高三数学一轮复习学案:函数的图像
- 格式:doc
- 大小:356.00 KB
- 文档页数:4
第3课 三角函数的图象与性质(1)一、教学目标1.了解三角函数的周期性,理解三角函数)sin(ϕω+=x A y 、)cos(ϕω+=x A y 的周期为ωπ2=T 及tan()y A x ωφ=+的周期为T πω=; 2.能画出x y sin =,x y cos =,x y tan =的图象,并能根据图象理解正弦函数、余弦函数、正切函数的性质(如定义域、值域、周期性、单调性、奇偶性、最值、对称性等) .二、基础知识回顾与梳理 1、下列判断是否正确? ①x x f sin )(=的周期是π; ②)32sin()(π+=x x f 的周期是2π; ③214sin )(+=x x f 的周期是4π.【教学建议】本题主要是帮助学生复习、理解三角函数周期性的概念.(1)可以提出两个问题:①)sin(ϕω+=x A y ,)cos(ϕω+=x A y 的周期是什么?②加了绝对值之后,函数的图象有什么变化?(2)做完一二两题之后,学生可能会有一个感觉:加了绝对值之后,周期就要减半。
引导学生画第三题的图形去判断这个结论是否正确. 2、下列判断是否正确? (1))62sin(π+=x y 的单调增区间为Z k k k ∈++-],6,3[ππππ; (2) )62sin(π+-=x y 的单调增区间为Z k k k ∈---],3,6[ππππ;(3))4tan(π+=x y 的单调增区间为Z k k k ∈++-],4,43[ππππ. 【教学建议】本题主要是求三角函数单调性.通过这一组判断题,可以帮助学生注意在求解三角函数单调性时的几个易错点。
求三角函数单调性时一般是将ϕω+x 看成一个整体放入正弦函数、余弦函数、正切函数的单调区间中.其中要注意ω的正负,如果是负的,需要如何处理,可以利用复合函数单调性来解释原因,还要注意正切函数的单调区间只能是开区间. 3、关于函数x y 2cos 1+=的图象,下面说法正确的是______. (1)关于x 轴对称 (2)关于原点对称(3)关于点)(0,4π对称 (4)关于直线2π=x 对称【教学建议】本题可以从代数和几何两种方法入手.先引导学生利用五点作图法画图,从图象观察答案。
第9讲 对数函数(原卷版)考点内容解读要求 常考题型 1.对数函数的图像和性质 理解对数函数的定义图象及性质 Ⅰ 选择题,填空题 2.对数函数的应用 对数函数性质的归纳与运用Ⅱ选择题,填空题1.对数1.对数的概念:一般地,如果N a x=)1,0(≠>a a ,那么数x 叫做以a 为底N 的对数,记作:Nx a log =(a — 底数,N — 真数,Na log — 对数式)说明:① 注意底数的限制0>a ,且1≠a ; ②xN N a a x =⇔=log ;③ 注意对数的书写格式. 两个重要对数:① 常用对数:以10为底的对数N lg ;② 自然对数:以无理数 71828.2=e 为底的对数的对数N ln . 2.对数函数的特征特征⎩⎪⎨⎪⎧log a x 的系数:1log a x 的底数:常数,且是不等于1的正实数log a x 的真数:仅是自变量x判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y =log7x 是对数函数,而函数y =-3log4x 和y =logx2均不是对数函数,其原因是不符合对数函数解析式的特点. 3.对数的运算性质如果0>a ,且1≠a ,0>M ,0>N ,那么: ①Ma (log ·=)N ;②=N M alog ;③ n a M log n =M a log )(R n ∈.注意:换底公式a bb c c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).利用换底公式推导下面的结论(1)b m n b a na m log log =;(2)a b b a log 1log =.2.对数函数及其性质 1.对数函数的定义:函数 x y a log =)10(≠>a a 且叫做 。
2.对数函数的性质:(1)定义域、值域:对数函数x y a log =)10(≠>a a 且的定义域为 ,值域为 .(2)图象:由于对数函数是指数函数的 ,所以对数函数的图象只须由相应的指数函数图象作关于 的对称图形,即可获得。
第一节函数及其表示[知识能否忆起]1.函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A 到集合B的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题能否全取]1.(教材习题改编)设g(x)=2x+3,g(x+2)=f(x),则f(x)等于()A.-2x+1B.2x-1C.2x-3 D.2x+7解析:选D f(x)=g(x+2)=2(x+2)+3=2x+7.2.(·江西高考)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))=( )A.15 B .3 C.23D.139解析:选D f (3)=23,f (f (3))=⎝⎛⎭⎫232+1=139. 3.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18xB .f :x →y =14xC .f :x →y =12xD .f :x →y =x解析:选D 按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=____________. 解析:令t =1x ,则x =1t .所以f (t )=1t 2+5t .故f (x )=5x +1x 2(x ≠0).答案:5x +1x2(x ≠0)5.(教材习题改编)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=________.解析:由已知得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,得⎩⎪⎨⎪⎧b =-4,c =3.即f (x )=x 2-4x +3.所以f (-1)=(-1)2-4×(-1)+3=8. 答案:81.函数与映射的区别与联系(1)函数是特殊的映射,其特殊性在于集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.2.定义域与值域相同的函数,不一定是相同函数如函数y =x 与y =x +1,其定义域与值域完全相同,但不是相同函数;再如函数y =sin x 与y =cos x ,其定义域与值域完全相同,但不是相同函数.因此判断两个函数是否相同,关键是看定义域和对应关系是否相同.3.求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.函数的基本概念典题导入[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________.[自主解答] 对于(1),由于函数f (x )=|x |x的定义域为{x |x ∈R ,且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于(4),由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3)由题悟法两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.以题试法1.试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=x-2·x+2,y=x2-4;(3)y=x,y=3t3;(4)y=|x|,y=(x)2.解:(1)y=1的定义域为R,y=x0的定义域为{x|x∈R,且x≠0},故它们不是同一函数.(2)y=x-2·x+2的定义域为{x|x≥2}.y=x2-4的定义域为{x|x≥2,或x≤-2},故它们不是同一函数.(3)y=x,y=3t3=t,它们的定义域和对应关系都相同,故它们是同一函数.(4)y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},故它们不是同一函数.求函数的解析式典题导入[例2] (1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ). [自主解答] (1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x (x ∈R).由题悟法函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3));(3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x 或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6).以题试法2.(1)已知f (x +1)=x +2x ,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:(1)法一:设t =x +1,则x =(t -1)2(t ≥1);代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x =(x )2+2x +1-1=(x +1)2-1, ∴f (x +1)=(x +1)2-1(x +1≥1), 即f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.分 段 函 数典题导入[例3] (·广州调研考试)设函数f (x )=⎩⎪⎨⎪⎧2-x ,x ∈(-∞,1),x 2,x ∈[1,+∞),若f (x )>4,则x 的取值范围是______.[自主解答] 当x <1时,由f (x )>4,得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2. 综上可得x <-2或x >2.[答案] (-∞,-2)∪(2,+∞)若本例条件不变,试求f (f (-2))的值. 解:∵f (-2)=22=4, ∴f (f (-2))=f (4)=16.由题悟法求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.以题试法3.(·衡水模拟)已知f (x )的图象如图,则f (x )的解析式为________. 解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝⎛⎭⎫1,32和⎝⎛⎭⎫1,32,(2,0)分别代入, 解得⎩⎪⎨⎪⎧a =32,b =0,⎩⎪⎨⎪⎧a =-32,b =3.答案:f (x )=⎩⎨⎧32x ,0≤x ≤1,3-32x ,1≤x ≤21.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2 B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100答案:D2.下列函数中,与函数y =13x定义域相同的函数为( )A .y =1sin xB .y =ln xxC .y =x e xD .y =sin xx解析:选D 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0}.3.(·安徽高考)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析:选C 对于选项A ,f (2x )=|2x |=2|x |=2f (x );对于选项B ,f (x )=x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于选项D ,f (2x )=-2x =2(-x )=2f (x );对于选项C ,f (2x )=2x +1=2f (x )-1.4.已知f (x )=⎩⎪⎨⎪⎧-cos (πx ),x >0,f (x +1)+1,x ≤0,则f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43的值等于( ) A .-2 B .1 C .2D .3解析:选D f ⎝⎛⎭⎫43=12,f ⎝⎛⎭⎫-43=f ⎝⎛⎭⎫-13+1=f ⎝⎛⎭⎫23+2=52,f ⎝⎛⎭⎫43+f ⎝⎛⎭⎫-43=3. 5.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )解析:选C 从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( )A .x -1B .x +1C .2x +1D .3x +3解析:选B 由题意知2f (x )-f (-x )=3x +1.① 将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1.7.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 解析:由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =0,22+2p +q =0,所以⎩⎪⎨⎪⎧p =-3,q =2.故f (x )=x 2-3x +2.所以f (-1)=(-1)2+3+2=6. 答案:68.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题知,f (1)=2+1=3,f (f (1))=f (3)=32+6a ,若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3.答案:(-1,3)9.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的是________.解析:由函数的定义,对定义域内的每一个x 对应着唯一一个y ,据此排除①④,③中值域为{y |0≤y ≤3}不合题意.答案:②10.若函数f (x )=xax +b (a ≠0),f (2)=1,又方程f (x )=x 有唯一解,求f (x )的解析式.解:由f (2)=1得22a +b=1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又因方程有唯一解,故1-ba =0,解得b =1,代入2a +b =2得a =12,所以f (x )=2x x +2. 11.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是 2 km ,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y (km)与时间x (min)的关系.试写出y =f (x )的函数解析式.解:当x ∈[0,30]时,设y =k 1x +b 1, 由已知得⎩⎪⎨⎪⎧b 1=0,30k 1+b 1=2,解得⎩⎪⎨⎪⎧ k 1=115,b 1=0.即y =115x .当x ∈(30,40)时,y =2; 当x ∈[40,60]时,设y =k 2x +b 2,由已知得⎩⎪⎨⎪⎧40k 2+b 2=2,60k 2+b 2=4,解得⎩⎪⎨⎪⎧k 2=110,b 2=-2.即y =110x -2.综上,f (x )=⎩⎨⎧115x ,x ∈[0,30],2,x ∈(30,40),110x -2,x ∈[40,60].12.如图1是某公共汽车线路收支差额y 元与乘客量x 的图象.(1)试说明图1上点A 、点B 以及射线AB 上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么? (4)图1、图2、图3中的票价分别是多少元?解:(1)点A 表示无人乘车时收支差额为-20元,点B 表示有10人乘车时收支差额为0元,线段AB 上的点表示亏损,AB 延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价. (3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.1.(·北京高考)根据统计,一名工人组装第x 件某产品所用的时间(单位:分钟)为f (x )=⎩⎨⎧cx ,x <A ,cA ,x ≥A(A ,c 为常数).已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么c 和A 的值分别是( )A .75,25B .75,16C .60,25D .60,16解析:选D 因为组装第A 件产品用时15分钟, 所以cA=15,① 所以必有4<A ,且c 4=c2=30.② 联立①②解得c =60,A =16.2.(·江西红色六校联考)具有性质:f ⎝⎛⎭⎫1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下列函数:①y =x -1x ;②y =x +1x ;③y =⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①解析:选B 对于①,f (x )=x -1x ,f ⎝⎛⎭⎫1x =1x-x =-f (x ),满足;对于②,f ⎝⎛⎭⎫1x =1x +x =f (x ),不满足;对于③,f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x ,0<1x<1,0,1x =1,-x ,1x >1,即f ⎝⎛⎭⎫1x =⎩⎪⎨⎪⎧1x,x >1,0,x =1,-x ,0<x <1,故f ⎝⎛⎭⎫1x =-f (x ),满足.综上可知,满足“倒负”变换的函数是①③.3.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1.(1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有 a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x . ∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4,或x <-1}.1.已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =________.解析:∵f (0)=3×0+2=2,f (f (0))=f (2)=4+2a =4a ,∴a=2.答案:22.若函数的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y≤4,且y≠0},试在下图中画出满足条件的一个函数的图象.解:本题答案不唯一,函数图象可画为如图所示.3.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.解:(1)因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2,又f(2)=3,从而f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x20+x0=x0.又因为f(x0)=x0,所以x0-x20=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易证该函数满足题设条件.综上,所求函数f(x)的解析式为f(x)=x2-x+1.。
第7节函数的图象考试要求 1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;2.会运用基本初等函数的图象分析函数的性质,解决方程解的个数与不等式解的问题.知识梳理1。
利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线。
2.利用图象变换法作函数的图象(1)平移变换(2)对称变换y=f(x)的图象错误!y=-f(x)的图象;y=f(x)的图象错误!y=f(-x)的图象;y=f(x)的图象错误!y=-f(-x)的图象;y=a x(a>0,且a≠1)的图象错误!y=log a x(a〉0,且a≠1)的图象. (3)伸缩变换y=f(x)错误!y=f(ax).y=f(x)错误!y=Af(x)。
(4)翻折变换y=f(x)的图象错误!y=|f(x)|的图象;y=f(x)的图象错误!y=f(|x|)的图象.[常用结论与微点提醒]1.记住几个重要结论(1)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称。
(2)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)中心对称.(3)若函数y=f(x)对定义域内任意自变量x满足:f(a+x)=f(a-x),则函数y=f(x)的图象关于直线x=a对称.2.图象的左右平移仅仅是相对于...x.而言,如果x的系数不是1,常需把系数提出来,再进行变换.3。
图象的上下平移仅仅是相对于...y.而言的,利用“上减下加”进行。
诊断自测1.判断下列结论正误(在括号内打“√"或“×”)(1)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.()(2)函数y=af(x)与y=f(ax)(a〉0且a≠1)的图象相同.()(3)函数y=f(x)与y=-f(x)的图象关于原点对称.()(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称。
第六节二次函数与幂函数[知识能否忆起]一、常用幂函数的图象与性质函数特征性质y=x y=x2y=x3y=x12y=x-1图象定义域R R R{x|x≥0}{x|x≠0} 值域R{y|y≥0}R{y|y≥0}{y|y≠0} 奇偶性奇偶奇非奇非偶奇单调性增(-∞,0]减(0,+∞)增增增(-∞,0)和(0,+∞)减公共点(1,1)二、二次函数1.二次函数的定义形如f(x)=ax2+bx+c(a≠0)的函数叫做二次函数.2.二次函数解析式的三种形式(1)一般式:f(x)=ax2+bx+c(a≠0);(2)顶点式:f(x)=a(x-m)2+n(a≠0);(3)零点式:f(x)=a(x-x1)(x-x2)(a≠0).3.二次函数的图象和性质a>0a<0 图象图象特点①对称轴:x=-b2a;②顶点:⎝⎛⎭⎫-b2a,4ac-b24a性质定义域 x ∈R值域y ∈⎣⎡4ac -b 24a ,+∞y ∈⎝⎛⎦⎤-∞,4ac -b 24a 奇偶性b =0时为偶函数,b ≠0时既非奇函数也非偶函数单调性x ∈-∞,⎦⎤-b 2a 时递减,x ∈-b2a,+∞时递增x ∈⎝⎛⎦⎤-∞,-b2a 时递增,x ∈⎣⎡⎭⎫-b 2a ,+∞时递减[小题能否全取]1.若f (x )既是幂函数又是二次函数,则f (x )可以是( ) A .f (x )=x 2-1 B .f (x )=5x 2 C .f (x )=-x 2D .f (x )=x 2解析:选D 形如f (x )=x α的函数是幂函数,其中α是常数.2.(教材习题改编)设α∈⎩⎨⎧⎭⎬⎫-1,1,12,3,则使函数y =x α的定义域为R 且为奇函数的所有α值为( )A .1,3B .-1,1C .-1,3D .-1,1,3解析:选A 在函数y =x -1,y =x ,y =x 12,y =x 3中,只有函数y =x 和y =x 3的定义域是R ,且是奇函数,故α=1,3.3.(教材习题改编)已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( )A.⎝⎛⎭⎫0,120B.⎝⎛⎭⎫-∞,-120 C.⎝⎛⎭⎫120,+∞D.⎝⎛⎭⎫-120,0 解析:选C 由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0得a >120.4.(教材习题改编)已知点M ⎝⎛⎭⎫33,3在幂函数f (x )的图象上,则f (x )的表达式为________.解析:设幂函数的解析式为y =x α,则3=⎝⎛⎭⎫33α,得α=-2.故y =x -2. 答案:y =x -25.如果函数f (x )=x 2+(a +2)x +b (x ∈[a ,b ])的图象关于直线x =1对称,则函数f (x )的最小值为________.解析:由题意知⎩⎨⎧-a +22=1,a +b =2,得⎩⎪⎨⎪⎧a =-4,b =6.则f (x )=x 2-2x +6=(x -1)2+5≥5. 答案:51.幂函数图象的特点(1)幂函数的图象一定会经过第一象限,一定不会经过第四象限,是否经过第二、三象限,要看函数的奇偶性;(2)幂函数的图象最多只能经过两个象限内;(3)如果幂函数的图象与坐标轴相交,则交点一定是原点. 2.与二次函数有关的不等式恒成立问题 (1)ax 2+bx +c >0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0.(2)ax 2+bx +c <0,a ≠0恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0.[注意] 当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.幂函数的图象与性质典题导入[例1] 已知幂函数f (x )=(m 2-m -1)x-5m -3在(0,+∞)上是增函数,则m =________.[自主解答] ∵函数f (x )=(m 2-m -1)x -5m -3是幂函数, ∴m 2-m -1=1,解得m =2或m =-1.当m =2时,-5m -3=-13,函数y =x -13在(0,+∞)上是减函数; 当m =-1时,-5m -3=2,函数y =x 2在(0,+∞)上是增函数. ∴m =-1. [答案] -1由题悟法1.幂函数y =x α的图象与性质由于α的值不同而比较复杂,一般从两个方面考查: (1)α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸; 0<α<1时,曲线上凸;α<0时,曲线下凸.2.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数.借助其单调性进行比较,准确掌握各个幂函数的图象和性质是解题的关键.以题试法1.(1)如图给出4个幂函数大致的图象,则图象与函数对应正确的是( )A .①y =x 13,②y =x 2,③y =x 12,④y =x -1B .①y =x 3,②y =x 2,③y =x 12,④y =x -1C .①y =x 2,②y =x 3,③y =x 12,④y =x -1D .①y =x 13,②y =x 12,③y =x 2,④y =x -1解析:选B 由图①知,该图象对应的函数为奇函数且定义域为R ,当x >0时,图象是向下凸的,结合选项知选B.(2)(·淄博模拟)若a <0,则下列不等式成立的是( ) A .2a >⎝⎛⎭⎫12a>(0.2)aB .(0.2)a >⎝⎛⎭⎫12a>2aC.⎝⎛⎭⎫12a>(0.2)a>2aD .2a >(0.2)a >⎝⎛⎭⎫12a解析:选B 若a <0,则幂函数y =x a 在(0,+∞)上是减函数,所以(0.2)a >⎝⎛⎭⎫12a>0.所以(0.2)a >⎝⎛⎭⎫12a>2a .求二次函数的解析式典题导入[例2] 已知二次函数f (x )有两个零点0和-2,且它有最小值-1. (1)求f (x )解析式;(2)若g (x )与f (x )图象关于原点对称,求g (x )解析式. [自主解答] (1)由于f (x )有两个零点0和-2, 所以可设f (x )=ax (x +2)(a ≠0), 这时f (x )=ax (x +2)=a (x +1)2-a , 由于f (x )有最小值-1,所以必有⎩⎪⎨⎪⎧a >0,-a =-1,解得a =1.因此f (x )的解析式是f (x )=x (x +2)=x 2+2x .(2)设点P (x ,y )是函数g (x )图象上任一点,它关于原点对称的点P ′(-x ,-y )必在f (x )图象上,所以-y =(-x )2+2(-x ), 即-y =x 2-2x , y =-x 2+2x , 故g (x )=-x 2+2x .由题悟法求二次函数的解析式常用待定系数法.合理选择解析式的形式,并根据已知条件正确地列出含有待定系数的等式,把问题转化为方程(组)求解是解决此类问题的基本方法.以题试法2.设f (x )是定义在R 上的偶函数,当0≤x ≤2时,y =x ,当x >2时,y =f (x )的图象是顶点为P (3,4),且过点A (2,2)的抛物线的一部分.(1)求函数f (x )在(-∞,-2)上的解析式;(2)在下面的直角坐标系中直接画出函数f (x )的草图; (3)写出函数f (x )的值域.解:(1)设顶点为P(3,4)且过点A(2,2)的抛物线的方程为y=a(x-3)2+4,将(2,2)代入可得a=-2,则y=-2(x-3)2+4,即x>2时,f(x)=-2x2+12x-14.当x<-2时,即-x>2.又f(x)为偶函数,f(x)=f(-x)=-2×(-x)2-12x-14,即f(x)=-2x2-12x-14.所以函数f(x)在(-∞,-2)上的解析式为f(x)=-2x2-12x-14.(2)函数f(x)的图象如图,(3)由图象可知,函数f(x)的值域为(-∞,4].二次函数的图象与性质典题导入[例3]已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数.[自主解答](1)当a=-2时,f(x)=x2-4x+3=(x-2)2-1,由于x∈[-4,6].所以f(x)在[-4,2]上单调递减,在[2,6]上单调递增,故f(x)的最小值是f(2)=-1,又f(-4)=35,f(6)=15,故f(x)的最大值是35.(2)由于函数f(x)的图象开口向上,对称轴是x=-a,所以要使f(x)在[-4,6]上是单调函数,应有-a≤-4或-a≥6,即a≤-6或a≥4.故a 的取值范围为(-∞,-6]∪[4,+∞).本例条件不变,求当a =1时,f (|x |)的单调区间. 解:当a =1时,f (x )=x 2+2x +3,则f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=⎩⎪⎨⎪⎧x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],故f (|x |)的单调递增区间是(0,6], 单调递减区间是[-6,0].由题悟法解决二次函数图象与性质问题时要注意:(1)抛物线的开口,对称轴位置,定义区间三者相互制约,常见的题型中这三者有两定一不定,要注意分类讨论.(2)要注意数形结合思想的应用,尤其是给定区间上二次函数最值问题的求法.以题试法3.(·泰安调研)已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,则a 的值为________.解析:f (x )=-(x -a )2+a 2-a +1, 当a >1时,y max =a ;当0≤a ≤1时,y max =a 2-a +1; 当a <0时,y max =1-a .根据已知条件⎩⎪⎨⎪⎧ a >1,a =2或⎩⎪⎨⎪⎧ 0≤a ≤1,a 2-a +1=2或⎩⎪⎨⎪⎧a <0,1-a =2,解得a =2或a =-1. 答案:2或-1二次函数的综合问题[例4] (·衡水月考)已知函数f (x )=x 2,g (x )=x -1. (1)若存在x ∈R 使f (x )<b ·g (x ),求实数b 的取值范围;(2)设F (x )=f (x )-mg (x )+1-m -m 2,且|F (x )|在[0,1]上单调递增,求实数m 的取值范围.[自主解答] (1)∃x ∈R ,f (x )<bg (x )⇒∃x ∈R , x 2-bx +b <0⇒(-b )2-4b >0⇒b <0或b >4. 故b 的取值范围为(-∞,0)∪(4,+∞). (2)F (x )=x 2-mx +1-m 2, Δ=m 2-4(1-m 2)=5m 2-4. ①当Δ≤0,即-255≤m ≤255时,则必需⎩⎨⎧m2≤0,-255≤m ≤255⇒-255≤m ≤0.②当Δ>0,即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2).若m2≥1,则x 1≤0, 即⎩⎪⎨⎪⎧ m 2≥1,F (0)=1-m 2≤0⇒m ≥2; 若m2≤0,则x 2≤0, 即⎩⎪⎨⎪⎧m 2≤0,F (0)=1-m 2≥0⇒-1≤m ≤-255.综上所述,m 的取值范围为[-1,0]∪[2,+∞).由题悟法二次函数与二次方程、二次不等式统称“三个二次”,它们之间有着密切的联系,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.因此,有关“三个二次”的问题,数形结合,密切联系图象是探求解题思路的有效方法.4.若二次函数f (x )=ax 2+bx +c (a ≠0)满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上,不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 解:(1)由f (0)=1,得c =1.即f (x )=ax 2+bx +1. 又f (x +1)-f (x )=2x ,则a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x , 即2ax +a +b =2x ,所以⎩⎪⎨⎪⎧ 2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1.因此,f (x )=x 2-x +1.(2)f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0,要使此不等式在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可.∵g (x )=x 2-3x +1-m 在[-1,1]上单调递减, ∴g (x )min =g (1)=-m -1, 由-m -1>0得,m <-1.因此满足条件的实数m 的取值范围是(-∞,-1).1.已知幂函数f (x )=x α的部分对应值如下表:x 1 12 f (x )122则不等式f (|x |)≤2的解集是(A .{x |0<x ≤2} B .{x |0≤x ≤4} C .{x |-2≤x ≤2}D .{x |-4≤x ≤4}解析:选D 由f ⎝⎛⎭⎫12=22⇒α=12,即f (x )=x 12,故f (|x |)≤2⇒|x |12≤2⇒|x |≤4,故其解集为{x |-4≤x ≤4}.2.已知函数y =ax 2+bx +c ,如果a >b >c 且a +b +c =0,则它的图象可能是( )解析:选D ∵a >b >c ,且a +b +c =0, ∴a >0,c <0.∴图象开口向上与y 轴交于负半轴.3.已知f (x )=x 12,若0<a <b <1,则下列各式中正确的是( )A .f (a )<f (b )<f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b B .f ⎝⎛⎭⎫1a <f ⎝⎛⎭⎫1b <f (b )<f (a ) C .f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a D .f ⎝⎛⎭⎫1a <f (a )<f ⎝⎛⎭⎫1b <f (b ) 解析:选C 因为函数f (x )=x 12在(0,+∞)上是增函数,又0<a <b <1b <1a ,故f (a )<f (b )<f ⎝⎛⎭⎫1b <f ⎝⎛⎭⎫1a .4.已知f (x )=x 2+bx +c 且f (-1)=f (3),则( ) A .f (-3)<c <f ⎝⎛⎭⎫52 B .f ⎝⎛⎭⎫52<c <f (-3) C .f ⎝⎛⎭⎫52<f (-3)<cD .c <f ⎝⎛⎭⎫52<f (-3)解析:选D 由已知可得二次函数图象关于直线x =1对称,则f (-3)=f (5),c =f (0)=f (2),二次函数在区间(1,+∞)上单调递增,故有f (-3)=f (5)>f ⎝⎛⎭⎫52>f (2)=f (0)=c .5.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( )A .(-∞,0]B .[2,+∞)C .(-∞,0]∪[2,+∞)D .[0,2]解析:选D 二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x )=2a (x -1)≤0,x ∈[0,1],所以a >0,即函数图象的开口向上,对称轴是直线x =1. 所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2.6.若方程x 2-2mx +4=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A.⎝⎛⎭⎫-∞,-52B.⎝⎛⎭⎫52,+∞ C .(-∞,-2)∪(2,+∞)D.⎝⎛⎭⎫-52,+∞ 解析:选B 设f (x )=x 2-2mx +4,则题设条件等价于f (1)<0,即1-2m +4<0,解得m >52. 7.对于函数y =x 2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图象关于直线y =x 对称; ④两个函数都是偶函数; ⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图象都是抛物线型. 其中正确的有________.解析:从两个函数的定义域、奇偶性、单调性等性质去进行比较. 答案:①②⑤⑥8.(·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.解析:因为f (x )=x 2+bx +1是R 上的偶函数,所以b =0,则f (x )=x 2+1,解不等式(x -1)2+1<x ,即x 2-3x +2<0得1<x <2.答案:0 {x |1<x <2}9.若x ≥0,y ≥0,且x +2y =1,那么2x +3y 2的最小值为________. 解析:由x ≥0,y ≥0,x =1-2y ≥0知0≤y ≤12,令t =2x +3y 2=3y 2-4y +2, 则t =3⎝⎛⎭⎫y -232+23. 在⎣⎡⎦⎤0,12上递减,当y =12时,t 取到最小值,t min =34.答案:3410.如果幂函数f (x )=x -12p 2+p +32(p ∈Z)是偶函数,且在(0,+∞)上是增函数.求p的值,并写出相应的函数f (x )的解析式.解:∵f (x )在(0,+∞)上是增函数, ∴-12p 2+p +32>0,即p 2-2p -3<0.∴-1<p <3.又∵f (x )是偶函数且p ∈Z , ∴p =1,故f (x )=x 2.11.已知二次函数f (x )的图象过点A (-1,0)、B (3,0)、C (1,-8). (1)求f (x )的解析式;(2)求f (x )在x ∈[0,3]上的最值; (3)求不等式f (x )≥0的解集.解:(1)由题意可设f (x )=a (x +1)(x -3), 将C (1,-8)代入得-8=a (1+1)(1-3),得a =2. 即f (x )=2(x +1)(x -3)=2x 2-4x -6. (2)f (x )=2(x -1)2-8,当x ∈[0,3]时,由二次函数图象知, f (x )min =f (1)=-8,f (x )max =f (3)=0. (3)f (x )≥0的解集为{x |x ≤-1,或x ≥3}.12.已知函数f (x )=ax 2-2ax +2+b (a ≠0),若f (x )在区间[2,3]上有最大值5,最小值2. (1)求a ,b 的值;(2)若b <1,g (x )=f (x )-m ·x 在[2,4]上单调,求m 的取值范围. 解:(1)f (x )=a (x -1)2+2+b -a . 当a >0时,f (x )在[2,3]上为增函数,故⎩⎪⎨⎪⎧ f (3)=5,f (2)=2,⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =5,4a -4a +2+b =2,⇒⎩⎪⎨⎪⎧a =1,b =0. 当a <0时,f (x )在[2,3]上为减函数,故⎩⎪⎨⎪⎧ f (3)=2,f (2)=5,⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =2,4a -4a +2+b =5,⇒⎩⎪⎨⎪⎧a =-1,b =3.(2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2. g (x )=x 2-2x +2-mx =x 2-(2+m )x +2, ∵g (x )在[2,4]上单调,∴2+m 2≤2或m +22≥4.∴m ≤2或m ≥6.1.已知y =f (x )是偶函数,当x >0时,f (x )=(x -1)2,若当x ∈⎣⎡⎦⎤-2,-12时,n ≤f (x )≤m 恒成立,则m -n 的最小值为( )A.13 B.12 C.34D .1解析:选D 当x <0时,-x >0,f (x )=f (-x )=(x +1)2, ∵x ∈⎣⎡⎦⎤-2,-12, ∴f (x )min =f (-1)=0,f (x )max =f (-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.(·青岛质检)设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若函数y =f (x )-g (x )在x ∈[a ,b ]上有两个不同的零点,则称f (x )和g (x )在[a ,b ]上是“关联函数”,区间[a ,b ]称为“关联区间”.若f (x )=x 2-3x +4与g (x )=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.解析:由题意知,y =f (x )-g (x )=x 2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x 2-5x +4∈⎣⎡⎦⎤-94,-2,故当m ∈⎝⎛⎦⎤-94,-2时,函数y =m 与y =x 2-5x +4(x ∈[0,3])的图象有两个交点.答案:⎝⎛⎦⎤-94,-2 3.(·滨州模拟)已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R).(1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知得c =1,a -b +c =0,-b2a =-1,解得a =1,b =2.则f (x )=(x +1)2.则F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.故F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立,即b ≤1x -x且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.1.比较下列各组中数值的大小. (1)30.8,30.7;(2)0.213,0.233;(3)4.125,3.8-25,(-1.4)35;(4)0.20.5,0.40.3.解:(1)函数y =3x 是增函数,故30.8>30.7. (2)y =x 3是增函数,故0.213<0.233.(3)4.125>1,0<3.8-25<1,而(-1.4)35<0,故4.125>3.8-25>(-1.4)35.(4)先比较0.20.5与0.20.3,再比较0.20.3与0.40.3,y =0.2x 是减函数,故0.20.5<0.20.3;y =x 0.3在(0,+∞)上是增函数,故0.20.3<0.40.3.则0.20.5<0.40.3.2.设abc >0,二次函数f (x )=ax 2+bx +c 的图象可能是( )解析:选D 当-b2a <0时,ab >0,从而c >0,可排除A ,C ;当-b2a >0时,ab <0,从而c <0,可排除B ,选D.3.已知函数f (x )=ax 2-2x +1. (1)试讨论函数f (x )的单调性;(2)若13≤a ≤1,且f (x )在[1,3]上的最大值为M (a ),最小值为N (a ),令g (a )=M (a )-N (a ),求g (a )的表达式;(3)在(2)的条件下,求证:g (a )≥12.解:(1)当a =0时,函数f (x )=-2x +1在(-∞,+∞)上为减函数; 当a >0时,抛物线f (x )=ax 2-2x +1开口向上,对称轴为x =1a ,故函数f (x )在⎝⎛⎦⎤-∞,1a 上为减函数,在⎣⎡⎭⎫1a ,+∞上为增函数; 当a <0时,抛物线f (x )=ax 2-2x +1开口向下,对称轴为x =1a ,故函数f (x )在⎝⎛⎦⎤-∞,1a 上为增函数,在⎣⎡⎭⎫1a ,+∞上为减函数. (2)∵f (x )=a ⎝⎛⎭⎫x -1a 2+1-1a, 由13≤a ≤1得1≤1a ≤3,∴N (a )=f ⎝⎛⎭⎫1a =1-1a . 当1≤1a <2,即12<a ≤1时,M (a )=f (3)=9a -5,故g (a )=9a +1a-6;当2≤1a ≤3,即13≤a ≤12时,M (a )=f (1)=a -1,故g (a )=a +1a-2.∴g (a )=⎩⎨⎧a +1a-2,a ∈⎣⎡⎦⎤13,12,9a +1a -6,a ∈⎝⎛⎦⎤12,1.(3)证明:当a ∈⎣⎡⎦⎤13,12时,g ′(a )=1-1a 2<0, ∴函数g (a )在⎣⎡⎦⎤13,12上为减函数; 当a ∈⎝⎛⎦⎤12,1时,g ′(a )=9-1a 2>0, ∴函数g (a )在⎝⎛⎦⎤12,1上为增函数,∴当a =12时,g (a )取最小值,g (a )min =g ⎝⎛⎭⎫12=12. 故g (a )≥12.。
济宁学院附属高中高三数学第一轮复习教学案 班级:高三( )班 姓名: 编号010函数的图像一、考纲要求1.掌握基本初等函数的图像特征,学会运用函数的图像理解和研究函数的性质;2.掌握画图像的基本方法:描点法和图像变换法 二、复习目标1、根据函数解析式画出函数图像。
2、掌握函数图像的平移与对称变换。
3、数形结合思想的应用。
三、重点难点1、 平移变换、对称变换2、数形结合思想的应用。
四、要点梳理 1、函数图像的定义 2、描点法描点法画函数的图像,其基本步骤是列表、描点、连线。
首先:(1)确定函数的 ;(2)化简函数的 ;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次:列表(尤其注意特殊点如:最高点、最低点、与坐标轴的交点);最后描点,连线。
3:图像的变换(1) 平移变换①水平变换:()(0)y f x a a =±>的图像,可由()y f x =的图像向(+)或向(-)平移 单位而得到。
②竖直平移:()(0)y f x b b =±>的图像,可由()y f x =的图像向 (+)或向 (-)平移 单位而得到。
(2)对称变换①()()y f x y f x =-=与的图像关于 对称 ②()()y f x y f x =-=与的图像关于 对称 ③()()y f x y f x =--=与的图像关于 对称④()y f x =的图像可由()y f x =的图像在x 轴下方的部分以x 轴为对称轴 ,其余部分不变而得到。
⑤为得到()y f x =的图像,可将()y f x =, x ≥0的图像作出,再利用偶函数的图像关于对称,作出x<0的图像五、基础自测 1、函数22log 2x y x -=+的图象关于 对称. 2、若函数()y f x =的值域为[]1,2,则()y f x a =+的值域为3、若函数()y f x =的图象过点(1,1),则函数(4)y f x =-的图 象一定经过点4、若函数xy a b =+的图象如图所示,则a ,b 的取值范围 分别为 ;若(2,0)A ,(0,2)B -,则 a b +的值为___________. 5、方程lg sin x x =的实根个数为六、典例精讲例1、作出下列函数的图像 (1) 21xy x -=- (2) 122log y x= (3) |21|x y =- (4) 12log ()y x =-例2、函数f (x )=1+log 2x 与g (x )=21-x在同一直角坐标系下的图象大致是( ).例 3 函数244,1,()43,1x x f x x x x -⎧=⎨-->⎩≤的图象和函数2()log g x x =图象交点个数为 .例4.已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.。
第七节函数的图象[最新考纲][考情分析][核心素养]1。
在实际情境中,会根据不同的需要选择图象法、列表法、解析法表示函数。
2。
会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解的问题.本节的常考点有函数图象的辨析、函数图象和函数性质的综合应用及利用图象解方程或不等式,其中函数图象的辨析仍将是2021年高考考查的热点,题型多以选择题为主,属中档题,分值为5分。
1.逻辑推理2.数学运算3.数据分析4.数学建模‖知识梳理‖1.利用描点法作函数图象其基本步骤是列表、描点、连线,具体为:首先:①确定函数的定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、对称性等);其次:列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等);最后:描点,连线.2.利用图象变换法作函数的图象(1)平移变换y=f(x)错误!错误!y=f(x-a);y=f(x)错误!错误!y=f(x)+b.(2)伸缩变换y=f(x)y=f(ωx);y=f(x)错误!y=Af(x).(3)对称变换y=f(x)――――――→,关于x轴对称y=错误!-f(x);y=f(x)错误!y=错误!f(-x);y=f(x)错误!y=错误!-f(-x).(4)翻折变换y=f(x)错误!y=f(|x|);y=f(x)错误!y=|f(x)|。
►常用结论(1)函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称.(2)函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)中心对称.(3)若函数y=f(x)对定义域内任意自变量x满足:f(a+x)=f(a -x),则函数y=f(x)的图象关于直线x=a对称.‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√”或“×”).(1)将函数y=f(x)的图象先向左平移1个单位长度,再向下平移1个单位长度得到函数y=f(x+1)+1的图象.()(2)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图象相同.()(3)函数y=f(x)与y=-f(-x)的图象关于原点对称.()(4)若函数y=f(x)满足f(1+x)=f(1-x),则函数f(x)的图象关于直线x=1对称.()答案:(1)×(2)×(3)√(4)√二、走进教材2.(必修1P23T2改编)小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是()答案:C3.(必修1P24A7改编)下列图象是函数y=错误!的图象的是()答案:C三、易错自纠4.函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x关于y轴对称,则f(x)=()A.e x+1B.e x-1C.e-x+1D.e-x-1解析:选D与曲线y=e x关于y轴对称的图象对应的解析式为y=e-x,将函数y=e-x的图象向左平移1个单位长度即得y =f(x)的图象,∴f(x)=e-(x+1)=e-x-1,故选D.5.(2019年浙江卷)在同一直角坐标系中,函数y=错误!,y=log a 错误!(a〉0,且a≠1)的图象可能是()解析:选D可分别取a=12和a=2,在同一直角坐标系内画出相应图象(图略),对比可知,D正确,故选D.6.已知函数f(x)的图象如图所示,则函数g(x)=log错误!f(x)的定义域是________.解析:当f(x)>0时,函数g(x)=log错误!f(x)有意义,由函数f(x)的图象知满足f(x)〉0时,x∈(2,8].答案:(2,8]错误!|题组突破|1.(2019年全国卷Ⅰ)函数f(x)=错误!在[-π,π]的图象大致为()解析:选D∵f(x)=错误!,x∈[-π,π],∴f(-x)=-sin x-xcos(-x)+(-x)2=-错误!=-f(x),∴f(x)为[-π,π]上的奇函数,因此排除A;又f(π)=错误!=错误!>0,因此排除B、C,故选D.2.(2020届合肥调研)函数f(x)=ln错误!的图象大致为()解析:选B解法一:易知f(x)定义域为{x|x≠0}.又因为f(-x)=ln错误!=ln错误!=ln错误!=f(x),所以函数f(x)为偶函数,故排除A、D;又f(1)=ln错误!<0,f(2)=ln错误!=ln2-错误!〉0,所以f(2)>f(1),故排除C.故选B.解法二:因为f(x)=ln错误!=ln错误!,所以当x→+∞时,f(x)→+∞,排除A、C;当x→-∞时,1-错误!→-1,x错误!→+∞,则f(x)→+∞,排除D,故选B.3。
第03讲三角函数的图象与性质(6类核心考点精讲精练)1. 5年真题考点分布【命题规律】本节内容是新高考卷的必考内容,设题稳定,难度较低或中等,分值为5-11分【备考策略】1能用五点作图法作出正弦、余弦和正切函数图象,并掌握图象及性质2能用五点作图法作出正弦型、余弦型和正切型函数图象,并掌握图象及性质3理解hxAy++=)sin(ϕω中hA、、、ϕω的意义,理解hA、、、ϕω的变化对图象的影响,并能求出参数及函数解析式【命题预测】本节内容是新高考卷的必考内容,一般会综合考查三角函数的图象与性质的综合应用,需加强复习备考1.三角函数的图象与性质siny x=cosy x=tany x=图象定义域R R,2x x k kppìü¹+ÎZíýîþ值域[]1,1-[]1,1-R最值当22x kpp=+时,max1y=;当22x kpp=-时,min1y=-.当2x k p=时,max1y=;当2x k p p=+时,min1y=-.既无最大值也无最小值2.三角函数型函数的图象和性质(1)正弦型函数、余弦型函数性质h x A y ++=)sin(ϕω,hx A y ++=)cos(ϕωA 振幅,决定函数的值域,值域为[]A A ,-ω决定函数的周期,ωp2=T ϕω+x 叫做相位,其中ϕ叫做初相(2)正切型函数性质h x A y ++=)tan(ϕω的周期公式为:ωp=T (3)会用五代作图法及整体代换思想解决三角函数型函数的图象及性质1.(2024·上海·高考真题)下列函数()f x 的最小正周期是2π的是( )A .sin cos x x +B .sin cos x x C .22sin cos x x+D .22sin cos x x-2.(2024·全国·高考真题)函数()sin f x x x =在[]0,π上的最大值是 .周期性2p 2p p奇偶性奇函数偶函数奇函数单调性在2,222k k pp p p éù-+êúëû上是增函数;在32,222k k p p p p éù++êúëû上是减函数.在[]2,2k k p p p -上是增函数;在[]2,2k k p p p +上是减函数.在,22k k pp p p æö-+ç÷èø上是增函数.对称性对称中心(),0k p 对称轴2x k pp =+对称中心,02k p p æö+ç÷èø对称轴x k p=对称中心,02k p æöç÷èø无对称轴3.(2021·全国·高考真题)下列区间中,函数()7sin 6f x x p æö=-ç÷èø单调递增的区间是( )A .0,2p æöç÷èøB .,2ππæöç÷èøC .3,2p p æöç÷èøD .3,22p p æöç÷èø4.(2024·全国·高考真题)(多选)对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列说法中正确的有( )A .()f x 与()g x 有相同的零点B .()f x 与()g x 有相同的最大值C .()f x 与()g x 有相同的最小正周期D .()f x 与()g x 的图象有相同的对称轴5.(2022·全国·高考真题)(多选)已知函数()sin(2)(0π)f x x ϕϕ=+<<的图像关于点2π,03æöç÷èø中心对称,则( )A .()f x 在区间5π0,12æöç÷èø单调递减B .()f x 在区间π11π,1212æö-ç÷èø有两个极值点C .直线7π6x =是曲线()y f x =的对称轴D .直线y x =-是曲线()y f x =的切线1.(2021·全国·高考真题)函数()sin cos 33x xf x =+的最小正周期和最大值分别是( )A .3πB .3π和2C .6πD .6π和22.(2024·天津·高考真题)已知函数()()πsin303f x x ωωæö=+>ç÷èø的最小正周期为π.则()f x 在ππ,126éù-êúëû的最小值是( )A .B .32-C .0D .323.(2024·全国·高考真题)当[0,2]x p Î时,曲线sin y x =与2sin 36y x p æö=-ç÷èø的交点个数为( )A .3B .4C .6D .84.(2022·天津·高考真题)已知1()sin 22f x x =,关于该函数有下列四个说法:①()f x 的最小正周期为2π;②()f x 在ππ[,44-上单调递增;③当ππ,63x éùÎ-êúëû时,()f x 的取值范围为éêë;④()f x 的图象可由1πg()sin(2)24x x =+的图象向左平移π8个单位长度得到.以上四个说法中,正确的个数为( )A .1B .2C .3D .45.(2024·河北唐山·二模)函数()()sin 2f x x ϕ=-π2ϕæö£ç÷èø在π0,3æöç÷èø上为单调递增函数,则ϕ的取值范围为( )A .ππ,26éù--êúëûB .π,06éù-êúëûC .ππ,62éùêúëûD .π0,6éùêúëû1.(2023·天津·高考真题)已知函数()y f x =的图象关于直线2x =对称,且()f x 的一个周期为4,则()f x 的解析式可以是( )A .sin 2x p æöç÷èøB .cos 2x p æöç÷èøC .sin 4x p æöç÷èøD .cos 4x pæöç÷èø2.(2022·北京·高考真题)已知函数22()cos sin f x x x =-,则( )A .()f x 在,26p p æö--ç÷èø上单调递减B .()f x 在,412p p æö-ç÷èø上单调递增C .()f x 在0,3p æöç÷èø上单调递减D .()f x 在7,412p p æöç÷èø上单调递增3.(2024·全国·二模)已知函数()2πcos 23f x x æö=-ç÷èø,2ππ,33x éùÎ-êúëû,则函数()f x 的单调递减区间为.4.(2024·陕西安康·模拟预测)已知函数π()2cos 26f x x æö=+ç÷èø在区间[]0,a 上的值域为é-ë,则a 的取值范围为( )A .5π5π,126éùêúëûB .5π11π,1212éùêúëûC .25,512ππéùêúëûD .5π,π12éùêúëû5.(2024·江苏扬州·模拟预测)(多选)已知函数()2π2cos 6f x x æö=-ç÷èø,则( )A .()f x 最小正周期为2πB .π6x =是()f x 图象的一条对称轴C .5π,112æöç÷èø是()f x 图象的一个对称中心D .()f x 在ππ,44æö-ç÷èø上单调1.(2024·全国·模拟预测)函数()π3cos 26f x x æö=-+ç÷èø的单调递增区间为( )A .πππ,π,36k k k éù-+ÎêúëûZB .π2ππ,π,63k k k Zéù++ÎêúëûC .7πππ,π,1212k k k éù--ÎêúëûZD .π5ππ,π,1212k k k éù-+ÎêúëûZ2.(2021·北京·高考真题)函数()cos cos 2f x x x =-是A .奇函数,且最大值为2B .偶函数,且最大值为2C .奇函数,且最大值为98D .偶函数,且最大值为983.(2024·福建漳州·一模)已知函数()π2cos 36f x x æö=+ç÷èø在0,6a éùêúëû上单调递减,则实数a 的最大值为( )A .2π3B .4π3C .5π3D .3π24.(2024·浙江·模拟预测)(多选)已知函数()2ππsin 248f x x x æöæö=+++ç÷ç÷èøèø,则以下结论正确的为( )A .()f x 的最小正周期为πB .()f x 图象关于点5π24æçè对称C .()f x 在4π3π,32æöç÷èø上单调递减D .将()f x 图象向左平移11π24个单位后,得到的图象所对应的函数为偶函数1.(2024·上海·三模)函数tan()6πy x =-+的最小正周期为 .2.(2024·安徽·三模)“ππ,4k k ϕ=-+ÎZ ”是“函数()tan y x ϕ=+的图象关于π,04æöç÷èø对称”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(多选)若函数()πtan 238f x x æö=-+ç÷èø,则( )A .()f x 的最小正周期为πB .()f x 的定义域为5ππ,162k x x k ìü¹+ÎíýîþZ C .()f x 在π3π,1616æöç÷èø上单调递增D .()f x 的图象关于点π,016æöç÷èø对称4.关于函数()y f x =,其中()tan tan f x x x =+有下述四个结论:①()f x 是偶函数; ②()f x 在区间π0,2æöç÷èø上是严格增函数;③()f x 在[]π,π-有3个零点; ④()f x 的最小正周期为π.其中所有正确结论的编号是( ).A .①②B .②④C .①④D .①③5.函数()()tan sin cos f x x x =+,则下列说法正确的是( )A .()f x 的定义域为R B .()f x 是奇函数C .()f x 是周期函数D .()f x 既有最大值又有最小值1.(2024·湖北荆州·三模)函数π()tan(23f x x =+的最小正周期为( )A .πB .π2C .π3D .π62.(2023·河南·模拟预测)已知函数π()tan 23f x x æö=+ç÷èø,则下列说法正确的是( )A .()f x 为奇函数B .()f x 在区间π7π,1212éùêúëû上单调递增C .()f x 图象的一个对称中心为π,012æöç÷èøD .()f x 的最小正周期为π3.(多选)已知函数()ππtan 124f x x æö=++ç÷èø,则( )A .()f x 的一个周期为2B .()f x 的定义域是1,Z 2x x k k ìü¹+ÎíýîþC .()f x 的图象关于点1,12æöç÷èø对称D .()f x 在区间[]1,2上单调递增9.(2024·湖南长沙·二模)已知函数()()πtan 0,02f x x ωϕωϕæö=+><<ç÷èø的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为( )A .()π5π2π,2πZ 66k k k æù-+ÎçèûB .()5π2π2π,2πZ 33k k k æù--ÎçúèûC .()4ππ2π,2πZ 33k k k æù--ÎçúèûD .()π2π2π,2πZ 33k k k æù-+Îçúèû1.(2023·天津·高考真题)已知函数()y f x =的图象关于直线2x =对称,且()f x 的一个周期为4,则()f x 的解析式可以是( )A .sin 2x pæöç÷èøB .cos 2x p æöç÷èøC .sin 4x p æöç÷èøD .cos 4x pæöç÷èø2.(2024·北京·高考真题)设函数()()sin 0f x x ωω=>.已知()11f x =-,()21f x =,且12x x -的最小值为π2,则ω=( )A .1B .2C .3D .43.(2021·全国·高考真题)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f p p æöæöæöæö--->ç÷ç÷ç÷ç÷èøèøèøèø的最小正整数x 为.4.(2023·全国·高考真题)已知函数()()sin f x x ωϕ=+,如图A ,B 是直线12y =与曲线()y f x =的两个交点,若π6AB =,则()πf = .5.(2022·全国·高考真题)记函数()sin (0)4f x x b p ωωæö=++>ç÷èø的最小正周期为T .若23T p p <<,且()y f x =的图象关于点3,22p æöç÷èø中心对称,则2f p æö=ç÷èø( )A .1B .32C .52D .36.(2023·全国·高考真题)已知函数()()()sin ,0f x x ωϕω=+>在区间π2π,63æöç÷èø单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条相邻对称轴,则5π12f æö-=ç÷èø( )A .B .12-C .12D1.(2024·陕西西安·模拟预测)已知函数()()sin (0,0,π)f x A x A ωϕωϕ=+>><的部分图像如图所示,则π7π46f f æöæö+-=ç÷ç÷èøèø( )A B C .0D 2.(2024·重庆·三模)已知函数()sin()0,0,22f x A x A p p ωϕωϕæö=+>>-<<ç÷èø的部分图像如图所示,若1()3f q =,则523f p q æö+=ç÷èø( )A .29-B .29C .79-D .793.(2024·全国·模拟预测)已知直线ππ,123x x ==是函数()()sin 0,0,2πf x A x A ωϕωϕæö=+>><ç÷èø图象的两条相邻的对称轴,且ππ4312f f æöæö-=-ç÷ç÷èøèø,则()f ϕ=( )A .BC .1-D .14.(2024·安徽·三模)已知函数()()π2sin 0,2f x x ωϕωϕæö=+><ç÷èø的部分图象如下图所示,若曲线()y f x =过点3π,28A æö--ç÷èø,(B ,()()11,C x f x ,()()22,D x f x ,且()()1212f x f x =-=-,则()12cos 22x x -=( )A .78B .78-C D .5.(2024·广东汕头·三模)已知 A ,B ,C 是直线y m =与函数()2sin()f x x ωϕ=+(0ω>,0πϕ<<)的图象的三个交点,如图所示.其中,点A ,B ,C 两点的横坐标分别为12,x x ,若21π4x x -=,则( )A .π4ϕ=B .π()2f =C .()f x 的图象关于(π,0)中心对称D .()f x 在π[0,]2上单调递减1.(2024·辽宁葫芦岛·二模)已知函数π()cos()0,02f x x ωϕωϕæö=+><<ç÷èø的部分图象如图所示,若x "ÎR ,()()f x m f x +=-,则正整数m 的取值为( )A .1B .2C .3D .42.已知函数()()πsin 0,0,02f x A x A ωϕωϕæö=+>><<ç÷èø的部分图象如图所示,其中一个最高点的坐标为π,16æöç÷èø,与x 轴的一个交点的坐标为5π,012æöç÷èø.设M ,N 为直线y t =与()f x 的图象的两个相邻交点,且π3MN =,则t 的值为( )A .12±B .12-C .12D .3.(2024·河南周口·模拟预测)如图,直线1y =-与函数()()00πsin 20,2f x A x A ϕϕæö=+><ç÷èø的图象的三个相邻的交点分别为A ,B ,C ,其横坐标分别为A x ,B x ,C x ,且2()C B B A A x x x x x -=-=,则ϕ的值为( )A .π6-B .π6C .π3-D .π31.(2024·山西长治·一模)已知函数π()sin()(0,0,||2f x A x A ωϕωϕ=+>><的部分图象如图所示,若方程()f x m =在π[,0]2-上有两个不相等的实数根,则实数m 的取值范围是( )A .[2,-B .(2,-C .(2,1]--D .[2,1]--2.(2024·湖北武汉·模拟预测)若函数()sin f x x x ωω=+(0)>ω在区间[,]a b 上是减函数,且()1f a =,()1f b =-,πb a -=,则ω=( )A .13B .23C .1D .23.(2024·河南信阳·模拟预测)已知()πsin 3f x A x B ωæö=-+ç÷èø(0,0,A B ω>>为常数),()max 1()3f x f x ==,()min 2()1f x f x ==-,且12x x -的最小值为π2,若()f x 在区间[],a b 上恰有8个零点,则b a -的最小值为( )A .3πB .11π3C .7π2D .10π34.(2024·河南三门峡·模拟预测)已知函数()()sin (0,0,π)f x A x A ωϕωϕ=+>><的部分图象如图所示,将()f x 的图象向左平移π4个单位长度后得到函数()g x 的图象,若()g x 在区间[]0,t 上的值域为éùëû,则t 的取值范围为( )A .5π2π,123éùêúëûB .π5π,46éùêúëûC .5π5π,126éùêúëûD .5π,π12éùêúëû1.(2024·河北唐山·一模)已知函数()()sin cos 0f x x x ωωω=+>的最小正周期为π,则( )A .()f x 在ππ,88éù-êúëû单调递增B .3π,08æöç÷èø是()f x 的一个对称中心C .()f x 在ππ,66éù-êëû的值域为éëD .π8x =是()f x 的一条对称轴2.(23-24高三下·陕西安康·阶段练习)已知函数()sin 21f x x =+,将()f x 的图象向左平移π4个单位长度,得到函数()g x 的图象,若关于x 的方程()()g x a a =ÎR 在9π0,8éùêëû上有5个实数根,1x ,2x ,3x ,4x ,5x ()12345x x x x x <<<<,则()123452x x x x x ++++=( )A .9π2B .6πC .7π2D .5π3.(2024·天津红桥·一模)将函数()f x 的图象横坐标伸长为原来的2倍,再向左平移π3单位,得到函数π()sin(2)02g x x ϕϕæö=+<<ç÷èø的部分图象(如图所示).对于1x ",2,[]x a b Î,且12x x ¹,若()()12g x g x =,都有()12g x x +=成立,则下列结论中不正确的是( )A .π()sin 23g x x æö=+ç÷èøB .π()sin 43f x x æö=-ç÷èøC .()g x 在3ππ,2éùêúëû上单调递增D .函数()f x 在4π0,3éùêúëû的零点为12,,,n x x x L ,则123185π22212n n x x x x x -+++++=L 4.(2024·陕西西安·模拟预测)已知函数()1cos cos f x x x=-,现给出下列四个结论:①()f x 的图象关于点π,02æöç÷èø对称;②函数()()h x f x =的最小正周期为2π;③函数()()()2g x f x f x =+在π0,2æöç÷èø上单调递减;④对于函数()()()()()π2,0,,3π2g x f x f x x g x g x æö=+"Î=+ç÷èø.其中所有正确结论的序号为( )A .①②B .①③C .①③④D .②③④5.(2024·广西贵港·模拟预测)(多选)设函数()f x 的定义域为R ,π(4f x -为奇函数,π()4f x +为偶函数,当ππ(,]44x Î-时,4()cos 3f x x =,则( )A .(4π)()f x f x +=B .()f x 的图象关于直线3π4x =对称C .()f x 在区间3π(,2π)2上为增函数D .方程()lg 0f x x -=仅有4个实数解1.(2024·山东滨州·二模)已知函数π()sin (0)6f x x ωωæö=+>ç÷èø在[]0,2π上有且仅有4个零点,直线π6x =为函数()y f x =图象的一条对称轴,则π3f æö=ç÷èø( )A .B .12-C .12D 2.(2024·吉林长春·模拟预测)已知函数()()sin (0)f x x ωϕω=+>满足:对x "ÎR ,有()()π02f f x f æö££ç÷èø,若存在唯一的ω值,使得()y f x =在区间ππ,(0)44m m m éù-+>êúëû上单调递减,则实数m的取值范围是( )A .π0,12æùçúèûB .ππ,2812æùçúèûC .ππ,2012æùçúèûD .ππ,2820æùçúèû3.(2024·广西·模拟预测)已知函数211()cos sin (22h x x a x a =+-³,若()h x 在区间*()(0,πN )n n Î内恰好有2022个零点,则n 的取值可以为( )A .2025B .2024C .1011D .13484.(2024·山东烟台·三模)若定义在R 上的函数()f x 满足:π04f æö¹ç÷èø,3π04f æö=ç÷èø,且对任意1x ,2x ÎR ,都有()()()121212π44f x x f x x f x f x æö++-=×+ç÷èø,则( )A .()00f =B .()f x 为偶函数C .π是()f x 的一个周期D .()f x 图象关于π4x =对称5.(2024·江西吉安·模拟预测)(多选)已知函数()sin sin cos2f x x x x =-,则( )A .()f x 的图象关于点()π,0对称B .()f x 的值域为[]1,2-C .若方程()14f x =-在()0,m 上有6个不同的实根,则实数m 的取值范围是17π10π,63æùçúèûD .若方程()()()2221R f x af x a a éù-+=Îëû在()0,2π上有6个不同的实根()1,2,,6i x i =L ,则61i i a x =å的取值范围是()0,3π一、单选题1.(2024·江苏南通·模拟预测)下列函数中,以π为周期,且其图象关于点π,04æöç÷èø对称的是( )A .tan y x =B .|sin |y x =C .22cos 1y x =-D .sin cos y x x=-2.(2024·陕西西安·模拟预测)已知函数()()cos 2210f x x x ωωω=+>的最小正周期为π,则()f x 的图象的一个对称中心为( )A .π,012æö-ç÷èøB .π,012æöç÷èøC .π,112æö-ç÷èøD .π,112æöç÷èø3.(2024·天津北辰·三模)已知函数()22cos 2cos 2f x x x x =+,则下列结论不正确的是( )A .()f x 的最小正周期为π2B .()f x 的图象关于点5π1,242æöç÷èø对称C .若()f x t +是偶函数,则ππ124k t =+,Z k ÎD .()f x 在区间π0,4éùêúëû上的值域为[]0,14.(2024·福建泉州·一模)已知函数()f x 的周期为π,且在区间ππ,63æöç÷èø内单调递增,则()f x 可能是( )A .π()sin 3f x x æö=-ç÷èøB .π()cos 3f x x æö=-ç÷èøC .π()sin 23f x x æö=-ç÷èøD .π()cos 23f x x æö=-ç÷èø5.(2024·江苏盐城·模拟预测)函数cos y x =与lg y x =的图象的交点个数是( )A .2B .3C .4D .66.(2024·吉林长春·模拟预测)函数π()sin()0,0,2f x A x A ωϕωϕæö=+>><ç÷èø的部分图象如图所示,下列说法正确的是( )A .π2,6A ϕ==B .函数()f x 的最小正周期为2πC .函数()f x 在ππ,32æöç÷èø上单调递减D .函数()f x 的图象上的所有点向左平移π12个单位长度后,所得的图象关于y 轴对称二、多选题7.(2024·辽宁鞍山·模拟预测)已知函数()sin cos f x x x =×,则( )A .()f x 是奇函数B .()f x 的最小正周期为2πC .()f x 的最小值为12-D .()f x 在π0,2éùêëû上单调递增8.(2024·江苏扬州·模拟预测)已知函数()()()sin 20πϕϕ=+<<f x x 的图像关于点π,03æöç÷èø中心对称,则( )A .()f x 在区间π5π,1212æöç÷èø单调递减B .()f x 在区间π11π,612æö-ç÷èø有两个极值点C .直线5π6x =是曲线()y f x =的对称轴D .直线y x =+是曲线()y f x =在0x =处的切线9.(2024·江苏泰州·模拟预测)已知函数()2πcos2cos 2,3f x x x æö=++ç÷èø则( )A .函数()f x 的图象关于点7π,012æöç÷èø对称B .将函数()f x 的图象向左平移7π12个单位长度后所得到的图象关于y 轴对称C .函数()f x 在区间[]0,π上有2个零点D .函数()f x 在区间π5π,36éùêúëû上单调递增10.(2024·浙江·模拟预测)已知函数()()πcos 03f x x ωωæö=+>ç÷èø,则( )A .当2ω=时,π6f x æö-ç÷èø的图象关于π2x =对称B .当2ω=时,()f x 在π0,2éùêúëûC .当π6x =为()f x 的一个零点时,ω的最小值为1D .当()f x 在ππ,36æö-ç÷èø上单调递减时,ω的最大值为1一、单选题1.(2024·全国·三模)若偶函数()()()πcos sin 0,2f x x x ωϕωϕωϕæö=+++><ç÷èø的最小正周期为π2,则( )A .2ω=B .ϕ的值是唯一的C .()f xD .()f x 图象的一条对称轴为π4x =2.(2024·陕西商洛·模拟预测)已知函数()cos2πf x x =,则图中的函数图象所对应的函数解析式为( )A .(21)y f x =-B .12x y f æö=-ç÷èøC .122x y f æö=-ç÷èøD .122y f x æö=-ç÷èø3.(2024·陕西西安·模拟预测)将函数()πsin 212f x x æö=-ç÷èø的图象向左平移π8个单位长度后,得到函数()g x 的图象,若函数()g x 在区间0,3a éùêúëû和7π4,6a éùêúëû上均单调递增,则实数a 的取值范围是( )A .π7π,624éö÷êëøB .ππ,62éö÷êëøC .7ππ,242éö÷êëøD .π7π,1224éö÷êëø4.(2024·山东济宁·三模)已知函数1()cos )cos 2f x x x x =+-,若()f x 在区间π[,]4m -上的值域为[,则实数m 的取值范围是( )A .ππ[,62B .ππ[,]62C .π7π[,612D .π7π,612éùêúëû5.(2024·黑龙江·模拟预测)已知函数ππ()sin()0,0,22f x A x A ωϕωϕæö=+>>-<<ç÷èø,且π2π,63x x ==是函数y =()f x 相邻的两个零点,R,()3x f x "Σ,则下列结论错误的是( )A .3A =B .2ω=C .π6ϕ=-D .ππ1212f x f x æöæö-=--ç÷ç÷èøèø二、多选题6.(2024·山东·模拟预测)已知函数()sin2cos2f x a x x =+的图象关于直线π6x =对称,则下列结论正确的是( )A .07π6f æö=ç÷èøB .π12f x æö-ç÷èø为奇函数C .若()f x 在[],m m -单调递增,则π06m <£D .()f x 的图象与直线15π224y x =-有5个交点7.(2024·福建泉州·模拟预测)已知函数()()sin f x x ωϕ=+,下列说法正确的是( )A .若函数图象过原点,则0ϕ=B .若函数图象关于y 轴对称,则ππ,2k k ϕ=+ÎZ C .若函数在零点处的切线斜率为1或1-,则其最小正周期为2πD .存在18ω=,使得将函数图象向右平移π6个单位后与原函数图象在x 轴的交点重合8.(2024·湖北武汉·模拟预测)设函数()()πsin 06f x x ωωæö=->ç÷èø,则下列结论正确的是( )A .()0,2ω"Î,()f x 在ππ,64éù-êúëû上单调递增B .若2ω=且()()122f x f x -=,则12min πx x -=C .若()1f x =在[]0,π上有且仅有2个不同的解,则ω的取值范围为58,33éö÷êëøD .存在()0,2ωÎ,使得()f x 的图象向左平移π6个单位长度后得到的函数为奇函数9.(2024·河北张家口·三模)已知函数2()2sin cos =+f x x x x ,则下列说法正确的是( )A .函数()f x 的一个周期为2πB .函数()f x 的图象关于点π,03æöç÷èø对称C .将函数()f x 的图象向右平移(0)ϕϕ>个单位长度,得到函数()g x 的图象,若函数()g x 为偶函数,则ϕ的最小值为5π12D .若15π12242f a æö-=ç÷èø,其中a 为锐角,则sin cos a a -10.(2024·安徽马鞍山·模拟预测)已知函数()sin()(0,0,0)f x A x A ωϕωϕp =+>><<,其部分图象如图所示,且直线y A =与曲线π11π()2424y f x x æö=-££ç÷èø所围成的封闭图形的面积为π,下列叙述正确的是( )A .2A =B .π()24y f x =+为奇函数C .π2π3π2024π08888f f f f æöæöæöæö++++=ç÷ç÷ç÷ç÷èøèøèøèøL D .若()f x 在区间π,6a a æö+ç÷èø(其中0a >)上单调递增,则a 的取值范围是5π7π,2424éùêúëû1.(2024·天津·高考真题)下列函数是偶函数的是( )A .22e 1x x y x -=+B .22cos 1x x y x +=+C .e 1x x y x -=+D .||sin 4e x x xy +=2.(2023·北京·高考真题)设函数π()sin cos cos sin 0,||2f x x x ωϕωϕωϕæö=+><ç÷èø.(1)若(0)f =ϕ的值.(2)已知()f x 在区间π2π,33-éùêúëû上单调递增,2π13f æö=ç÷èø,再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数()f x 存在,求,ωϕ的值.条件①:π3f æö=ç÷èø条件②:π13f æö-=-ç÷èø;条件③:()f x 在区间ππ,23éù--êúëû上单调递减.注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.3.(2021·浙江·高考真题)设函数()sin cos (R)f x x x x =+Î.(1)求函数22y f x p éùæö=+ç÷êúèøëû的最小正周期;(2)求函数()4y f x f x p æö=-ç÷èø在0,2p éùêúëû上的最大值.4.(2020·全国·高考真题)设函数()cos π()6f x x ω=+在[π,π]-的图像大致如下图,则f (x )的最小正周期为( )A .10π9B .7π6C .4π3D .3π25.(2020·山东·高考真题)下图是函数y = sin(ωx +φ)的部分图像,则sin(ωx +φ)= ( )A .πsin(3x +B .πsin(2)3x -C .πcos(26x +D .5πcos(2)6x -6.(2020·全国·高考真题)关于函数f (x )=1sin sin x x +有如下四个命题:①f (x )的图象关于y 轴对称.②f (x )的图象关于原点对称.③f (x )的图象关于直线x =2p 对称.④f (x )的最小值为2.其中所有真命题的序号是 .7.(2019·浙江·高考真题)设函数()sin ,f x x x =ÎR .(1)已知[0,2),q Îp 函数()f x q +是偶函数,求q 的值;(2)求函数22[()][(124y f x f x p p =+++ 的值域.8.(2019·全国·高考真题)设函数()f x =sin (5x ωp +)(ω>0),已知()f x 在[]0,2p 有且仅有5个零点,下述四个结论:①()f x 在(0,2p )有且仅有3个极大值点②()f x 在(0,2p )有且仅有2个极小值点③()f x 在(0,10p )单调递增④ω的取值范围是[1229510,)其中所有正确结论的编号是A .①④B .②③C .①②③D .①③④9.(2019·全国·高考真题)下列函数中,以2p 为周期且在区间(4p ,2p )单调递增的是A .f (x )=│cos 2x │B .f (x )=│sin 2x │C .f (x )=cos│x │D .f (x )= sin│x │10.(2019·全国·高考真题)关于函数()sin |||sin |f x x x =+有下述四个结论:①f (x )是偶函数 ②f (x )在区间(2p,p )单调递增-p p有4个零点④f(x)的最大值为2③f(x)在[,]其中所有正确结论的编号是A.①②④B.②④C.①④D.①③。
专题一:集合、常用逻辑用语、不等式、函数与导数第二讲函数、基本初等函数的图象与性质【最新考纲透析】1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
(3)了解简单的分段函数,并能简单应用。
(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。
(5)会运用函数图象理解和研究函数的性质。
2.指数函数(1)了解指数函数模型的实际背景。
(2)理解有理指数幂的含义,了解褛指数幂的意义,掌握幂的运算。
(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点。
(4)知道指数函数是一类重要的函数模型。
3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。
(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点。
(3)知道对数函数是一类重要的函数模型。
(4)了解指数函数xy a=与对数函数log ay x=互为反函数(0,1a a>≠且)。
4.幂函数(1)了解幂函数的概念(2)结合函数12321,,,,y x y x y x y y xx=====的图象了解它们的变化情况。
【核心要点突破】要点考向一:基本初等函数问题考情聚焦:1.一元二次函数、指数函数、对数函数和幂函数是最重要的基本初等函数,在每年高考中都有涉及到直接考查它们定义、定义域和值域、图象和性质的问题。
2.常与函数的性质、方程、不等式综合命题,多以选择、填空题的形式出现,属容易题。
考向链接:1.一元二次、二次函数及指数\对数函数和幂函数的定义、定义域、值域、图象和性质是解决此类题目的关键,同时要注意数形结合、化归和分类讨论思想的应用。
2.熟记幂和对数的运算性质并能灵活运用。
例1:(2010·全国高考卷Ⅱ文科·T4)函数y=1+ln(x-1)(x>1)的反函数是(A)y=1xe+-1(x>0) (B) )y=1x e-+1(x>0)(C) y=1x e+-1(x ∈R) (D)y=1x e-+1 (x ∈R)【命题立意】本题考查了反函数的概念及其求法。
专题19 函数y=Asin(ωx+φ)的图象1.了解函数y=A sin(ωx+φ)的物理意义;能画出y=A sin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响;2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.1.“五点法”作函数y=A sin(ωx+φ)(A>0,ω>0)的简图“五点法”作图的五点是在一个周期内的最高点、最低点及与x轴相交的三个点,作图时的一般步骤为:(1)定点:如下表所示.X -φωπ2-φωπ-φω3π2-φω2π-φωωx+φ0π2π3π22πy=A sin(ωx+φ)0 A 0-A 0(2)作图:在坐标系中描出这五个关键点,用平滑的曲线顺次连接得到y=A sin(ωx+φ)在一个周期内的图象.(3)扩展:将所得图象,按周期向两侧扩展可得y=A sin(ωx+φ)在R上的图象.2.函数y=sin x的图象经变换得到y=A sin(ωx+φ)的图象的两种途径3.函数y=A sin(ωx+φ)的物理意义当函数y=A sin(ωx+φ)(A>0,ω>0),x∈[0,+∞)表示一个振动量时,A叫做振幅,T =2πω叫做周期,f =1T叫做频率,ωx +φ叫做相位,φ叫做初相.高频考点一 函数y =Asin(ωx+φ)的图象及变换 例1、已知函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3. (1)求它的振幅、周期、初相;(2)用“五点法”作出它在一个周期内的图象;(3)说明y =2sin ⎝ ⎛⎭⎪⎫2x +π3的图象可由y =sin x 的图象经过怎样的变换而得到.解 (1)y =2sin ⎝ ⎛⎭⎪⎫2x +π3的振幅A =2, 周期T =2π2=π,初相φ=π3.(2)令X =2x +π3,则y =2sin ⎝ ⎛⎭⎪⎫2x +π3=2sin X .列表如下:x -π6 π12 π3 7π12 5π6 X 0 π2 π 3π2 2π y =sin X 01 0 -1 0 y =2sin ⎝⎛⎭⎪⎫2x +π32-2描点画出图象,如图所示:方法二 将y =sin x 的图象上所有点的横坐标缩短为原来的12倍(纵坐标不变),得到y =sin 2x 的图象;再将y =sin 2x 的图象向左平移π6个单位长度,得到y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π3的图象;再将y =sin ⎝ ⎛⎭⎪⎫2x +π3的图象上所有点的纵坐标伸长为原来的2倍(横坐标不变),即得到y=2sin ⎝⎛⎭⎪⎫2x +π3的图象.【感悟提升】(1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.【变式探究】(1)把函数y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移π3个单位长度,那么所得图象的一条对称轴方程为( )A .x =-π2B .x =-π4C .x =π8D .x =π4(2)设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π3个单位长度后,所得的图象与原图象重合,则ω的最小值等于( )A.13B .3C .6D .9 答案 (1)A (2)C高频考点二 由图象确定y =A sin(ωx +φ)的解析式例2、(2016·全国Ⅱ卷)函数y =A sin(ωx +φ)的部分图象如图所示,则( )A.y =2sin ⎝⎛⎭⎪⎫2x -π6 B.y =2sin ⎝⎛⎭⎪⎫2x -π3C.y =2sin ⎝ ⎛⎭⎪⎫x +π6D.y =2sin ⎝⎛⎭⎪⎫x +π3解析 由题图可知,T =2⎣⎢⎡⎦⎥⎤π3-⎝ ⎛⎭⎪⎫-π6=π,所以ω=2,由五点作图法可知2×π3+φ=π2,所以φ=-π6,所以函数的解析式为y =2sin ⎝⎛⎭⎪⎫2x -π6,故选A.答案 A【感悟提升】确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法: (1)求A ,b ,确定函数的最大值M 和最小值m , 则A =M -m2,b =M +m2.(2)求ω,确定函数的最小正周期T ,则可得ω=2πT.(3)求φ,常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②特殊点法:确定φ值时,往往以寻找“最值点”为突破口.具体如下:“最大值点”(即图象的“峰点”)时ωx +φ=π2;“最小值点”(即图象的“谷点”)时ωx +φ=3π2. 【变式探究】函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2) 的部分图象如图所示,则φ=________.答案 -π3解析 ∵T 2=1112π-512π,∴T =π.又T =2πω(ω>0),∴2πω=π,∴ω=2.由五点作图法可知当x =512π时,ωx +φ=π2,即2×512π+φ=π2,∴φ=-π3.高频考点三 三角函数图象性质的应用例3、某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)某某验室这一天的最大温差;(2)若要某某验室温度不高于11 ℃,则在哪段时间实验室需要降温?解 (1)因为f (t )=10-2(32cos π12t +12sin π12t ) =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝⎛⎭⎪⎫π12t +π3=-1. 于是f (t )在[0,24)上取得最大值12 ℃,取得最小值8 ℃.故实验室这一天最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时实验室需要降温,由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,故有10-2sin ⎝⎛⎭⎪⎫π12t +π3>11,即sin ⎝ ⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.在10时至18时实验室需要降温.【方法规律】三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题,二是把实际问题抽象转化成数学问题,建立数学模型,再利用三角函数的有关知识解决问题.【变式探究】 如图,某大风车的半径为2 m ,每12 s 旋转一周,它的最低点O 离地面0.5 m.风车圆周上一点A 从最低点O 开始,运动t (s)后与地面的距离为h (m).(1)求函数h =f (t )的关系式;(2)画出函数h =f (t )(0≤t ≤12)的大致图象.解 (1)如图,以O 为原点,过点O 的圆的切线为x 轴,建立直角坐标系.设点A 的坐标为(x ,y ),则h =y +0.5. 设∠OO 1A =θ,则cos θ=2-y2,y =-2cos θ+2. 又θ=2π12×t ,即θ=π6t ,所以y =-2cos π6t +2,h =f (t )=-2cos π6t +2.5.(2)函数h =-2cos π6t +2.5(0≤t ≤12)的大致图象如下.高频考点四、y =A sin(ωx +φ)图象与性质的综合应用例4、已知函数f (x )=4cos ωx ·sin ⎝ ⎛⎭⎪⎫ωx +π6+a (ω>0)图象上最高点的纵坐标为2,且图象上相邻两个最高点的距离为π.(1)求a 和ω的值;(2)求函数f (x )在[0,π]上的单调递减区间. 解 (1)f (x )=4cos ωx · sin ⎝ ⎛⎭⎪⎫ωx +π6+a=4cos ωx ·⎝⎛⎭⎪⎫32sin ωx +12cos ωx +a=23sin ωx cos ωx +2cos 2ωx -1+1+a =3sin 2ωx +cos 2ωx +1+a =2sin ⎝⎛⎭⎪⎫2ωx +π6+1+a .当sin ⎝ ⎛⎭⎪⎫2ωx +π6=1时,f (x )取得最大值2+1+a =3+a . 又f (x )最高点的纵坐标为2,∴3+a =2,即a =-1. 又f (x )图象上相邻两个最高点的距离为π, ∴f (x )的最小正周期为T =π, ∴2ω=2πT=2,ω=1.【方法规律】函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间和对称性的确定,基本思想是把ωx +φ看做一个整体.在单调性应用方面,比较大小是一类常见的题目,依据是同一区间内函数的单调性.对称性是三角函数图象的一个重要性质,因此要抓住其轴对称、中心对称的本质,同时还要会综合利用这些性质解决问题,解题时可利用数形结合思想.【变式探究】 已知函数f (x )=23sin ⎝ ⎛⎭⎪⎫x 2+π4·cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π). (1)求f (x )的最小正周期;(2)若将f (x )的图象向右平移π6个单位长度,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.解 (1)f (x )=23sin ⎝ ⎛⎭⎪⎫x 2+π4·cos ⎝ ⎛⎭⎪⎫x 2+π4-sin(x +π) =3cos x +sin x =2sin ⎝⎛⎭⎪⎫x +π3,于是T =2π1=2π.(2)由已知得g (x )=f ⎝ ⎛⎭⎪⎫x -π6=2sin ⎝⎛⎭⎪⎫x +π6, ∵x ∈[0,π],∴x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin ⎝ ⎛⎭⎪⎫x +π6∈⎣⎢⎡⎦⎥⎤-12,1,∴g (x )=2sin ⎝⎛⎭⎪⎫x +π6∈[-1,2],故函数g (x )在区间[0,π]上的最大值为2,最小值为-1.1.【2016年高考某某理数】为了得到函数πsin(2)3y x =-的图象,只需把函数sin 2y x =的图象上所有的点( )(A )向左平行移动π3个单位长度(B )向右平行移动π3个单位长度 (C )向左平行移动π6个单位长度 (D )向右平行移动π6个单位长度【答案】D【解析】由题意,为了得到函数sin(2)sin[2()]36y x x ππ=-=-,只需把函数sin 2y x=的图像上所有点向右移6π个单位,故选D. 2.【2016高考新课标2理数】若将函数2sin 2y x =的图像向左平移12π个单位长度,则平移后图象的对称轴为( )(A )()26k x k Z ππ=-∈ (B )()26k x k Z ππ=+∈ (C )()212k x k Z ππ=-∈ (D )()212k x k Z ππ=+∈ 【答案】B【解析】由题意,将函数2sin 2y x =的图像向左平移12π个单位得2sin 2()2sin(2)126y x x ππ=+=+,则平移后函数的对称轴为2,62x k k Z πππ+=+∈,即,62k x k Z ππ=+∈,故选B.3.【2016年高考理数】将函数sin(2)3y x π=-图象上的点(,)4P t π向左平移(0s >) 个单位长度得到点'P ,若'P 位于函数sin 2y x =的图象上,则( )A.12t =,的最小值为6πB.32t = ,的最小值为6πC.12t =,的最小值为3πD.32t =,s 的最小值为3π【答案】A【解析】由题意得,ππ1sin(2)432t =⨯-=,当s 最小时,'P 所对应的点为π1(,)122,此时min πππ4126s ==-,故选A. 4.【2016高考新课标3理数】函数sin 3cos y x x =-的图像可由函数sin 3cos y x x =+的图像至少向右平移_____________个单位长度得到.【答案】32π【2015高考某某,理3】要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需要将函数sin 4y x =的图象( )(A )向左平移12π个单位 (B )向右平移12π个单位(C )向左平移3π个单位 (D )向右平移3π个单位 【答案】B【解析】因为sin 4sin 4312y x x ππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,所以要得到函数sin 43y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 4y x = 的图象向右平移12π个单位.故选B. 【2015高考某某,理3】如图,某港口一天6时到18时的水深变化曲线近似满足函数3sin()6y x k πϕ=++,据此函数可知,这段时间水深(单位:m )的最大值为( )A .5B .6C .8D .10【答案】C【解析】由图象知:min 2y =,因为min 3y k =-+,所以32k -+=,解得:5k =,所以这段时间水深的最大值是max 3358y k =+=+=,故选C .【2015高考某某,理9】将函数()sin 2f x x =的图像向右平移(0)2πϕϕ<<个单位后得到函数()g x 的图像,若对满足12()()2f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( )A.512πB.3πC.4πD.6π【答案】D.【解析】向右平移ϕ个单位后,得到)22sin()(ϕ-=x x g ,又∵2|)()(|21=-x g x f ,∴不妨ππk x 2221+=,ππϕm x 22222+-=-,∴πϕπ)(221m k x x -+-=-,又∵12min 3x x π-=,∴632πϕπϕπ=⇒=-,故选D.【2015高考某某,理17】某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:x ωϕ+ 0 π2 π3π2 2πxπ35π6...........式;(Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图象. 若()y g x =图象的一个对称中心为5π(,0)12,求θ的最小值. 【答案】(Ⅰ)π()5sin(2)6f x x =-;(Ⅱ)π6.【解析】(Ⅰ)根据表中已知数据,解得π5,2,6A ωϕ===-. 数据补全如下表:且函数表达式为()5sin(2)6f x x =-.(Ⅱ)由(Ⅰ)知 π()5sin(2)6f x x =-,得π()5sin(22)6g x x θ=+-.因为sin y x =的对称中心为(π,0)k ,k ∈Z . 令π22π6x k θ+-=,解得ππ212k x θ=+-,k ∈Z . 由于函数()y g x =的图象关于点5π(,0)12成中心对称,令ππ5π21212k θ+-=, 解得ππ23k θ=-,k ∈Z . 由0θ>可知,当1k =时,θ取得最小值π6.(2014·某某卷)为了得到函数y =sin (2x +1)的图像,只需把函数y =sin 2x 的图像上所有的点( )A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 【答案】A【解析】因为y =sin(2x +1)=sin2⎝ ⎛⎭⎪⎫x +12,所以为得到函数y =sin(2x +1)的图像,只需要将y =sin 2x 的图像向左平行移动12个单位长度.(2014·某某卷)若将函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是________.【答案】3π8(2014·卷)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________. 【答案】π【解析】结合图像得T 4=π2+2π32-π2+π62,即T =π.(2014·某某卷)已知函数f (x )=cos x (sin x +cos x )-12.(1)若0<α<π2,且sin α=22,求f (α)的值;(2)求函数f (x )的最小正周期及单调递增区间.【解析】方法一:(1)因为0<α<π2,sin α=22,所以cos α=22.所以f (α)=22×⎝ ⎛⎭⎪⎫22+22-12=12.方法二:f (x )=sin x cos x +cos 2x -12=12sin 2x +1+cos 2x 2-12 =12sin 2x +12cos 2x =22sin ⎝⎛⎭⎪⎫2x +π4.(1)因为0<α<π2,sin α=22,所以α=π4,从而f (α)=22sin ⎝⎛⎭⎪⎫2α+π4=22sin 3π4=12.(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z,得k π-3π8≤x ≤k π+π8,k ∈Z.所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.(2014·某某卷)若空间中四条两两不同的直线l 1,l 2,l 3,l 4满足l 1⊥l 2,l 2⊥l 3,l 3⊥l 4,则下列结论一定正确的是( )A .l 1⊥l 4B .l 1∥l 4C .l 1与l 4既不垂直也不平行D .l 1与l 4的位置关系不确定 【答案】D【解析】本题考查空间中直线的位置关系,构造正方体进行判断即可.如图所示,在正方体ABCD A 1B 1C 1D 1中,设BB 1是直线l 1,BC 是直线l 2,AB 是直线l 3,则DD 1是直线l 4,l 1∥l 4;设BB 1是直线l 1,BC 是直线l 2,CC 1是直线l 3,CD 是直线l 4,则l 1⊥l 4.故l 1与l 4的位置关系不确定.(2014·某某卷)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)某某验室这一天的最大温差.(2)若要某某验室温度不高于11℃,则在哪段时间实验室需要降温?【解析】(1)因为f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1.当t =2时,sin ⎝⎛⎭⎪⎫π12t +π3=1;当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1. 于是f (t )在[0,24)上取得的最大值是12,最小值是8.故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃. (2)依题意,当f (t )>11时,实验室需要降温. 由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3,故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11,即sin ⎝⎛⎭⎪⎫π12t +π3<-12.又0≤t <24,因此7π6<π12t +π3<11π6,即10<t <18.故在10时至18时实验室需要降温.(2014·某某卷)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R,θ∈⎝⎛⎭⎪⎫-π2,π2.(1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.(2014·新课标全国卷Ⅱ] 设函数f (x )=3sin πx m,若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值X 围是( )A .(-∞,-6)∪(6,+∞)B .(-∞,-4)∪(4,+∞)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 【答案】C【解析】函数f (x )的极值点满足πx m =π2+k π,即x =m ⎝ ⎛⎭⎪⎫k +12,k ∈Z ,且极值为±3,问题等价于存在k 0使之满足不等式m 2⎝ ⎛⎭⎪⎫k 0+122+3<m 2.因为⎝ ⎛⎭⎪⎫k +122的最小值为14,所以只要14m2+3<m 2成立即可,即m 2>4,解得m >2或m <-2,故m 的取值X 围是(-∞,-2)∪(2,+∞).(2014·某某卷)已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a ·b ,且y=f (x )的图像过点⎝ ⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2.(1)求m ,n 的值;(2)将y =f (x )的图像向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图像,若y =g (x )图像上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.【解析】(1)由题意知,f (x )==m sin 2x +n cos 2x . 因为y =f (x )的图像过点⎝⎛⎭⎪⎫π12,3和点⎝ ⎛⎭⎪⎫2π3,-2,所以⎩⎪⎨⎪⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎪⎨⎪⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6.由题意知,g (x )=f (x +φ)=2sin ⎝ ⎛⎭⎪⎫2x +2φ+π6. 设y =g (x )的图像上符合题意的最高点为(x 0,2). 由题意知,x 20+1=1,所以x 0=0,即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )得,sin ⎝⎛⎭⎪⎫2φ+π6=1.因为0<φ<π,所以φ=π6.因此,g (x )=2sin ⎝⎛⎭⎪⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z,所以函数y =g (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π,k ∈Z. (2014·某某卷)函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π6的最小正周期是( ) A.π2B .π C.2π D.4π 【答案】B【解析】已知函数y =A cos(ωx +φ)(A >0,ω>0)的周期为T =2πω,故函数f (x )的最小正周期T =2π2=π.(2014·某某卷)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫3x +π4. (1)求f (x )的单调递增区间;(2)若α是第二象限角,f ⎝ ⎛⎭⎪⎫α3=45cos ⎝ ⎛⎭⎪⎫α+π4cos 2α,求cos α-sin α的值. 【解析】(1)因为函数y =sin x 的单调递增区间为⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π,k ∈Z,由-π2+2k π≤3x +π4≤π2+2k π,k ∈Z,得-π4+2k π3≤x ≤π12+2k π3,k ∈Z.所以,函数f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-π4+2k π3,π12+2k π3,k ∈Z. (2)由已知,得sin ⎝⎛⎭⎪⎫α+π4=45cos ⎝ ⎛⎭⎪⎫α+π4(cos 2α-sin 2α),所以sin αcos π4+cos αsin π4=45⎝ ⎛⎭⎪⎫cos α cos π4-sin αsin π4(cos 2α-sin 2α),即sin α+cos α=45(cos α-sin α)2(sin α+cos α).当sin α+cos α=0时,由α是第二象限角, 得α=3π4+2k π,k ∈Z,此时,cos α-sin α=- 2.当sin α+cos α≠0时,(cos α-sin α)2=54.由α是第二象限角,得cos α-sin α<0,此时cos α-sin α=-52. 综上所述,cos α-sin α=-2或-52. (2014·某某卷)已知函数f (x )=cos x ·sin ⎝ ⎛⎭⎪⎫x +π3-3cos 2x +34,x ∈R.(1)求f (x )的最小正周期;(2)求f (x )在闭区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值和最小值.【解析】(1)由已知,有f (x )=cos x ·⎝ ⎛⎭⎪⎫12sin x +32cos x -3cos 2x +34=12sin x ·cos x -32cos 2x +34 =14sin 2x -34(1+cos 2x )+34 =14sin 2x -34cos 2x =12sin ⎝⎛⎭⎪⎫2x -π3,所以f (x )的最小正周期T =2π2=π. (2)因为f (x )在区间⎣⎢⎡⎦⎥⎤-π4,-π12上是减函数,在区间⎣⎢⎡⎦⎥⎤-π12,π4上是增函数,f ⎝ ⎛⎭⎪⎫-π4=-14,f ⎝ ⎛⎭⎪⎫-π12=-12,f ⎝ ⎛⎭⎪⎫π4=14, 所以函数f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的最大值为14,最小值为-12.(2014·某某卷)为了得到函数y =sin 3x +cos 3x 的图像,可以将函数y =2cos 3x 的图像( )A .向右平移π4个单位B .向左平移π4个单位C .向右平移π12个单位D .向左平移π12个单位【答案】C【解析】y =sin 3x +cos 3x =2cos ⎝ ⎛⎭⎪⎫3x -π4=2cos ⎣⎢⎡⎦⎥⎤3⎝ ⎛⎭⎪⎫x -π12,所以将函数y =2cos3x 的图像向右平移π12个单位可以得到函数y =sin 3x +cos 3x 的图像,故选C.(2014·某某卷)已知函数f (x )=3sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,-π2≤φ<π2的图像关于直线x =π3对称,且图像上相邻两个最高点的距离为π.(1)求ω和φ的值;(2)若f ⎝ ⎛⎭⎪⎫α2=34⎝ ⎛⎭⎪⎫π6<α<2π3,求cos ⎝⎛⎭⎪⎫α+3π2的值.(2)由(1)得ƒ⎝ ⎛⎭⎪⎫α2=3sin(2×α2-π6)=34, 所以sin ⎝ ⎛⎭⎪⎫α-π6=14.由π6<α<2π3得0<α-π6<π2, 所以cos ⎝ ⎛⎭⎪⎫α-π6=1-sin 2⎝⎛⎭⎪⎫α-π6=1-⎝ ⎛⎭⎪⎫142=154.因此cos ⎝ ⎛⎭⎪⎫α+3π2 =sin α=sin ⎣⎢⎡⎦⎥⎤(α-π6)+π6=sin ⎝ ⎛⎭⎪⎫α-π6cos π6+cos ⎝ ⎛⎭⎪⎫α-π6sin π6 =14×32+154×12 =3+158.1. 若函数y =sin(ωx -φ)(ω>0,|φ|<π2)在区间⎣⎢⎡⎦⎥⎤-π2,π上的图象如图所示,则ω,φ的值分别是( )A.ω=2,φ=π3B.ω=2,φ=-2π3C.ω=12,φ=π3D.ω=12,φ=-2π3解析 由图可知,T =2⎣⎢⎡⎦⎥⎤π6-⎝ ⎛⎭⎪⎫-π3=π,所以ω=2πT =2,又sin ⎝ ⎛⎭⎪⎫2×π6-φ=0,所以π3-φ=k π(k ∈Z ),即φ=π3-k π(k ∈Z ),而|φ|<π2,所以φ=π3,故 选A. 答案 A2.将函数f (x )=3sin x -cos x 的图象沿着x 轴向右平移a (a >0)个单位后的图象关于y 轴对称,则a 的最小值是( )A.π6 B.π3C.π2D.2π3解析 依题意得f (x )=2sin ⎝ ⎛⎭⎪⎫x -π6,因为函数f (x -a )=2sin ⎝ ⎛⎭⎪⎫x -a -π6的图象关于y轴对称,所以sin ⎝⎛⎭⎪⎫-a -π6=±1,a +π6=k π+π2,k ∈Z ,即a =k π+π3,k ∈Z ,因此正数a 的最小值是π3,选B.答案 B3.函数f (x )=3sin π2x -log 12x 的零点的个数是( )A.2B.3C.4D.5解析 函数y =3sin π2x 的周期T =2ππ2=4,由log 12x =3,可得x =18.由log 12x =-3,可得x =8.在同一平面直角坐标系中,作出函数y =3sin π2x 和y =log 12x 的图象(如图所示),易知有5个交点,故函数f (x )有5个零点.答案 D4.如图是函数f (x )=sin 2x 和函数g (x )的部分图象,则g (x )的图象可能是由f (x )的图象( )A.向右平移2π3个单位得到的B.向右平移π3个单位得到的C.向右平移7π12个单位得到的D.向右平移π6个单位得到的5.设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,则下列结论正确的是( ) A.f (x )的图象关于直线x =π3对称B.f (x )的图象关于点⎝⎛⎭⎪⎫π6,0对称C.f (x )的最小正周期为π,且在⎣⎢⎡⎦⎥⎤0,π12上为增函数D.把f (x )的图象向右平移π12个单位,得到一个偶函数的图象解析 对于函数f (x )=sin ⎝⎛⎭⎪⎫2x +π6,当x =π3时, f ⎝ ⎛⎭⎪⎫π3=sin5π6=12,故A 错;当x =π6时, f ⎝ ⎛⎭⎪⎫π6=sin π2=1,故⎝⎛⎭⎪⎫π6,0不是函数的对称点,故B 错;函数的最小正周期为T =2π2=π,当x ∈⎣⎢⎡⎦⎥⎤0,π12时, 2x +π6∈⎣⎢⎡⎦⎥⎤π6,π3,此时函数为增函数,故C 正确;把f (x )的图象向右平移π12个单位,得到g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+π6=sin 2x ,函数是奇函数,故D 错.答案 C6.已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值X 围是( )A.⎝ ⎛⎦⎥⎤-∞,-92∪[6,+∞)B.⎝ ⎛⎦⎥⎤-∞,-92∪⎣⎢⎡⎭⎪⎫32,+∞C.(-∞,-2]∪[6,+∞)D.(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞解析 当ω>0时,-π3ω≤ωx ≤π4ω,由题意知-π3ω≤-π2,即ω≥32;当ω<0时,π4ω≤ωx ≤-π3ω,由题意知π4ω≤-π2,∴ω≤-2. 综上可知,ω的取值X 围是(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞.答案 D7.已知函数f (x )=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f (x )与直线y =1的交点中,若相邻交点距离的最小值为π3,则f (x )的最小正周期为________.解析 f (x )=3sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π6. 由2sin ⎝ ⎛⎭⎪⎫ωx +π6=1得sin ⎝ ⎛⎭⎪⎫ωx +π6=12,∴ωx +π6=2k π+π6或ωx +π6=2k π+56π(k ∈Z ).令k =0,得ωx 1+π6=π6,ωx 2+π6=56π,∴x 1=0,x 2=2π3ω.由|x 1-x 2|=π3,得2π3ω=π3,∴ω=2.故f (x )的最小正周期T =2π2=π.答案 π8.某城市一年中12个月的平均气温与月份的关系可近似地用函数y =a +A cos ⎣⎢⎡⎦⎥⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高为28 ℃,12月份的月平均气温最低为18 ℃,则10月份的平均气温为________℃.解析 因为当x =6时,y =a +A =28;当x =12时,y =a -A =18,所以a =23,A =5, 所以y =f (x )=23+5cos ⎣⎢⎡⎦⎥⎤π6(x -6),所以当x =10时,f (10)=23+5cos ⎝ ⎛⎭⎪⎫π6×4=23-5×12=20.5.答案 20.59.已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎪⎫2,-12,则函数f (x )的解析式为________.解析 据已知两个相邻最高和最低点距离为22,可得⎝ ⎛⎭⎪⎫T 22+(1+1)2=22,解得T =4,故ω=2πT =π2, 即f (x )=sin ⎝⎛⎭⎪⎫πx 2+φ.又函数图象过点⎝ ⎛⎭⎪⎫2,-12,故f (2)=sin ⎝ ⎛⎭⎪⎫π2×2+φ=-sin φ=-12,又-π2≤φ≤π2,解得φ=π6,故f (x )=sin ⎝ ⎛⎭⎪⎫πx 2+π6.答案 f (x )=sin ⎝⎛⎭⎪⎫πx 2+π610.已知函数f (x )=sin ωx +cos ⎝⎛⎭⎪⎫ωx +π6,其中x ∈R ,ω>0. (1)当ω=1时,求f ⎝ ⎛⎭⎪⎫π3的值;(2)当f (x )的最小正周期为π时,求f (x )在⎣⎢⎡⎦⎥⎤0,π4上取得最大值时x 的值.解 (1)当ω=1时,f ⎝ ⎛⎭⎪⎫π3=sin π3+cos π2=32+0=32.11.已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2的图象关于直线x =π3对称,且图象上相邻最高点的距离为π.(1)求f ⎝ ⎛⎭⎪⎫π4的值;(2)将函数y =f (x )的图象向右平移π12个单位后,得到y =g (x )的图象,求g (x )的单调递减区间.解 (1)因为f (x )的图象上相邻最高点的距离为π,所以f (x )的最小正周期T =π,从而ω=2πT=2.又f (x )的图象关于直线x =π3对称,所以2×π3+φ=k π+π2(k ∈Z ),因为-π2≤φ<π2,所以k =0,所以φ=π2-2π3=-π6,所以f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6, 则f ⎝ ⎛⎭⎪⎫π4=3sin ⎝ ⎛⎭⎪⎫2×π4-π6=3sin π3=32.(2)将f (x )的图象向右平移π12个单位后,得到f ⎝⎛⎭⎪⎫x -π12的图象,所以g (x )=f ⎝ ⎛⎭⎪⎫x -π12=3sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6=3sin ⎝⎛⎭⎪⎫2x -π3. 当2k π+π2≤2x -π3≤2k π+3π2(k ∈Z ),即k π+5π12≤x ≤k π+11π12(k ∈Z )时,g (x )单调递减.因此g (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π+5π12,k π+11π12(k ∈Z ).12.某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )的图象向左平移π6个单位,得到函数y =g (x )的图象.若关于x 的方程g (x )-(2m +1)=0在区间⎣⎢⎡⎦⎥⎤0,π2上有两个不同的解,某某数m 的取值X 围.解 (1)根据表中已知数据, 解得A =5,ω=2,φ=-π6. 数据补全如下表:且函数表达式为f (x )=5sin ⎝ ⎛⎭⎪⎫2x -6. (2)通过平移,g (x )=5sin ⎝⎛⎭⎪⎫2x +π6, 方程g (x )-(2m +1)=0可看成函数y =g (x )和函数y =2m +1的图象在⎣⎢⎡⎦⎥⎤0,π2上有两个交点,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,为使直线y =2m +1与函数y =g (x )的图象在⎣⎢⎡⎦⎥⎤0,π2上有两个交点,结合函数y =g (x )在[0,π2]上的图象,只需52≤2m +1<5,解得34≤m <2.即实数m 的取值X 围为⎣⎢⎡⎭⎪⎫34,2.。
2.7函数的图像必备知识预案自诊知识梳理1.利用描点法作函数图像的流程2。
函数图像间的变换(1)平移变换对于平移,往往容易出错,在实际判断中可熟记口诀:左加右减,上加下减。
(2)对称变换(3)伸缩变换y=f(x)y=f(ax),y=f(x)y=Af(x)。
1.函数图像自身的轴对称(1)f(—x)=f(x)⇔函数y=f(x)的图像关于y轴对称;(2)函数y=f(x)的图像关于x=a对称⇔f(a+x)=f(a—x)⇔f(x)=f(2a—x)⇔f(—x)=f(2a+x);(3)若函数y=f(x)的定义域为R,且有f(a+x)=f(b-x),则函数y=f(x)的图像关于直线x=a+a2对称.2.函数图像自身的中心对称(1)f(—x)=—f(x)⇔函数y=f(x)的图像关于原点对称;(2)函数y=f(x)的图像关于(a,0)对称⇔f(a+x)=—f(a-x)⇔f(x)=-f(2a—x)⇔f(-x)=-f(2a+x);(3)函数y=f(x)的图像关于点(a,b)成中心对称⇔f(a+x)=2b—f(a-x)⇔f(x)=2b-f(2a—x);(4)若函数y=f(x)的定义域为R,且满足条件f(a+x)+f(b—x)=c(a,b,c为常数),则函数y=f(x)的图像关于点(a+a2,a2)对称。
3。
两个函数图像之间的对称关系(1)函数y=f(a+x)与y=f(b-x)的图像关于直线x=a-a2对称(由a+x=b-x得对称轴方程);(2)函数y=f(x)与y=f(2a—x)的图像关于直线x=a对称;(3)函数y=f(x)与y=2b—f(-x)的图像关于点(0,b)对称;(4)函数y=f(x)与y=2b-f(2a-x)的图像关于点(a,b)对称。
考点自诊1。
判断下列结论是否正确,正确的画“√",错误的画“×”.(1)将函数y=f(x)的图像先向左平移1个单位长度,再向下平移1个单位长度得到函数y=f(x+1)+1的图像.()(2)当x∈(0,+∞)时,函数y=|f(x)|与y=f(|x|)的图像相同.()(3)函数y=f(x)与y=-f(—x)的图像关于原点对称。
第10讲 函数的图像考试说明 1.掌握基本初等函数的图像特征,能熟练运用基本初等函数的图像解决问题. 2.掌握图像的作法:描点法和图像变换. 3.会运用函数的图像理解和研究函数性质.考情分析真题再现■ [2017-2013]课标全国真题再现1.[2017·全国卷Ⅲ] 函数y=1+x+的部分图像大致为 ( )A BC D[解析] D函数y=1+x+的图像可以看成是由y=x+的图像向上平移一个单位长度得到的,并且y'=1+x+'=1+,当x→∞时,y'→1,所以可确定答案为A或D,又当x=1时,y=1+1+sin 1>2,由图像可以排除A,故选D.2.[2016·全国卷Ⅱ]已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y=与y=f(x)图像的交点为(x1,y1),(x2,y2),…,(x m,y m),则(x i+y i)=()A.0B.mC.2mD.4m[解析] B由f(-x)=2-f(x)得f(x)的图像关于点(0,1)对称,∵y==1+的图像也关于点(0,1)对称,∴两函数图像的交点必关于点(0,1)对称,且对于每一组对称点(x i,y i)和(x'i,y'i)均满足x i+x'i=0,y i+y'i=2,∴(x i+y i)=x i+y i=0+2·=m.3.[2015·全国卷Ⅰ]设函数f(x)=e x(2x-1)-ax+a,其中a<1,若存在唯一的整数x0使得f(x0)<0,则a的取值范围是()A.B.C. D.[解析] D令g(x)=e x(2x-1),则g'(x)=e x(2x+1),由g'(x)>0得x>-,由g'(x)<0得x<-,故函数g(x)在上单调递减,在上单调递增.又函数g(x)在x<时,g(x)<0,在x>时,g(x)>0,所以其大致图像如图所示.直线y=ax-a过点(1,0).若a≤0,则f(x)<0的整数解有无穷多个,因此只能a>0.结合函数图像可知,存在唯一的整数x0,使得f(x0)<0,即存在唯一的整数x0,使得点(x0,ax0-a)在点(x0,g(x0))的上方,则x0只能是0,故实数a应满足即解得≤a<1.故实数a的取值范围是,1.4.[2015·全国卷Ⅱ]如图,长方形ABCD的边AB=2,BC=1,O是AB的中点,点P沿着边BC,CD 与DA运动,记∠BOP=x.将动点P到A,B两点距离之和表示为x的函数f(x),则y=f(x)的图像大致为()[解析] B当点P在BC上时,=tan x,=,+=tan x+,即f(x)=tan x+,x∈,由正切函数的性质可知,函数f(x)在上单调递增,所以其最大值为1+,且函数y=f(x)的图像不可能是线段,排除选项A,C.当点P在CD上运动时,我们取P为CD的中点,此时x=,f=2,由于2<1+,即f<f,排除选项D.综上可知,只有选项B中图像符合题意.■ [2017-2016]其他省份类似高考真题[2017·山东卷]已知当x∈[0,1]时,函数y=(mx-1)2的图像与y=+m的图像有且只有一个交点,则正实数m的取值范围是 ()A.(0,1]∪[2,+∞)B.(0,1]∪[3,+∞)C.(0,]∪[2,+∞)D.(0,]∪[3,+∞)[解析] B应用排除法.当m=时,画出y=(x-1)2与y=+的图像,由图可知,两函数的图像在[0,1]上无交点,排除C,D;当m=3时,画出y=(3x-1)2与y=+3的图像,由图可知,两函数的图像在[0,1]上恰有一个交点.故选B.【课前双基巩固】知识聚焦2.f(x-a)f(x)+b -f(x)f(-x)-f(-x)log a x(a>0且a≠1)f(ax)af(x)y=y=f()对点演练1.y=0[解析] y=lo x=-log a x,故两个函数图像关于x轴,即直线y=0对称.2.x=0[解析] y==a-x,故两个函数的图像关于y轴,即直线x=0对称.3.y=x [解析] 两个函数互为反函数,故两个函数图像关于直线y=x对称.4.③[解析] 将y=两边平方,得y2=|1-x2|(y≥0),即x2+y2=1(y≥0)或x2-y2=1(y≥0),所以③正确.5.y=(2x+3)2[解析] 得到的是y=[2(x+1)+1]2=(2x+3)2的图像.6.y=ln[解析] 根据伸缩变换方法可得,所求函数解析式为y=ln.7.-log2(x-1)[解析] 与f(x)的图像关于直线y=x对称的图像所对应的函数为g(x)=-log2x,再将其图像右移1个单位得到h(x)=-log2(x-1)的图像.8.[解析] y=其图像如图所示:【课堂考点探究】例1[思路点拨] (1)利用图像的平移和翻折作图;(2)利用图像的平移作图;(3)利用偶函数的关系作图,先作出x≥0时的图像,再关于y轴对称作出另一部分的图像.解:(1)首先作出y=lg x的图像,然后将其向右平移1个单位,得到y=lg(x-1)的图像,再把所得图像在x轴下方的部分翻折到x轴上方,即得所求函数y=|lg(x-1)|的图像,如图①所示(实线部分).(2)将y=2x的图像向左平移1个单位,得到y=2x+1的图像,再将所得图像向下平移1个单位得到y=2x+1-1的图像,如图②所示.(3)y=x2-|x|-2=其图像如图③所示.变式题解:(1)先画出函数y=x2-4x+3的图像,再将其x轴下方的图像翻折到x轴上方,如图①所示.(2)y==2-的图像可由y=-的图像向左平移1个单位,再向上平移2个单位得到,如图②所示.(3)y=10|lg x|=其图像如图③所示.例2[思路点拨] 选用函数图像经过的几个特殊点验证排除.B[解析] 由f(0)=-1,得函数图像过点(0,-1),可排除D,由f(-2)=4-4=0,f(-4)=16-16=0,得函数图像过点(-2,0),(-4,0),可排除A,C,故选B.例3[思路点拨] 根据函数的奇偶性及单调性可作出判断.D[解析] 令f(x)=,则f(-x)===f(x),∴f(x)是偶函数,图像关于y轴对称,排除B,C.当x>1时,y==,显然y>0且函数单调递减,故D正确.例4[思路点拨] 对函数f(x)=2x的图像作相应的对称变换可得到图中所示的图像,再写出相应的解析式.C[解析] 题图中是函数y=-2-|x|的图像,即函数y=-f(-|x|)的图像,故选C.强化演练1.D[解析] 当x=1时,y=0,即函数图像过点(1,0),由选项中图像可知,只有D符合.2.A[解析] 由函数定义域知2x-2≠0,即x≠1,排除B,C;当x<0时,y=<0,排除D.故选A.3.C[解析] 由=>0,得x>0,又<1,故y<0,只能是选项C中的图像.4.A[解析] 先作出函数f(x)=log a x(0<a<1)的图像,当x>0时,y=f(|x|+1)=f(x+1),其图像由函数f(x)的图像向左平移1个单位得到,又函数y=f(|x|+1)为偶函数,所以再将函数y=f(x+1)(x>0)的图像关于y轴对称翻折到y轴左边,得到x<0时的图像,故选A.例5[思路点拨] 根据图像可判断其对应函数的定义域、奇偶性、单调性等情况,从而确定符合性质的相应函数的解析式.D[解析] 由函数的图像可知,函数的定义域为R,所以B不符合;又图像关于原点对称,可知函数是奇函数,排除C;函数在定义域内有增有减,不是单调函数,而选项A为增函数,不符合.所以选D.例6[思路点拨] (1)作出分段函数f(x)的图像,结合图像从单调性、最值角度考虑;(2)先化简函数的解析式,在同一坐标系中画出函数y=的图像与函数y=kx-2的图像,结合图像可得实数k的取值范围.(1)[-8,-1](2)(0,1)∪(1,4)[解析] (1)作出函数f(x)的图像,当x≤-1时,函数f(x)=log2单调递减,且最小值为f(-1)=-1,则令log2=2,解得x=-8;当x>-1时,函数f(x)=-x2+x+在(-1,2)上单调递增,在[2,+∞)上单调递减,则最大值为f(2)=2,又f(4)=<2,f(-1)=-1,故所求实数m的取值范围为[-8,-1].(2)y===函数y=kx-2的图像恒过点(0,-2).在同一坐标系中画出函数y=的图像与函数y=kx-2的图像,结合图像可得,实数k的取值范围是(0,1)∪(1,4).例7[思路点拨] 对这样一个非常规不等式应采用数形结合处理,不妨构建函数f(x)=3sin x,g(x)=lo x,将原不等式转化成两函数图像的位置关系,再进行研究.A[解析] 不等式3sin x-lo x<0,即3sin x<lo x.设f(x)=3sin x,g(x)=lo x,在同一坐标系中分别作出函数f(x)与g(x)的图像,由图像可知,当x为整数3或7时,有f(x)<g(x),所以不等式3sin x-lo x<0的整数解的个数为2.例8[思路点拨] 根据所给的条件可确定函数f(x)的图像,并作出函数y=log7|x-2|的图像,由两函数图像的交点个数确定方程解的个数.B[解析] 由函数f(x)是R上的奇函数,得f(0)=0,由f(x+2)=-f(x),可得f(1-x)=f(1+x),f(x+4)=f(x),∴函数f(x)的图像关于直线x=1对称,且f(x)是周期为4的周期函数.在同一坐标系中画出y=f(x)和y=log7|x-2|的图像(图略),由图像不难看出,其交点个数为7,即方程解的个数为7.故选B.强化演练1.C[解析] f(x)=画出函数f(x)的图像,观察图像可知,函数f(x)的图像关于原点对称,故函数f(x)为奇函数,且在(-1,1)上单调递减.2.5[解析] 方程2[f(x)]2-3f(x)+1=0的解为f(x)=或1.作出函数y=f(x)的图像,由图像知零点的个数为5.3.∪[解析] 在0,上,y=cos x>0,在,4上,y=cos x<0.由f(x)的图像知,在1,上,<0.因为f(x)为偶函数,y=cos x也是偶函数,所以y=为偶函数,所以<0的解集为-,-1∪1,.4.[解析] y=作出其图像,如图所示.此曲线与y轴交于点(0,a),最小值为a-,要使直线y=1与其有四个交点,只需a-<1<a,所以1<a<.【备选理由】例1考查分段函数,由各区间上的单调性及函数值确定函数图像;例2为依据函数图像判定相应函数图像,由所给函数图像反映的性质,探究所求函数的性质,有一定的技巧性;例3以新定义为背景,考查函数图像的应用,要注意图像对称性的应用.1[配合例3使用] [2018·南阳第一中学月考]函数f(x)=log2|2x-1|的图像大致是()[解析] C函数可化为f(x)=所以当x>0时,函数为增函数,当x<0时,函数为减函数,可排除A,B,结合图像可知,当x<0时,f(x)<0,排除D,故选C.2[配合例5使用] [2017·长沙长郡中学一模]已知函数y=f(x)的图像如图所示,则函数g(x)=f[f(x)]的图像可能是()[解析] C∵f[f(-x)]=f[f(x)],∴排除A,B;又g(1)=f(0)=-1,∴排除D,故选C.3[配合例8使用] 规定“⊗”表示一种运算,即a⊗b=a2+2ab-b2.设函数f(x)=x⊗2,且关于x的方程f(x)=lg|x+2|(x≠-2)恰有四个互不相等的实数根x1,x2,x3,x4,则x1+x2+x3+x4的值是()A.-4B.4C.8D.-8[解析] D函数f(x)=x2+4x-4,由于函数y=f(x),y=lg|x+2|的图像(如图)均关于直线x=-2对称,故四个实数根之和为-8.。
学案10 函数的图象导学目标: 1.掌握作函数图象的两种基本方法:描点法,图象变换法.2.掌握图象变换的规律,能利用图象研究函数的性质.自主梳理1.应掌握的基本函数的图象有:一次函数、二次函数、幂函数、指数函数、对数函数等.2.利用描点法作图:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质(奇偶性、单调性、周期性);④画出函数的图象.3.利用基本函数图象的变换作图: (1)平移变换:函数y =f (x +a )的图象可由y =f (x )的图象向____(a >0)或向____(a <0)平移____个单位得到;函数y =f (x )+a 的图象可由函数y =f (x )的图象向____(a >0)或向____(a <0)平移____个单位得到.(2)伸缩变换:函数y =f (ax ) (a >0)的图象可由y =f (x )的图象沿x 轴伸长(0<a <1)或缩短(____)到原来的1a倍得到;函数y =af (x ) (a >0)的图象可由函数y =f (x )的图象沿y 轴伸长(____)或缩短(______)为原来的____倍得到.(可以结合三角函数中的图象变换加以理解)(3)对称变换:①奇函数的图象关于______对称;偶函数的图象关于____轴对称; ②f (x )与f (-x )的图象关于____轴对称; ③f (x )与-f (x )的图象关于____轴对称; ④f (x )与-f (-x )的图象关于______对称;⑤f (x )与f (2a -x )的图象关于直线______对称;⑥曲线f (x ,y )=0与曲线f (2a -x,2b -y )=0关于点______对称;⑦|f (x )|的图象先保留f (x )原来在x 轴______的图象,作出x 轴下方的图象关于x 轴的对称图形,然后擦去x 轴下方的图象得到;⑧f (|x |)的图象先保留f (x )在y 轴______的图象,擦去y 轴左方的图象,然后作出y 轴右方的图象关于y 轴的对称图形得到.自我检测1.(·北京改编)为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点向(填“左”或“右”)________平移________个单位长度,再向(填“上”或“下”)________平移________个单位长度.2.(·烟台一模)已知图1是函数y =f (x )的图象,则图2中的图象对应的函数可能是________(填序号).①y =f (|x |);②y =|f (x )|;③y =f (-|x |);④y =-f (-|x |).3.函数f (x )=1x-x 的图象关于________对称.4.使log 2(-x )<x +1成立的x 的取值范围是________.5.(·淮安模拟)已知f (x )=a x -2,g (x )=log a |x |(a >0且a ≠1),若f (4)·g (-4)<0,则y =f (x ),y =g (x )在同一坐标系内的大致图象是________(填序号).探究点一 作图例1 (1)作函数y =|x -x 2|的图象;(2)作函数y =x 2-|x |的图象;(3)作函数y =⎝ ⎛⎭⎪⎫12|x |的图象.变式迁移1 作函数y =1|x |-1的图象.探究点二 识图 例2 (1)函数2log 2xy =|的图象大致是________(填入正确的序号).(2)函数f (x )的部分图象如图所示,则函数f (x )的解析式是下列四者之一,正确的序号为________.①f (x )=x +sin x ;②f (x )=cos xx;③f (x )=x cos x ;④f (x )=x ·(x -π2)·(x -3π2).变式迁移2 已知y =f (x )的图象如图所示,则y =f (1-x )的图象为________(填序号).探究点三 图象的应用例3 若关于x 的方程|x 2-4x +3|-a =x 至少有三个不相等的实数根,试求实数a 的取值范围.变式迁移3 (·全国Ⅰ)直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围为________.数形结合思想例 (5分)(·北京东城区一模)定义在R 上的函数y =f (x )是减函数,且函数y =f (x -1)的图象关于(1,0)成中心对称,若s ,t 满足不等式f (s 2-2s )≤-f (2t -t 2).则当1≤s ≤4时,ts的取值范围为________.答案 ⎣⎢⎡⎦⎥⎤-12,1 解析 因函数y =f (x -1)的图象关于(1,0)成中心对称,所以该函数的图象向左平移一个单位后的解析式为y =f (x ),即y =f (x )的图象关于(0,0)对称,所以y =f (x )是奇函数.又y =f (x )是R 上的减函数,所以s 2-2s ≥t 2-2t ,令y =x 2-2x =(x -1)2-1,图象的对称轴为x =1,当1≤s ≤4时,要使s 2-2s ≥t 2-2t ,即s -1≥|t -1|,当t ≥1时,有s ≥t ≥1,所以14≤ts≤1;当t <1时,即s -1≥1-t ,即s +t ≥2,问题转化成了线性规划问题,画出由1≤s ≤4,t <1,s +t ≥2组成的不等式组的可行域.t s为可行域内的点到原点连线的斜率,易知-12≤ts<1.【突破思维障碍】当s ,t 位于对称轴x =1的两边时,如何由s 2-2s ≥t 2-2t 判断s ,t 之间的关系式,这时s ,t 与对称轴x =1的距离的远近决定着不等式s 2-2s ≥t 2-2t 成立与否,通过数形结合判断出关系式s -1≥1-t ,从而得出s +t ≥2,此时有一个隐含条件为t <1,再结合1≤s ≤4及要求的式子的取值范围就能联想起线性规划,从而突破了难点.要画出s ,t 所在区域时,要结合t s的几何意义为点(s ,t )和原点连线的斜率,确定s 为横轴,t 为纵轴.【易错点剖析】当得到不等式s 2-2s ≥t 2-2t 后,如果没有函数的思想将无法继续求解,得到二次函数后也容易只考虑s ,t 都在二次函数y =x 2-2x 的增区间[1,+∞)内,忽略考虑s ,t 在二次函数对称轴两边的情况,考虑了s ,t 在对称轴的两边,也容易漏掉隐含条件t <1及联想不起来线性规划.1.掌握作函数图象的两种基本方法(描点法,图象变换法),在画函数图象时,要特别注意到用函数的性质(如单调性、奇偶性等)解决问题.2.合理处理识图题与用图题(1)识图.对于给定函数的图象,要能从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性.(2)用图.函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具,要重视数形结合解题的思想方法,常用函数图象研究含参数的方程或不等式解集的情况.(满分:90分)一、填空题(每小题6分,共48分)1.(·重庆改编)函数f (x )=4x+12x 的图象关于______对称.2.设函数f (x )是定义在R 上的奇函数,若当x ∈(0,+∞)时,f (x )=lg x ,则满足f (x )>0的x 的取值范围为__________________.3.(·北京海淀区一模)在同一坐标系中画出函数y =log a x ,y =a x,y =x +a 的图象,可能正确的是________(填序号).4.设函数f (x )=⎩⎪⎨⎪⎧2x, x ≤0x 2-2x +1, x >0,若关于x 的方程f 2(x )-af (x )=0恰有四个不同的实数解,则实数a 的取值范围为________.5.设b >0,二次函数y =ax 2+bx +a 2-1的图象为下列之一,则a 的值为________.6.为了得到函数y =3×(13)x 的图象,可以把函数y =(13)x的图象向________平移________个单位长度.7.(·连云港模拟)若直线y =2a 与函数y =|a x-1|(a >0且a ≠1)的图象有2个公共点,则a 的取值范围为________.8.如图所示,向高为H 的水瓶A 、B 、C 、D 同时以等速注水,注满为止.(1)若水量V 与水深h 函数图象是下图的(a),则水瓶的形状是________;(2)若水深h 与注水时间t 的函数图象是下图的(b),则水瓶的形状是________. (3)若注水时间t 与水深h 的函数图象是下图的(c),则水瓶的形状是________; (4)若水深h 与注水时间t 的函数的图象是图中的(d),则水瓶的形状是________.二、解答题(共42分)9.(14分)(·无锡模拟)已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0. (1)求实数m 的值;(2)作出函数f (x )的图象;(3)根据图象指出f (x )的单调递减区间; (4)根据图象写出不等式f (x )>0的解集; (5)求当x ∈[1,5)时函数的值域.10.(14分)当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,求a 的取值范围.11.(14分)已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0).(1)若g (x )=m 有根,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.答案 自主梳理3.(1)左 右 |a | 上 下 |a | (2)a >1 a >1 0<a <1 a (3)①原点 y ②y ③x ④原点 ⑤x =a ⑥(a ,b ) ⑦上方 ⑧右方 自我检测1.左 3 下 1 2.③3.坐标原点解析 ∵f (-x )=-1x +x =-⎝ ⎛⎭⎪⎫1x -x =-f (x ),∴f (x )是奇函数,即f (x )的图象关于原点对称.4.(-1,0)解析 作出y =log 2(-x ),y =x +1的图象知满足条件的x ∈(-1,0).5.②解析 由f (4)·g (-4)<0得a 2·log a 4<0, ∴0<a <1. 课堂活动区例1 解 (1)y =⎩⎪⎨⎪⎧x -x 2, 0≤x ≤1,-(x -x 2),x >1或x <0, 即y =⎩⎪⎨⎪⎧-⎝ ⎛⎭⎪⎫x -122+14,0≤x ≤1,⎝ ⎛⎭⎪⎫x -122-14, x >1或x <0,其图象如图所示.(2)y =⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫x -122-14,x ≥0,⎝ ⎛⎭⎪⎫x +122-14,x <0,其图象如图所示.(3)作出y =⎝ ⎛⎭⎪⎫12x 的图象,保留y =⎝ ⎛⎭⎪⎫12x 图象中x ≥0的部分,加上y =⎝ ⎛⎭⎪⎫12x的图象中x >0的部分关于y 轴的对称部分,即得y =⎝ ⎛⎭⎪⎫12|x |的图象.变式迁移1 解 定义域是{x |x ∈R 且x ≠±1},且函数是偶函数.又当x ≥0且x ≠1时,y =1x -1.先作函数y =1x 的图象,并将图象向右平移1个单位,得到函数y =1x -1(x ≥0且x ≠1)的图象(如图(a)所示).又函数是偶函数,作关于y 轴对称图象,得y =1|x |-1的图象(如图(b)所示).例2 解题导引 对于给定的函数的图象,要能从图象的左右、上下分布范围、变化 趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.答案 (1)③ (2)③解析 (1)y =2|log 2x |=⎩⎪⎨⎪⎧1x(0<x <1)x (x >1),所以图象画法正确的应为③.(2)由图象知f (x )为奇函数,排除④;又0,±π2,±32π为方程f (x )=0的根,故应为③.变式迁移2 ①解析 因为f (1-x )=f (-(x -1)),故y =f (1-x )的图象可以由y =f (x )的图象按照如下变换得到:先将y =f (x )的图象关于y 轴翻折,得y =f (-x )的图象,然后将y =f (-x )的图象向右平移一个单位,即得y =f (-x +1)的图象.故应为①.例3 解题导引 原方程重新整理为|x 2-4x +3|=x +a ,将两边分别设成一个函数并作出它们的图象,即求两图象至少有三个交点时a 的取值范围.方程的根的个数问题转化为函数图象交点个数问题,体现了《考纲》中函数与方程的重要思想方法.解 原方程变形为|x 2-4x +3|=x +a ,于是,设y =|x 2-4x +3|,y =x +a ,在同一坐标系下分别作出它们的图象.如图.则当直线y =x +a 过点(1,0)时a =-1;当直线y =x +a 与抛物线y =-x 2+4x -3相切时,由⎩⎪⎨⎪⎧y =x +a y =-x 2+4x -3,得,x 2-3x +a +3=0, 由Δ=9-4(a +3)=0,得a =-34.由图象知当a ∈[-1,-34]时方程至少有三个根.变式迁移3 (1,54)解析 y =x 2-|x |+a =⎩⎪⎨⎪⎧(x -12)2+a -14, x ≥0,(x +12)2+a -14, x <0.当其图象如图所示时满足题意.由图知⎩⎪⎨⎪⎧a >1,a -14<1,解得1<a <54.课后练习区 1.y 轴解析 f (x )=2x +2-x,因为f (-x )=f (x ),所以f (x )为偶函数.所以f (x )图象关于y 轴对称. 2.(-1,0)∪(1,+∞)解析 当x ∈(0,+∞)时,f (x )=lg x ,可以画出函数f (x )在(0,+∞)上的图象.又f (x )为R 上的奇函数,其图象关于原点对称,根据对称性,画出函数在(-∞,0)上的图象.如图.由图象可知,f (x )>0的解集为(-1,0)∪(1,+∞). 3.④解析 ①、②、③中直线方程中的a 的范围与对数函数中的a 的范围矛盾. 4.0<a <1解析 由f 2(x )-af (x )=0可得f (x )=0或f (x )=a ,画出函数y =f (x )的图象如图所示,显然当f (x )=0时,只有一个实数解,所以f (x )=a 时应有三个实数解. 结合图象不难得到0<a <1. 5.-1解析 ∵b >0,∴前两个图象不是给出的二次函数图象,又后两个图象的对称轴都在y 轴右边,∴-b2a>0,∴a <0,又∵图象过原点,∴a 2-1=0,∴a =-1. 6.右 1解析 ∵y =3×(13)x =(13)x -1,∴y =(13)x 向右平移1个单位便得到y =(13)x -1.7.(0,12)解析 规范作图如下:由图知0<2a <1,所以a ∈(0,12).8.(1)A (2)D (3)B (4)C9.解 (1)∵f (4)=0,∴4|m -4|=0,即m =4.…………………………………………(3分) (2)f (x )=x |x -4|=⎩⎪⎨⎪⎧x (x -4)=(x -2)2-4, x ≥4,-x (x -4)=-(x -2)2+4, x <4.………………………………………………(7分) f (x )的图象如图所示.(3)由图可知,f (x )的减区间是[2,4].……………………………………………………(9分) (4)由图象可知f (x )>0的解集为{x |0<x <4或x >4}.………………………………………………………………………(12分) (5)∵f (5)=5>4,由图象知,函数在[1,5)上的值域为[0,5).……………………………………………(14分)10.解 设f 1(x )=(x -1)2,f 2(x )=log a x ,要使当x ∈(1,2)时,不等式(x -1)2<log a x 恒成立,只需f 1(x )=(x -1)2在(1,2)上的图象在f 2(x )=log a x 的下方即可.当0<a <1时,由图象知显然不成立.……………………………………………………(5分)当a >1时,如图,要使在(1,2)上,f 1(x )=(x -1)2的图象在f 2(x )=log a x 的下方, 只需f 1(2)≤f 2(2),即(2-1)2≤log a 2,log 2a ≥1.………………………………………………………………(12分) ∴1<a ≤2.………………………………………………………………………………(14分)11.解 (1)方法一 ∵x >0,∴g (x )=x +e 2x≥2e 2=2e ,等号成立的条件是x =e.故g (x )的值域是[2e ,+∞),……………………………………………………………(4分) 因而只需m ≥2e ,则g (x )=m 就有根.…………………………………………………(6分)方法二 作出g (x )=x +e2x的图象如图:……………………………………………………………………………………………(4分) 可知若使g (x )=m 有根,则只需m ≥2e.………………………………………………(6分)方法三 解方程由g (x )=m ,得x 2-mx +e 2=0.此方程有大于零的根,故⎩⎪⎨⎪⎧m 2>0Δ=m 2-4e 2≥0…………………………………………(4分)等价于⎩⎪⎨⎪⎧m >0m ≥2e 或m ≤-2e ,故m ≥2e.…………………………………………………(6分)(2)若g (x )-f (x )=0有两个相异的实根,即g (x )=f (x )中函数g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e2x(x >0)的图象.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2.其对称轴为x =e ,开口向下,最大值为m -1+e 2.……………………………………………………………………(10分)故当m -1+e 2>2e ,即m >-e 2+2e +1时, g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).………………………………………………(14分)。
学案4 函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用班级______ 姓名__________导学目标:1.了解函数y=A sin(ωx+φ)的物理意义;能画出y=A sin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.【自主梳理】1.用五点法画y=A sin(ωx+φ)一个周期内的简图用五点法画y=A sin(ωx+φ)一个周期内的简图时,要找五个特征点.如下表所示.2.图象变换:函数y=A sin(ωx+φ) (A>0,ω>0)的图象可由函数y=sin x的图象作如下变换得到:(1)相位变换:y=sin x y=sin(x+φ),把y=sin x图象上所有的点向____(φ>0)或向____(φ<0)平行移动__________个单位.特别注意:由y=sinωx→y=sin(ωx+φ),是把y=sinωx图象上所有的点向____(φ>0)或向____(φ<0)平行移动__________个单位.(2)周期变换:y=sin (x+φ)→y=sin(ωx+φ),把y=sin(x+φ)图象上各点的横坐标____(0<ω<1)或____(ω>1)到原来的________倍(纵坐标不变).(3)振幅变换:y=sin (ωx+φ)→y=A sin(ωx+φ),把y=sin(ωx+φ)图象上各点的纵坐标______(A>1)或______(0<A<1)到原来的____倍(横坐标不变).3.当函数y=A sin(ωx+φ) (A>0,ω>0),x∈(-∞,+∞)表示一个振动量时,则____叫做振幅,T=________叫做周期,f=______叫做频率,________叫做相位,____叫做初相.函数y=A cos(ωx+φ)的最小正周期为__________.y=A tan(ωx+φ)的最小正周期为________. 【自我检测】1.要得到函数y =sin ⎝⎛⎭⎪⎫2x -π4的图象,可以把函数y =sin 2x 的图象( )A .向左平移π8个单位B .向右平移π8个单位C .向左平移π4个单位D .向右平移π4个单位2.已知函数f (x )=sin(ωx +π4)(x ∈R ,ω>0)的最小正周期为π,为了得到函数g (x )=cos ωx的图象,只要将y =f (x )的图象 ( )A .向左平移π8个单位长度B .向右平移π8个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度3.函数y =sin ⎝⎛⎭⎪⎫2x -π3的一条对称轴方程是 ( )A .x =π6B .x =π3C .x =π12D .x =5π124.已知函数f (x )=sin ⎝⎛⎭⎪⎫ωx +π4 (x ∈R ,ω>0)的最小正周期为π.将y =f (x )的图象向左平移|φ|个单位长度,所得图象关于y 轴对称,则φ的一个值是 ( )A.π2B.3π8C.π4D.π85.若动直线x =a 与函数f (x )=sin x 和g (x )=cos x 的图象分别交于M 、N 两点,则|MN |的最大值为 ( )A .1B.2C.3D .2探究点一 三角函数的图象及变换【例1】 已知函数y =2sin ⎝ ⎛⎭⎪⎫2x +π3。
高三数学一轮复习 第12课时 函数的图像学案【学习目标】1.掌握作函数图像的两种基本方法:描点法和图像变换法.2.了解图像的平移变换、伸缩变换、对称变换,能利用函数的图像研究函数的性质,以达到识图、作图、用图的目的. 【课本导读】1.函数图像的三种变换 (1)平移变换y =f (x )的图像向左平移a (a >0)个单位,得到 的图像;y =f (x -b )(b >0)的图像可由y =f (x )的图像 而得到;y =f (x )的图像向下平移b (b >0)个单位,得到 的图像;y =f (x )+b (b >0)的图像可由y =f (x )的图像 而得到.总之,对于平移变换,记忆口诀为:左加右减,上加下减.(2)对称变换y =f (-x )与y =f (x )的图像关于 对称; y =-f (x )与y =f (x )的图像关于 对称; y =-f (-x )与y =f (x )的图像关于 对称;y =|f (x )|的图像可将y =f (x )的图像在x 轴下方的部分 ,其余部分不变而得到; y =f (|x |)的图像可先作出y =f (x )当x ≥0时的图像,再作关于y 轴的对称. (3)伸缩变换y =f (ax )(a >0)的图像,可将y =f (x )的图像上所有点的 坐标变为原来的 倍, 坐标 而得到.y =af (x )的图像,可将y =f (x )的图像上所有点的 坐标不变, 坐标伸长为原来的 .2.几个重要结论(1)若f (m +x )=f (m -x )恒成立,则y =f (x )的图像关于直线 对称. (2)设函数y =f (x )定义在实数集上,则函数y =f (x -m )与y =f (m -x )(m >0)的图像关于直线 对称.(3)若f (a +x )=f (b -x ),对任意x ∈R 恒成立,则y =f (x )的图像关于x =a +b2对称.(4)函数y =f (a +x )与函数y =f (b -x )的图像关于x =b -a2对称.【教材回归】1.函数y =lg|x -1|的图像大致为 ( )2.函数y =1-1x -1的图像是( )3.当0<a <1时,在同一坐标系中,函数y =a -x与y =log a x 的图像是 ( )4.要得到函数y =8·2-x的图像,只需将函数y =⎝ ⎛⎭⎪⎫12x的图像( )A .向右平移3个单位B .向左平移3个单位C .向右平移8个单位D .向左平移8个单位5.设函数f (x )=|x +1|+|x -a |的图像关于直线x =1对称,则a 的值为 ( )A .3B .2C .1D .-1题型一 利用变换作图例1 作出下列函数的图像.(1)f (x )=x1+|x |; (2)f (x )=|lg|x -1||.探究1 (1)一些函数的图像可由基本初等函数的图像通过变换而得,常见图像变换有平移变换,对称变换,伸缩变换,用x +m 替换x ,图像发生左、右平移.用y +n 替换y ,图像发生上、下平移,用kx 替换x ,图像发生伸缩变化,用-x 、-y 替换x 、y 图像分别关于y 轴、x 轴对称.(2)作函数图像时应结合函数的性质,如f (x )=x1+|x |为奇函数,f (x )=lg|x |为偶函数等.(3)多步变换时,应确定好变换顺序.思考题1 作出下列函数的图像.(1)y =2x +2; (2)y =x +2x -1; (3)y =(12)|x | ; (4)y =|log 2x-1|.题型二 知式选图或知图选式问题例2 函数f (x )的部分图像如图所示,则函数f (x )的解析式是A .f (x )=x +sin xB .f (x )=cos xxC .f (x )=x cos xD .f (x )=x ·(x -π2)·(x -3π2)探究 2 对于给定函数的图像,要能从图像的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域(最值)、单调性、奇偶性、周期性,注意图像与函数解析式中参数的关系,常用的方法有:(1)定性分析法:通过对问题进行定性的分析,从而得出图像的上升(或下降)的趋势,利用这一特征分析解决问题.(2)定量计算法:通过定量的计算来分析解决问题.(3)函数模型法:由所提供的图像特征,联想相关函数模型,利用这一函数模型来分析解决问题.思考题2(1)函数y =x2-2sin x 的图像大致是()(2)(2013·衡水调研卷)函数y =x +sin|x |,x ∈[-π,π]的大致图像是 ( )题型三 函数图像的对称性例3 (1)已知f (x )=ln(1-x ),函数g (x )的图像与f (x )的图像关于点(1,0)对称,则g (x )的解析式为______.(2)设函数y =f (x )的定义域为实数集R ,则函数y =f (x -1)与y =f (1-x )的图像关于 ( )A .直线y =0对称B .直线x =0对称C .直线y =1对称D .直线x =1对称 探究3 (1)求一曲线关于一点或一直线对称曲线方程.一般运用相关点求轨迹的方法. (2)下列结论需记住:①f (x ,y )=0与f (-x ,y )=0的图像关于y 轴对称; ②f (x ,y )=0与f (x ,-y )=0的图像关于x 轴对称; ③f (x ,y )=0与f (-x ,-y )=0的图像关于原点对称; ④f (x ,y )=0与f (y ,x )=0的图像关于y =x 对称;⑤f (x ,y )=0与f (2m -x ,y )=0的图像关于直线x =m 对称.思考题3 (1)已知函数f (2x +1)是奇函数,则函数y =f (2x )的图像关于下列哪个点成中心对称 ( )A .(1,0)B .(-1,0)C .(12,0)D .(-12,0) ( )(2)求证:函数f (x )满足对任意x ,都有f (a -x )=f (a +x ),则函数f (x )的图像关于直线x =a 对称.题型四 函数图像的应用例4 (1)函数f (x )=|4x -x 2|-a 恰有三个零点,则a =________. (2)不等式log 2(-x )<x +1的解集为__________.探究 4 函数、方程、不等式三者之间有着密切的联系,它们之间的相互转化有时能使问题迎刃而解,本题利用函数的图像来解决方程根的个数问题及不等式求解问题.思考题4 若直线y =x +m 和曲线y =1-x 2有两个不同的交点,则m 的取值范围是________. 【本课总结】1.作图的基本方法是描点法,某些函数的图像也可通过已知图像进行变换而得. 2.识图问题的关键是通过函数的性质进行排除确定. 3.函数图像能直观反映函数的性质,通过图像可以解决许多问题,如不等式问题、方程问题、函数的值域等. 【自助餐】1.已知定理:“若,a b 为常数,()g x 满足()()2g a x g a x b ++-=,则函数()y g x =的图像关于点(,)a b 中心对称”.设函数1()x af x a x+-=-,定义域为A .(Ⅰ)试证明()y f x =的图像关于点(,1)a -成中心对称;(Ⅱ)当[2,1]x a a ∈--时,求证:1()[,0]2f x ∈-;(Ⅲ)对于给定的i x A ∈,设计构造过程:21()x f x =,32()x f x =,…,1()n n x f x +=.如果(2,3,)i x A i ∈=,构造过程将继续下去;如果i x A ∉,构造过程将停止.若对任意i x A ∈,构造过程可以无限进行下去,求a 的值.。
0>k ( )移
0<k ( )移
0>h ( )移
0<h ( )移
1>ω( )为原来的ω/1倍
10<<ω( )为原来1/ω倍
10<<A ( )为原来的A 倍
1>A ( )为原来的A 倍
高三数学一轮复习学案:函数的图像
一、考试要求:1、熟练掌握一次函数、二次函数、指数函数、对数函数、反比例函数、幂函数等基本函数的图像;2、会做简单函数的图像;会利用图像解决简单问题
3、能以函数图像识别相应函数的性质;
4、能运用数形结合的思想方法,从图辅助解题。
二、知识梳理:1.作函数图像主要有__________与 ________两种方法。
2.描点作图按如下步骤:(1)确定函数的_________(2)化简函数的_________(3)讨论函数的性质(如奇偶性、单调性、周期性) (4)画出函数图像
3.(1)平移变换:)(x f y =图像 )(h x f y +=图像。
)(x f y =图像 k x f y +=)(图像 。
(2)伸缩变换 :)(x f y =图像 )(x f y ω=图像
)(x f y =图像 )(x Af y =图像
(3)对称变换:)(x f y =图像
=y _________
=y ________=y __________
=y ___________=y __________
三、基础检测:
1.在同一平面直角坐标系中,函数12)(+=x x f 与x x g -=12)(的图像关于( )
A.原点对称
B.x 轴对称
C.y 轴对称
D.直线x y =对称 2.如图是函数
d cx bx x x f +++=23)(的大致图像,则2
221x x +等于( )
A. 98
B. 910
C. 9
16 D.45
3.已知函数⎪⎩⎪
⎨⎧>≤=)1(log )
1(3)(3
1
x x x x f x ,则)1(x f y -=的
图像是( )
关于原点
关于直线x y =
关于直线a x = 关于y 轴
关于x 轴
4)(x f 是定义在区间][c c ,-上的奇函数,其图像如图所示, 令b x af x g +=)()(,则下列关于函数)(x g 的叙述正确的是( ) A.若0<a ,则函数)(x g 的图像关于原点对称。
B.若20,1<<=b a ,则方程0)(=x g 有大于2的实根。
C.若0,2=-=b a ,则函数)(x g 的图像关于y 轴对称。
D.若2,0=≠b a ,则方程0)(=x g 有三个实根。
5.如图所示,)(1x f 、)(2x f 、)(3x f 、)(4x f 是定义在][1,0上的四个函数,其中满足性质: “对][1,0中任意的21,x x ,][)()(2
1
)2(
2121x f x f x x f +<+恒成立”的只有( )
6.当10<<a 时,函数x a y =和2)1(x a y -=的图像值可能是图中的( )
A B C D
7函数1
1
1--
=x y 的图象是图中的( )
8.已知02)2()(=+-+x f x f 对任何实数x 恒成立,则函数)(x f y =的图像( ) A.关于直线1=x 对称B.关于直线2=x 对称。
C.关于点)1,1(-对称D.关于点)1,1(-对称。
9.已知函数)(x f y =的图像如图所示,)(x g y =得图像如图所示,则函数)()(x g x f y =的图像可能是图中的( )
10.将函数x x f 2log )(=的图像向左移1个单位,得到1C ,当将1C 向上平移一个单位得到2C 图像,作2C 关于直线x y =的对称图像得3C ,则曲线3C 的解析式为_________ 11.1)(log 2+<-x x 成立的x 的取值范围是_____________
12.已知直线m x y +=与函数21x y -=的图像有两个不同的交点,则m 的取值范围是_____ 13.若函数)0(,1log )(2≠-=a ax x f 的图像关于直线2=x 对称,则=a __________ 14由函数)1(-=x f y 的图像得到)2(+-=x f y 的图像可分为三个步骤,且每一个步骤只能做一种变换,则这三部分别是(1)_____________ (2) ________________(3)___________ 15.已知函数)1(log )(2+=x x f ,将)(x f y =的图像向左平移1个单位,再将图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数)(x g y =的图像。
(1)求)(x g y =的解析式及定义域。
(2)求函数)()()(x g x f x F -=的最大值。
16.设曲线C 的方程是x x y -=3,将C 沿x 轴正方向平移t 个单位长度,沿y 轴正方向平移s 个
单位长度,得到曲线1C (1)写出曲线1C 的方程;(2)证明:曲线C 与1C 关于点)2
,2(s t A 对称。