学)3个阶段。
6.生物学研究中,一般将样本容量(n ≥30)称为大样本。
7.试验误差可以分为(随机误差)和(系统误差)两类。
判断1.对于有限总体不必用统计推断方法。
(×)2.资料的精确性高,其准确性也一定高。
(×)3.在试验设计中,随机误差只能减小,而不能完全消除。
(∨)4.统计学上的试验误差,通常指随机误差。
(∨)二填空1.资料按生物的性状特征可分为(数量性状资料)变量和(质量性状资料)变量.2。
直方图适合于表示(连续变量)资料的次数分布。
3.变量的分布具有两个明显基本特征,即(集中性)和(离散性)。
4.反映变量集中性的特征数是(平均数),反映变量离散性的特征数是(变异数)。
5.样本标准差的计算公式s=( )。
判断题1。
计数资料也称连续性变量资料,计量资料也称非连续性变量资料。
(×)2。
条形图和多边形图均适合于表示计数资料的次数分布。
(×)3. 离均差平方和为最小。
(∨)4。
资料中出现最多的那个观测值或最多一组的中点值,称为众数。
(∨)5. 变异系数是样本变量的绝对变异量。
(×)单项选择1. 下列变量中属于非连续性变量的是( C )。
A.身高 B.体重 C.血型 D.血压 2. 对某鱼塘不同年龄鱼的尾数进行统计分析,可做成( A )图来表示。
A.条形 B 。
直方 C 。
多边形 D 。
折线 3。
关于平均数,下列说法正确的是( B ).A. 正态分布的算术平均数和几何平均数相等. 122--∑∑n n x x )(B.正态分布的算术平均数和中位数相等。
SPSS超详细操作:卡⽅检验(R×C列联表)医咖会之前推送过⼀些卡⽅检验相关的⽂章,包括:卡⽅检验(2x2)、卡⽅检验(2xC)、配对卡⽅检验、分层卡⽅检验等。
今天我们再和⼤家分享⼀下,如何⽤SPSS来做RxC列联表的卡⽅检验。
⼀、问题与数据研究者拟分析购房⼈与购房类型的关系,共招募了在过去12个⽉中有过购房记录的333位受试者,收集了购房⼈类型(buyer_type)和房屋类型(property_type)的变量信息。
其中研究对象类型按照单⾝男性(single male)、单⾝⼥性(single female)、已婚两⼈(married couple)和多⼈家庭(family)分类;房屋类型按照楼房(flat)、平房(bungalow)、独栋别墅(detached house)和联排别墅(terrace)分类,部分数据如下图。
其中,Individual scores for each paticipant(左图)列出了每⼀个研究对象的情况,⽽Total count data (frequencies)(右图)则是对相同情况研究对象的数据进⾏了汇总。
⼆、对问题的分析研究者想分析多种购房⼈类型与多种房屋类型的关系,建议使⽤卡⽅检验(R×C),但需要先满⾜3项假设:假设1:存在两个⽆序多分类变量,如本研究中购房⼈类型和房屋类型均为⽆序分类变量。
假设2:具有相互独⽴的观测值,如本研究中各位研究对象的信息都是独⽴的,不会相互⼲扰。
假设3:样本量⾜够⼤,最⼩的样本量要求为分析中的任⼀期望频数⼤于5。
本研究数据符合假设1和假设2,那么应该如何检验假设3,并进⾏卡⽅检验(R×C)呢?三、SPSS操作1. 数据加权如果数据是汇总格式(如上图中的Total count data),则在进⾏卡⽅检验之前,需要先对数据加权。
如果数据是个案格式(如上图中的Individual scores for each paticipant),则可以跳过“数据加权”步骤,直接进⾏卡⽅检验的SPSS操作。
A14-如何在SAS中实现R×C列联表的两两比较内容来自网络,侵删在分析R×C列联表时,在卡方检验有统计意义的情况下常常需要做进一步的多重比较。
可以采用的方法为1)卡方分割(具体见本人另外一篇文章《R×C行列表卡方值分割的概念及运用》)将原表卡方值分割成独立的子卡方值,分割后的子卡方值和对应的自由度相加会和原表的卡方值和自由度相等。
2)或者采用彼此之间非独立的两两比较。
但是两两比较的卡方值和对应的自由度相加不会等于原表卡方值和自由度,所以此类比较不能称为卡方分割法。
尽管后者更为灵活但需要调整多重比较的次数以避免增加第一类错误。
本文将具体讲解如何在SAS中实现R×C列联表的两两比较。
1.研究数据-血型和疾病类型假定某医学课题想研究血型(O,A,B)和疾病类型(Peptic Ulcer, Gastric Cancer,Control)是否相互关联, 具体临床数据见表1。
表1:血型和疾病类型行列表Disease TypeBloodType Peptic Ulcer(I)-1 Gastric Cancer(II)-2 Control(III)-3 Total O-1983(14.024)383(4.9139)2892(1.4159)4258A-2679(9.0743)416(4.5484)2625(0.679)3720B-3134(4.6663)84(0.2695)570(0.9519)788Totals17968836087N=87662.初步分析我们先用SAS/PROC FREQ 和PROC CORRESP 先对数据做初步的分析,来判断行列变量之间的关系。
CELLCHI2 选项是计算按公式2-1计算每个单元格在总体值的组成。
2χij ijijji E OE C 2,)(-=(2-1)proc freq data=paper14;weight count;table r*c/chisq cellchi2nopercent;run;proc corresp data=paper14;weight count;les r, c;tabrun;表2 – 卡方检验结果Table of r by cr cFrequencyCell Chi-SquareRow PctCol Pct 123Total198314.02423.0954.733834.91398.9943.3728921.415967.9247.51425826799.074318.2537.814164.548411.1847.1126250.67970.5643.12372031344.666317.017.46840.269510.669.515700.951972.349.36788Total 179688360878766 Statistics for Table of r by cStatistic DF Value Prob ------------------------------------------------------ Chi-Square 4 40.5434 <.0001 Likelihood Ratio Chi-Square 4 40.6401 <.0001 Mantel-Haenszel Chi-Square 1 21.0035 <.0001 Sample Size = 8766从表2中可以看出第1行(血型O)的卡方检验分值在所有行中所占比重最高((14.024+4.9139+1.4159)/40.5434≈50%);第1列(Peptic Ulcer(I))的卡方检验分值在所有列中所占比重最高((14.024+9.0743+4.6663)/40.5434≈68.5%)。
生物统计学习题集参考答案生物统计学习题集参考答案第一章概论一、填空1 变量按其性质可以分为连续变量和非连续变量。
2 样本统计数是总体参数的估计量。
3 生物统计学是研究生命过程中以样本来推断总体的一门学科。
4 生物统计学的基本内容包括_试验设置、统计分析_两大部分。
5 统计学的发展过程经历了古典记录统计学、近代描述统计学现代推断统计学3个阶段。
6 生物学研究中,一般将样本容量n大于等于30称为大样本。
7 试验误差可以分为__随机误差、系统误差两类。
二、判断(-)1 对于有限总体不必用统计推断方法。
(-)2 资料的精确性高,其准确性也一定高。
(+) 3 在试验设计中,随机误差只能减少,而不可能完全消除。
(+)4 统计学上的试验误差,通常指随机误差。
三、名词解释样本:从总体中抽出的若干个体所构成的集合称为样本。
总体:具有相同的个体所构成的集合称为总体。
连续变量:是指在变量范围内可抽出某一范围的所有值。
非连续变量:也称离散型变量,表示变量数列中仅能取得固定数值并且通常是整数。
准确性:也称准确度指在调查或试验中某一试验指标或性状的观测值与真实值接近的程度。
精确性:也称精确度指在调查或试验中同一试验指标或性状的重复观测值彼此接近程度的大小。
第二章试验资料的整理与特征数的计算一、填空1 资料按生物的性状特征可分为___数量性状资料_变量和__变量性状资料_变量。
2 直方图适合于表示__计量、连续变量_资料的次数分布。
3 变量的分布具有两个明显基本特征,即_集中性_和__离散性_。
4 反映变量集中性的特征数是__平均数__,反映变量离散性的特征数是__变异数(标准差)_。
5 样本标准差的计算公式s= √∑(x-x横杆)平方/(n-1)。
二、判断( - ) 1 计数资料也称连续性变量资料,计量资料也称非连续性变量资料。
( - ) 2 条形图和多边形图均适合于表示计数资料的次数分布。
( +)3 离均差平方和为最小。
R×C表资料的分类及其检验方法的选择R×C表资料可以分为双向无序、单项有序、双向有序属性相同和双向有序属性不同4类。
1.双向无序R×C表资料R×C表资料中两个分类变量(X和Y)皆为无序分类变量,如表7-8、表7-9和表7-10(X、Y均为名义变量)。
对于该类资料,①若研究目的为多个样本率(或构成比)的比较,可用行×列表资料的x2检验;②若研究目的为分析两个分类变量之间有无关联性以及关系的密切程度时,可用行×列表资料的x2检验以及Pearson列联表系数进行分析。
2.单向有序R×C表资料有两种形式。
一种R×C表资料中的分组变量(如年龄)是有序的,而指标变量(如传染病的类型)是无序的。
其研究目的通常是分析不同年龄组各种传染病的构成情况,此种单向有序R×C表资料可用行×列表资料的x2检验进行分析。
另一种情况是R×C表资料中的分组变量(如疗法)为无序的,而指标变量(如疗法按等级分组)是有序的。
其研究目的为比较不同疗法的疗效,此种单向有序R×C表资料宜用秩转换的非参数检验进行分析(见第八章)。
3.双向有序属性相同的R×C表资料R×C表资料中的两个分类变量皆为有序且属性相同。
实际上是为配对四格表资料的扩展,即水平数≥3的配伍资料,如用两种检测方法同时对同一批样品的测定结果。
其研究目的通常是分析两种检测方法的一致性,此时宜用一致性检验或称Kappa检验(见第三十三章);也可用特殊模型分析方法(SAS软件)。
4.双向有序属性不同的R×C表资料R×C表资料中两个分类变量皆为有序的,但属性不同,如表7-13(X、Y均为等级资料、等距资料)。
对于该类资料,①若研究目的为分析不同年龄组患者疗效之间有无差别时,可把它视为单向有序R×C表资料,选用秩转换的非参数检验;②若研究目的为分析两个有序分类变量间是否存在相关关系,宜用等级相关分析或Pearson积差相关分析(见第九章);③若研究目的为分析两个有序分类变量间是否存在线性变化趋势,宜用有序分组资料的线性趋势检验(test for linear trend)。