均匀试验设计的方法与应用..
- 格式:ppt
- 大小:263.00 KB
- 文档页数:35
均匀试验设计唐启义浙江大学农业与生物技术学院均匀设计是中国统计学家方开泰教授和中科院院士王元首创,是处理多因素多水平试验设计的首选方法,可用较少的试验次数,完成复杂的科研课题和新产品的研究和开发。
均匀设计将试验点在高维空间内充分均匀分散,使数据具有更好的代表性,为揭示规律创造必要条件。
变量和水平数少于4时,试验设计用户易于选择,适用的方法较多,如正交试验设计、回归正交试验设计、旋转设计、D-最优设计等,试验次数通常是十几个,用户能够接受。
但当描述复杂自然现象和探讨复杂的规律,实验因素和水平在5个以上时,用上述方法试验次数会剧增,使得用户难于接受,用户只好简化条件或是取消试验考察。
均匀设计的最大特点是,试验次数可以等于最大水平数,而不是实验因子数平方的关系,试验次数仅与需要考察的x个数有关。
但一般来说,试验次数选为实验因子个数的3倍左右为宜,有利于建模和优化。
目前,对于一般等水平均匀设计问题,方开泰的有关均匀设计的几部著作,特别是为均匀设计开辟的网页.hk/UniformDesign可以得到大量的均匀设计表格。
在该网页上,其均匀设计表是以中心化偏差作为均匀性度量指标,且精度较高,一般应用,如处理数量不大时可以使用该表。
当各个因素的水平不等时,一般是利用数量有限的混合水平均匀设计表,如方开泰教授的专著“均匀设计与均匀设计表”(科学出版社1994年出版)一书附录二;或采用拟水平方法将一般的均匀设计表变换为各个因素水平数不等的混合水平表。
这种利用现成的混合水平均匀设计表进行试验,很多情况下都需要我们的设计方案“削足适履”,以符合表格的要求;而利用拟水平法来构造混合水平的均匀设计表,当因素比较多时,如何构造使得生成的混合水平均匀设计表的偏差更小,即更均匀又很难解决。
在DPS数据处理系统中,作者提出了一种新的定向优化算法,初步解决了一般均匀设计表和混合水平均匀设计表的构造问题。
运用该方法可以求得设计矩阵优良性能较好,偏差也比较小的均匀试验设计方案。
均匀试验设计的方法与应用均匀试验设计(Uniform Design)是一种用于优化逼近目标函数的实验设计方法。
它通过在设计空间内均匀分布的采样点,对目标函数进行多次试验,并根据试验结果进行优化,以找到最佳的参数组合。
均匀试验设计的方法与应用在各个领域都有广泛的应用,包括工程、经济、环境等。
均匀试验设计的基本原理是,通过在设计空间内均匀分布的采样点来对参数进行采样。
采样点的个数越多,分布越均匀,得到的结果就越接近于真实情况。
所以均匀试验设计的关键就是如何选择合适的采样点。
在选择采样点时,可以使用拉丁超立方设计(Latin Hypercube Design)、边界均匀度优化设计(Boundary Uniformity Optimization Design)等方法,以保证采样点的均匀分布。
均匀试验设计的应用非常广泛。
首先,它可以用于工程领域的优化设计。
例如,在汽车工程中,可以通过均匀试验设计来确定汽车的参数配置,以达到最佳的性能和经济性。
其次,均匀试验设计可以用于经济领域的决策分析。
例如,在投资决策中,可以通过均匀试验设计来优化投资组合,以实现最大的收益和最小的风险。
再者,均匀试验设计还可以应用于环境科学领域的模拟分析。
例如,在气候模拟中,可以通过均匀试验设计来确定模拟参数的范围,以预测未来的气候变化。
均匀试验设计方法的优点是可以减少实验次数,提高实验效率。
在传统的试验设计中,往往需要对每个参数进行单独的试验,而均匀试验设计可以通过均匀分布的采样点来同时对多个参数进行试验,从而减少实验次数。
此外,均匀试验设计还可以降低试验结果的方差,提高试验结果的准确性。
在均匀试验设计中,采样点的分布越均匀,试验结果的方差就越小,所以均匀试验设计可以提高试验结果的稳定性和可靠性。
均匀试验设计的方法与应用需要注意的问题包括:首先,选择合适的设计空间。
在进行均匀试验设计时,需要选择合适的设计空间,以包含所有可能的参数取值。
均匀试验设计的原理及使用方法均匀试验设计(Uniform design)是一种寻求试验样本的最优分布,以保证观测数据具有较高的效果评价准则的设计方法。
其原理是通过确定试验点的位置,使得参数的估计结果更加准确,并且使得试验结果对可能存在的误差具有较高的容忍能力。
1.确定试验因素和水平:首先确定试验中的自变量(也称为因素)和它们的水平。
自变量是参与试验的控制变量,水平是每个自变量可能取值的范围。
2.确定试验点数目和试验空间:确定试验所需的样本数目和试验空间的范围。
样本数目是试验中所需的试验点的数量,试验空间是试验点的取值范围。
根据试验目的和可用资源,确定试验点数目和试验空间的大小。
3.建立均匀分布设计:使用数学方法,根据试验点数目和试验空间的大小,建立均匀分布设计。
均匀分布设计的目标是使得试验点在整个试验空间内的分布均匀。
4.进行试验数据的收集:按照均匀分布设计,在试验空间内选择试验点,并进行试验数据的收集。
试验数据可以是连续的数值数据、离散的分类数据或者有序的数据。
5.进行试验数据的分析:使用统计方法对试验数据进行分析,计算试验因素与响应变量之间的关系。
可以使用回归分析、方差分析等方法,对试验结果进行解释和理解。
使用均匀试验设计的优点包括以下几个方面:1.减少试验样本数量:均匀试验设计可以通过有效分布试验点,减少所需的试验样本数目。
这样可以节省实验资源和时间成本。
2.提高试验效果评价准则:均匀试验设计可以使得试验结果对误差具有较高的容忍能力,提高试验效果评价准则的可靠性和准确性。
这样可以更好地评估和优化试验结果。
3.保证试验的可比性:均匀试验设计可以保证试验点在整个试验空间内的分布均匀,从而使得试验样本具有较高的代表性和可比性。
这样可以更好地进行跨试验的对比和推广。
总之,均匀试验设计是一种优化试验样本分布的方法,可以提高试验效果评价准则的可靠性和准确性,减少试验样本数量,保证试验结果的可比性。
在实际应用中,根据试验目的和可用资源情况,可以选择适当的均匀试验设计,并按照上述步骤进行设计和分析。
文章编号:1002—1566(2004)03—0069—12均匀试验设计的理论、方法和应用———历史回顾方开泰(香港浸会大学,数学系)摘要:本文回顾计算机仿真试验设计的主要两种方法:拉丁超立体抽样和均匀设计,在过去二十五年的发展,特别是均匀设计的发展,包括均匀设计的优良性研究、新的均匀性测度、均匀设计表的构造,以及均匀性在因子设计中的应用。
关键词:均匀设计;拉丁超立体抽样;因子设计;正交性;均匀性中图分类号:O212文献标识码:A一、历史回顾廿世纪七十年代,在系统工程、高科技发展的推动下,计算机仿真(仿真)试验(computer experi-ments)的需求十分强烈,迫切要求高质量的试验设计。
于是计算机仿真试验设计(Design of comput-er experimtnts)在那时成为一个最有挑战的课题。
在北美洲,三位学者(McKay,M.D.,Beckman,R. J.and Conover,W.J.(1979))在“Technometrics”提出了“拉丁超立方体抽样”(Latin Hypercube Sam-pling)(简称LHS)的方法,并立即得到广泛的应用,一批学者对其理论和方法作了系统地研究和发展,形成了一个独立的分枝。
差不多在同一时间,在中国,方开泰和王元院士提出了“均匀设计”(Unifor m Design)(简称UD)。
文章最初在1978年发表在中国科学院数学研究所的内部通讯,后来中、英文稿分别发表在《应用数学学报》和《科学通报》。
那时,中国正处于文化大革命刚结束,百废待兴的时代,学术上与世界几乎隔绝。
有趣的是,LHS和UD有异曲同工之处。
表现于:(A)两种方法均将试验点均匀地散布于输入参数空间,故在文献中广泛使用术语“充满空间的设计”(space filling design)LHS给出的试验点带有随机性,故称为抽样;而UD是通过均匀设计表来安排试验,不带有随机性。
均匀试验设计均匀设计均匀设计(uniform design)是中国数学家方开泰和王元于1978年首先提出来的,它是一种只考虑试验点在试验范围内均匀散布的一种试验设计方法。
与正交试验设计类似、均匀设计也是通过一套精心设计的均匀表来安排试验的。
由于均匀设计只考虑试验点的“均匀散布”,而不考虑“整齐可比”,因而可以大大减少试验次数,这是它与正交设计的最大不同之处。
例如,在因素数为5,各因素水平数为31的试验中,若采用正交设计来安排试验,则至少要作312 =961次试验,这将令人望而生畏,难以实施,但是若采用均匀设计,则只需作31次试验。
可见,均匀设计在试验因素变化范围较大,需要取较多水平时,可以极大地减少试验次数。
经过20多年的发展和推广,均匀设计法已广泛应用于化工、医药、生物、食品、军事工程、电子、社会经济等诸多领域,并取得了显著的经济和社会效益。
1. 均匀设计表1.1 等水平均匀设计表均匀设计表,简称均匀表,是均匀设计的基础,与正交表类似,每一个均匀设计表都有一个代号,等水平均匀设计表可用U n ( r l)或U n* (r l)表示,其中,U为均匀表代号;n为均匀表横行数(需要做的试验次数);r为因素水平数,与n相等;l为均匀表纵列数。
代号U右上角加“*”和不加“*”代表两种不同的均匀设计表,通常加“*”的均匀设计表有更好的均匀性,应优先选用。
表1-1、表1-3分别为均匀表U7 (74)与U7* (74),可以看出,U7 ( 74)和U7*(74)都有7行4列,每个因素都有7个水平,但在选用时应首选U7*(74 )。
表1-1 U7 (74)表1-2 U7 (74)的使用表表1-3 U7* (74)表1-4 U7* (74)的使用表每个均匀设计表都附有一个使用表,根据使用表可将因素安排在适当的列中。
例如,表1-2是U7 ( 74)的使用表,由该表可知,两个因素时,应选用1,3两列来安排试验;当有三个因素时,应选用1,2,3三列,……。
均匀设计方法简介在工农业生产和科学研究中,常须做试验,以获得予期目的:改进生产工艺,提高产品收率或质量,合成出某化合物等等。
怎样做试验,是大有学问的。
本世纪30年代,费歇(R.A.Fisher)在试验设计和统计分析方面做了一系列先驱工作,使试验设计成为统计科学的一个分支。
今天,试验设计理论更完善,试验设计应用更广泛。
本节着重介绍均匀设计方法。
一、试验设计对于一项试验,例如用微波加热法通过离子交换制备Cu13X分子筛。
我们可以13X分子筛、CuCl2为原料来制备,为寻找最佳条件,应如何设计这个试验呢?若我们已确定了微波加热功率(A)、交换时间(B)、交换液摩尔浓度(C)为三个影响因素,每个因素取五个不同值(即水平:A1,…,A5,B1,…,B5,C1,…,C5)。
有两种方法最易想到:1.全面试验:将每个因素的不同水平组合做同样数目的试验。
对上述示例,不计重复试验,共需做5×5×5=125次试验。
2.多次单因素试验:依次考查各因素(考查某因素时,其它因素固定)取最佳值。
容易知道,对上示例(不计重复试验)共需做3×5=15次试验。
该法在工程和科学试验中常被人们采用,可当考查的因素间有交互作用时,该法所得结论一般不真。
3.正交设计法:利用正交表来安排试验。
本世纪60年代,日本统计学家田口玄一将试验设计中应用最广的正交设计表格化,使正交试验设计得到更广泛的使用。
70年代以来,我国许多统计学家深入工厂、科研单位,与广大工程技术人员、工人一起,广泛开展正交设计的研究、应用,取得了大批成果。
该法是目前最流行,效果相当好的方法。
正交表记为:L n(q m),这里“L”表示正交表,“n”表总共要做的试验次数,“q”表每个因素都有q个水平,“m”表该表有4列,最多可安排m个因素。
常用的二水平正交表为L4(23),L8(27),L16(215),L32(231);三水平正交表有L9(34),L27(313);四水平正交表L16(45)及五水平正交表L25(56)等。
均匀实验设计均匀实验设计(Latin Square Design)一、引言均匀实验设计(Latin Square Design)是一种常用的实验设计方法,主要用于解决多个处理因素对试验结果的影响问题。
该设计方法的特点是能够控制处理因素间的相互影响,使其对试验结果的影响尽可能均匀分布,从而提高实验的可靠性和可重复性。
二、基本原理均匀实验设计基于拉丁方阵的思想,将试验因素的各个水平组合在一个方阵中,并通过对角线的平移来实现处理因素间的均匀分布。
这种设计方法可以保证每个处理因素在每个试验单元中只出现一次,并且每个处理因素与其他处理因素的组合次数相同。
三、设计步骤1. 确定处理因素:首先需要确定实验中所涉及的处理因素及其各个水平。
2. 构建拉丁方阵:根据处理因素的水平数目,构建一个满足要求的拉丁方阵。
拉丁方阵的特点是每行、每列中的元素各不相同。
3. 安排试验:将拉丁方阵中的每一行或每一列作为一个试验单元,将处理因素水平与试验单元相对应。
4. 执行实验:按照设计好的试验方案执行实验,记录数据并进行分析。
四、优点与应用均匀实验设计具有以下优点:1. 控制处理因素间的相互影响:通过拉丁方阵的设计,可以尽量均匀地分配处理因素的水平组合,从而减少处理因素间的相互影响。
2. 提高实验的可靠性和可重复性:均匀实验设计能够有效地降低误差来源,提高实验结果的可靠性和可重复性。
3. 节省试验资源:均匀实验设计能够充分利用有限的试验资源,减少试验次数,提高试验效率。
均匀实验设计广泛应用于各个领域,特别是在农业、医学、工程和社会科学等实验研究中。
例如,在农业领域中,均匀实验设计可用于研究不同施肥水平对作物产量的影响;在医学领域中,可以使用均匀实验设计研究不同药物剂量对疾病治疗效果的影响。
五、实例分析以农业领域为例,假设我们要研究不同施肥水平对小麦产量的影响。
首先确定处理因素为施肥水平,设定三个水平:低水平、中水平和高水平。
然后构建一个3×3的拉丁方阵如下:1 2 32 3 13 1 2将拉丁方阵的每一行或每一列作为一个试验单元,将处理因素水平与试验单元相对应,得到以下试验方案:试验单元1:低水平、中水平、高水平试验单元2:中水平、高水平、低水平试验单元3:高水平、低水平、中水平根据该试验方案,进行实验并记录数据。