8 均匀设计法
- 格式:ppt
- 大小:399.00 KB
- 文档页数:44
八因素五水平均匀设计八因素五水平均匀设计是一种广泛应用于工程实验和制造业的设计方法。
它通过对八个因素进行五个水平的设计,可以有效地确定最佳的工艺参数,提高产品质量和生产效率。
本文将从八因素的选择、五水平的确定以及八因素五水平设计的优点等方面进行探讨。
选择八个影响工艺参数的因素是八因素五水平均匀设计的第一步。
这些因素应该是对产品质量和生产效率有重要影响的关键参数。
例如,在汽车制造中,八个因素可以包括车身材料、焊接温度、涂装厚度、烘干时间、装配工艺等。
选择合适的因素是保证实验结果可靠性的基础。
接下来,确定五个水平是进行八因素五水平均匀设计的第二步。
五个水平应该覆盖整个参数的范围,以便能够获得全面的实验数据。
例如,在车身材料这一因素中,可以选择铝合金、钢材、复合材料等不同的水平。
确定合适的水平是保证实验结果可重复性的关键。
八因素五水平均匀设计的优点主要有以下几点。
首先,它可以通过少量实验获得大量的信息,节省了时间和成本。
其次,它可以全面考察各个因素对结果的影响,避免了单一因素实验的局限性。
再次,它可以确定最佳的工艺参数组合,提高产品质量和生产效率。
最后,它可以为进一步优化和改进提供参考,为工艺改进提供科学依据。
在进行八因素五水平均匀设计时,需要注意以下几点。
首先,实验设计要合理,需要根据具体情况进行调整。
例如,在实验因素选择时,需要根据产品特性和生产要求进行权衡。
其次,实验数据要真实可靠,需要采取合适的测量方法和数据处理方法。
例如,在测量结果时,需要进行多次重复测量并取平均值。
最后,实验结果要进行科学分析和解释,需要结合统计学方法和专业知识进行综合分析。
八因素五水平均匀设计是一种有效的实验设计方法,可以用于工程实验和制造业中。
通过选择合适的因素和确定合适的水平,可以得到全面可靠的实验结果。
它的优点包括节省时间和成本、全面考察各个因素影响、确定最佳工艺参数组合等。
在实施时需要注意实验设计的合理性、数据的真实可靠性以及结果的科学分析和解释。
均匀试验设计均匀设计均匀设计(uniform design)是中国数学家方开泰和王元于1978年首先提出来的,它是一种只考虑试验点在试验范围内均匀散布的一种试验设计方法。
与正交试验设计类似、均匀设计也是通过一套精心设计的均匀表来安排试验的。
由于均匀设计只考虑试验点的“均匀散布”而不考虑“整齐可比”,因而可以大大减少试验次数,这是它与正交设计的最大不同之处。
例如,在因素数为5,各因素水平数为31的试验中,若采用正交设计来安排试验,则至少要作3俨=961次试验,这将令人望而生畏,难以实施,但是若采用均匀设计,则只需作31次试验。
可见,均匀设计在试验因素变化范围较大,需要取较多水平时,可以极大地减少试验次数。
经过20多年的发展和推广,均匀设计法已广泛应用于化工、医药、生物、食品、军事工程、电子、社会经济等诸多领域,并取得了显著的经济和社会效益。
1.均匀设计表1.1等水平均匀设计表均匀设计表,简称均匀表,是均匀设计的基础,与正交表类似,每一个均匀设计表都有一个代号,等水平均匀设计表可用U n ( r1)或U n* (r1)表示,其中,U为均匀表代号;n为均匀表横行数(需要做的试验次数);r为因素水平数,与n相等;I为均匀表纵列数。
代号U右上角加“*”和不加“*”代表两种不同的均匀设计表,通常加“* ”的均匀设计表有更好的均匀性,应优先选用。
表1-1、表1-3分别为均匀表U7 (74)与U7* (7 4),可以看出,U7 ( 74)和U7*(74) 都有7行4列,每个因素都有7个水平,但在选用时应首选U7*(74 )。
表1-1 U7 (74)474747每个均匀设计表都附有一个使用表,根据使用表可将因素安排在适当的列中。
例如,表1-2是U7 ( 74)的使用表,由该表可知,两个因素时,应选用1,3两列来安排试验;当有三个因素时,应选用1,2,3三列,。
最后一列D表示均匀度的偏差((discrepancy),偏差值越小,表示均匀分散性越好。
均匀设计法名词解释
均匀设计法是一种试验设计方法,它的设计点在试验范围内均匀散布。
该方法由方开泰教授和数学家王元在1978年共同提出,是数论方法中的“伪蒙特卡罗方法”的一个应用。
在科学研究和技术开发中,常常需要进行试验设计来探究不同因素对试验结果的影响。
试验设计的目的在于最小化试验次数和最大化试验信息的收集。
均匀设计法是一种有效的试验设计方法,它可以在试验点均匀散布的条件下,最小化试验次数,同时收集到足够的试验信息。
均匀设计法的优点在于它可以减少试验次数,提高试验效率,同时还可以均匀散布试验点,使试验结果更具代表性。
此外,均匀设计法还可以筛选关键因素,帮助研究人员更好地理解试验结果。
在均匀设计法中,每个因素的水平都被均匀地分配到试验中的各个点。
这使得每个试验点的数据都能够提供关于该因素的信息,从而使得在较少的试验次数下获得足够的信息成为可能。
总的来说,均匀设计法是一种有效的试验设计方法,可以帮助研究人员在较少的试验次数下收集到足够的试验信息,同时还可以提高试验效率并筛选关键因素。
均匀设计方法简介在工农业生产和科学研究中,常须做试验,以获得予期目的:改进生产工艺,提高产品收率或质量,合成出某化合物等等。
怎样做试验,是大有学问的。
本世纪30年代,费歇(R.A.Fisher)在试验设计和统计分析方面做了一系列先驱工作,使试验设计成为统计科学的一个分支。
今天,试验设计理论更完善,试验设计应用更广泛。
本节着重介绍均匀设计方法。
一、试验设计对于一项试验,例如用微波加热法通过离子交换制备Cu13X分子筛。
我们可以13X分子筛、CuCl2为原料来制备,为寻找最佳条件,应如何设计这个试验呢?若我们已确定了微波加热功率(A)、交换时间(B)、交换液摩尔浓度(C)为三个影响因素,每个因素取五个不同值(即水平:A1,…,A5,B1,…,B5,C1,…,C5)。
有两种方法最易想到:1.全面试验:将每个因素的不同水平组合做同样数目的试验。
对上述示例,不计重复试验,共需做5×5×5=125次试验。
2.多次单因素试验:依次考查各因素(考查某因素时,其它因素固定)取最佳值。
容易知道,对上示例(不计重复试验)共需做3×5=15次试验。
该法在工程和科学试验中常被人们采用,可当考查的因素间有交互作用时,该法所得结论一般不真。
3.正交设计法:利用正交表来安排试验。
本世纪60年代,日本统计学家田口玄一将试验设计中应用最广的正交设计表格化,使正交试验设计得到更广泛的使用。
70年代以来,我国许多统计学家深入工厂、科研单位,与广大工程技术人员、工人一起,广泛开展正交设计的研究、应用,取得了大批成果。
该法是目前最流行,效果相当好的方法。
正交表记为:L n(q m),这里“L”表示正交表,“n”表总共要做的试验次数,“q”表每个因素都有q个水平,“m”表该表有4列,最多可安排m个因素。
常用的二水平正交表为L4(23),L8(27),L16(215),L32(231);三水平正交表有L9(34),L27(313);四水平正交表L16(45)及五水平正交表L25(56)等。