热水供暖系统中循环水泵的选择和使用
- 格式:doc
- 大小:54.00 KB
- 文档页数:22
热水循环泵正确使用方法热水循环泵是一种用于加热系统中的设备,它能够将热水从热源处循环到需要加热的地方,起到了非常重要的作用。
正确使用热水循环泵不仅可以提高加热系统的效率,还可以延长设备的使用寿命。
下面我们就来了解一下热水循环泵的正确使用方法。
首先,正确安装热水循环泵是非常重要的。
在安装时,需要确保泵的进出口方向正确,以免造成逆流或者无法正常工作的情况。
另外,还需要注意泵的固定和支撑,确保泵的安装牢固可靠。
其次,正确设置热水循环泵的工作参数也是至关重要的。
根据实际情况和需求,合理设置泵的流量、扬程等参数,以确保泵能够正常运行并达到预期的加热效果。
此外,还需要根据实际情况选择合适的泵的转速,以达到最佳的工作效果。
在日常使用中,需要定期检查和维护热水循环泵。
定期检查泵的运行情况,包括泵的噪音、温度、振动等,及时发现并解决问题。
同时,定期对泵进行润滑和清洗,确保泵的内部零部件能够正常运转,延长泵的使用寿命。
另外,需要注意热水循环泵的节能使用。
在实际加热系统中,可以通过合理设置温度、流量等参数,以减少能耗,提高能源利用效率。
此外,还可以考虑使用一些节能设备,如变频器等,以进一步降低能耗,达到节能减排的目的。
最后,需要注意热水循环泵的安全使用。
在使用过程中,要严格按照操作规程进行操作,避免因操作不当而造成事故。
另外,还需要定期对泵进行安全检查,确保泵的安全运行。
总之,热水循环泵的正确使用方法对于加热系统的运行效率和设备的使用寿命至关重要。
通过正确安装、合理设置参数、定期检查维护、节能使用和安全使用,可以确保热水循环泵能够正常运行,并发挥最大的作用。
希望大家能够严格按照正确的使用方法来操作热水循环泵,确保加热系统的正常运行和设备的安全使用。
热水采暖系统循环水泵选择分析及应用摘要:热水采暖系统循环水泵的供热方式是新时期社会发展背景下的一种新型技术手段,目的是为了在提高供热效果的基础上降低能源消耗,这符合时代的发展需求。
基本此,本文主要从热水采暖系统循环水泵的科学选择问题入手,从容量设置以及减小水流阻力两个方面的设计工作展开分析,并结合实际工作情况分析影响供暖效果的关键因素,以拟定科学合理的解决方案,推动供暖工作的顺利开展。
关键词:热水采暖系统;循环水泵;水泵选择;应用方案在供暖工作当中为了达到节能环保的目的,目前大多数城市的供热公司都在积极研究利用循环水泵进行集中供热供暖的可行方式,这就涉及到对水泵的选择问题。
基于城市基础设施建设规模的不断扩大,想要提高循环水泵供热工作的应用效果,还必须要从水泵质量的管理及循环系统设计方案的优化等方面展开分析和研究。
一、热水采暖系统循环水泵的科学设计要点在为热水采暖系统选择循环水泵时,主要应当关注于水泵容量的选择及水流阻力的控制问题。
1、容量方面循环水泵的流量是按采暖热负荷、温降等参数计算确定的。
在实际设计水泵的总容量时,需要充分结合城市的基本供暖需求展开分析,确保设计工作的科学性和合理性。
通常来说,循环水泵的总流量应为系统的总设计流量;扬程为系统的总压力损失(可富裕5-10%)。
集中供暖的目的是为了避免各个用户家中出现温度差异过大的情况,不过由于热水采暖系统使用的是管道运输模式,因此在温度传送环节中还存在一定的热量损耗问题。
基于此,目前许多供热公司都开始积极采用分阶段改变流量质调节的运行模式,具体操作方法是:安装一台 100%流量和两台50%流量的循环水泵,然后根据当地每日自然温度的实际情况智能调节水泵的流量及流速。
实践表明,这种方法能够有效减少热能的浪费问题,还能节省水泵安装环节的经济成本,进而推动供热公司各项工作的稳步发展。
2、阻力方面热水采暖系统运行环节中,水流在管道内的流动会受到一定的阻力,为了科学降低阻力对供暖效果带来的不良影响,还需要结合实际情况对阻力进行计算,相关计算公式为:ΔP=H*Gs²/Ge²=H(Δte/Δts)²一般来说,影响水流阻力大小的主要因素就是实际的热水采暖系统温降与设计的情况不相符,这与水泵容量、水泵材质以及系统的造型设计等方面都有一定的关系,还需要工作人员具备专业的设计能力,能够不断结合具体工作经验研究优化工作流程,提高采暖系统设计效果和使用效率的可行方案。
循环水泵的选择热水系统一般由热水锅炉、循环水泵、管路等组成。
循环水泵是驱动热水在热水供热系统中循环流动的机械设备,安装在系统回水和热水锅炉之间,将低温回水加压输送到热水锅炉,经热水锅炉加热后,输送至热力管网。
而在实际工程中,由于循环水泵更换、改造及初始选型等原因,循环水泵容量偏大的现象较为普遍,如果循环水泵的扬程偏大由于管线和设备的压力限制,导致出口阀门开度小,致使流量偏低,无法达到预期的供热效果,并且流量和扬程偏大,会造成电能的严重浪费。
循环水泵的选择循环水泵是供暖系统重要的组成部分,运行中的问题也比较多。
因此,正确选择、合理使用和管理,确保正常供暖和提高经济效益是十分重要的。
选择的原则是:设备在系统中能够安全、高效、经济地运行。
选择的内容主要是确定它的型式、台数、规格、转速以及与之配套的电动机功率。
1.1循环水系统流程德州站循环水系统是由水塔供给的生水经过钠离子罐、碱罐进行处理之后进入软化水罐,再由循环水泵加压进入锅炉,经过锅炉加热之后,进入热力管网。
流程图如图1 所示:如图1 循环水系统流程1.2 循环水泵流量的确定德州站现配备锅炉为WNS2.1-0.7/95/70-Y ,额定出力为2.1MW,由于1瓦特=1焦耳/秒,则 (1)对只有单一供暖热负荷,或采用集中质调节的具有多种热负荷的并联闭式热水供热系统,网路的总最大设计流量,亦即网路循环水泵的流量,可按下式( 2)计算:t/h ............................................. ( 2)其中式( 2)中各参数:—考虑热网热损失的系数,取1.05〜1.10 ;-供热系统总热负荷,W;—热水的平均比热,4.2J/ (kg「C);—供热系统出水温度;—供热系统回水温度;—锅炉出口母管和循环水泵进口管之间旁通管的循环流量,t/h ;不设旁通管时,=0。
式(2)表示供回水温差,以德州站额定出力为2.1MW勺热水锅炉为例,出水水温设计为95摄氏度,回水水温设计为70摄氏度,用( 2)式进行计算循环水泵的流量为: (3)由 (4)式(4)—水的比重;查的70摄氏度水的比重为978。
热水供暖系统循环水泵的选择与节能随着现代科技的不断发展和社会的进步,新型的热水供暖系统应运而生。
作为该系统中的重要组成部分,循环水泵选择与节能已经成为了一个备受关注的问题。
因此,本文将针对这个问题进行一定的探讨和分析,希翼能够对日常生活和工作中热水供暖系统的选择和运营提供一些有益的参考。
一、循环水泵的选择在热水供暖系统中,循环水泵起到的作用是将水从一处输送至另一处,保证系统的正常运转。
如此重要的设备,选用时自然需要慎重考虑。
为此,下面将从以下几个方面讨论循环水泵的选择:1.流量流量是一个很关键的因素,决定了循环水泵能够输送的水量。
这个因素取决于使用者的具体需求,通常使用者需要按照建筑的难易程度和使用的人数等情况进行评估,然后再确定需要的流量。
在选择循环水泵时,流量应该根据需求进行匹配,避免流量不足或过大,从而影响整个系统的运行。
2.扬程扬程是指循环水泵要克服多大的阻力以使水流动。
使用者应该先计算出该系统中饮水机、暖气设备和净水设备等所需要的水压,然后再根据这个结果来选定循环水泵的扬程。
如果扬程太高,不仅会浪费能源,而且也会增加运营和维护成本,因此,使用者需要尽可能选择扬程适中的循环水泵。
3.耗能与维护成本耗能和维护成本是使用者选择循环水泵时需要考虑的一些关键因素,更节能更具有可持续性的循环水泵不仅能够减少运营成本,而且能够为环境制造更少的污染。
因此,在选择循环水泵时,除了考虑其他方面的因素以外,也要注意其耗能和维护成本是否合理,找到最佳的平衡点。
二、节能与循环水泵的运行为了保证热水供暖系统能够顺畅运转并达到热效率,循环水泵的节能运行也很重要。
因此,在日常生活和工作中,使用者需要注意以下几个方面:1.定期清洗长时间未进行清洗的循环水泵会增加摩擦力,从而导致更大的能源浪费。
因此,使用者应该定期清洗循环水泵,去除其内部的沉积物和污垢,保证其正常运转。
2.优化系统设计循环水泵的运行时间,也是影响热水供暖系统的能耗与效率的一个因素。
一次网循环泵的选取与使用随着国产经济的发展,对节能减排、环境保护、民生问题越来越重视,投入的人力物力也越来越多,因城镇居民的供暖同时牵涉了以上几个问题,从而也成了重中之重。
而对于供暖系统中主要设备的水泵,也提出了更高的要求。
1、集中供热系统的介绍中国目前秦岭淮河以北的城镇在冬天均实行集中供暖,以度过寒冷的冬天。
供暖面积约占领土面积的2/3。
创建一始,大部城镇采用区域型小锅炉房,这种情况使锅炉房小而分散,利用率不高,热效率大多低于60%,造成许多北方城市一到冬天雾霾天非常多,给居民生活造成很大的困扰。
随着我国经济的发展,做为城市基础设施的热力网供热系统发展很快,系统图见以下。
这种供热系统是取缔多个小型锅炉房,将供热热源集中一处,或采用热电联产,这种情况不仅有利于节约能源、集中调配热力,也利于治理环境。
目前全国建有集中供热设施的城市已超过40%,而且还有逐年增加的趋势。
一次网是指从热供应站出来的热水所走的总的管道网络,通常是只到热交换站,不直接对用户供暖。
热水网设计最高温度已经达到150℃左右,压力达到2.5MPa;二次网是指地方热交换站与一次网换热后,直接与热用户连接的热水管道。
热水网最高温度达到90℃左右,压力达到1.6MPa一次网循环水泵在供暖系统中所占比例,无论是容量还是设备数量都是很大的,运行中的问题也比较多,一次网的特点造成对热网循环泵的要求非常特殊,因此,正确选择、合理使用和管理,确保正常供暖和提高经济效益是十分重要的。
2 一次网循环泵结构特点2.1水泵结构为中心支撑,这种结构可以减少因热胀冷缩引起变形造成的轴对中改变,使水泵运行更加平衡。
2.2泵壳材质为高强度铸钢。
2.3机封冷却方式建议为plan232.4水泵轴承采用稀油润滑。
3 一次网循环泵选择的原则所选的循环泵应满足系统中所需的最大流量和扬程,同时要使循环水泵的最佳工况点,尽可能接近系统实际的工作点,且能长期在高效区运行,以提高循环水泵长期运行的经济性。
热水供暖系统循环水泵的选择与循环水泵变频节能分析了热水供暖系统循环水泵容量偏大、浪费电能的问题。
指出正确选择循环水泵的容量和循环泵变频节能,是供暖系统循环水泵节电的重要措施。
标签热水供暖;循环水泵;选择;变频节能热水供暖系统中设置的循环水泵是向用户输送热媒的主要设备,也是锅炉房中耗电量较大的设备,其用电量约占锅炉房总用电量的40%~70%。
实际工程中,循环水泵容量偏大的现象较为普遍,有的甚至达到原参数的2倍以上,如果循环水泵的流量和扬程偏大,会造成电能的严重浪费。
一、循环水泵偏大的原因造成循环水泵容量偏大的原因主要有以下几点:一是有的设计人员没有认真计算热负荷和系统阻力,尤其是外网和锅炉房的阻力,采用估算方法,为保险起见,估算值过大,使选的水泵流量和扬程加大很多;二是有的系统运行后没有进行认真的初调节,一旦系统出现水力失调,有人认为是水泵容量不够,而盲目换大泵;三是有个别设计者对循环水泵扬程的概念不清;对承压锅炉采暖系统,定压点设在循环水泵吸入侧,循环水泵进出口均承受相同的静水压力,因此,其扬程不需要考虑用户系统的高度,只要克服管网系统的阻力即可。
但有的设计者却将系统高度计入扬程中,这就使循环水泵扬程大大增加;四是选水泵时,因水泵规格系列所限,很难选到流量,扬程完全一致的水泵,一般都选大一号的,这样层层加码,致使容量偏大,甚至达到2倍以上。
据调查,现有运行中的锅炉,其温差多数在10~15℃,个别温差仅为8℃,也就证明了水泵容量偏大。
水泵容量偏大,一方面破坏了原设计的水力工况,另一方面又增加了水泵的耗电量。
二、循环水泵容量的选择1、循环水泵容量的确定循环水泵的流量是按采暖室外计算温度下的用户耗热量之和确定的,而在整个采暖期内室外气温达到采暖室外计算温度的时间很短,使大部分时间水泵流量偏大。
选择水泵之前首先应确定热网系统的调节方式,然后根据调节方式确定循环水泵的流量。
国家有关标准中较明确规定:对于采用集中质调节的供热系统,循环水泵的总流量应不低于系统的总设计流量;扬程不应小于系统的总压力损失,即循环泵的流量和扬程不必另加富裕量。
集中供热系统循环泵的选型方案供热锅炉的循环水泵是供热系统的心脏,它担负着驱动热媒传递热能的功能,其选用的设备匹配是否合理,直接影响着输送效果和能耗的高低。
为实现供热系统节能运行,降低供热成本,对循环水泵如何选型、如何配置进行分析、探讨和改进。
1. 传统循环水泵的选配原则及存在问题传统循环水泵的选配通常是几台泵并联成一组泵,同时满足锅炉房、热网和热用户流量和扬程的需求,可称之为单级循环泵系统。
其流量的确定是按热负荷计算的最大流量的1.05倍考虑;扬程是按在确定流量下热源、热网和最不利环路的压力损失之和再加2—3mH2O的富裕压头选用;水泵台数视供热规模确定,一般选用3台,运行2台,备用1台。
按以上原则设计和配置的循环水泵存在以下问题:(1)由于按热负荷(供热面积)计算的最大循环水量与按锅炉额定流量计算的总循环水量不一致,一般是按热负荷计算的最大循环水量远远高于按锅炉额定流量计算的总循环水量,如不采取措施,使按热负荷计算的最大循环水量全部流经锅炉,会使锅炉超额定流量运行。
由于锅炉的水阻力与流量的平方成正比,将会大大提高锅炉房的压力损失;将高温水锅炉按低温水锅炉运行,压力损失更大。
有的锅炉房压力损失可达0.3MPa以上,不得不提高水泵的扬程,增加水泵功率,造成电能的严重浪费。
有经验的设计者或管理者一般采用安装与锅炉并联的旁通管,使总循环水量分流,从而保证流经锅炉的循环水为额定流量。
采取这种措施虽然能降低一些水泵的能耗,但未根本解决问题。
(2)间供系统从节能考虑,其供热锅炉提供的一次水应为可变流量,进行质量并调,按传统原则设计的循环水泵系统,由于要保证流经锅炉的循环水量不低于额定流量,很难实现变流量调节。
建筑物采暖系统采用分户热计量方式,热用户有能力主动调节时,显然循环水泵也应是变流量的,基于上述的同样原因,传统的循环水泵系统设计思想也是不能满足用户主动调节要求的。
(3)一些锅炉房的循环水泵系统,由于设计理念的原因,使锅炉超额定流量运行,不仅大大增加了水阻力,造成电能浪费,还会由于锅炉内部循环水流速过快,水冷壁温度低,造成炉膛温度也低,锅炉燃烧状况不佳,效率低。
热水循环泵正确使用方法热水循环泵是一种常见的供暖设备,它能够将热水从锅炉输送到各个供暖系统,确保整个房间的温度均衡稳定。
不过,很多人在使用热水循环泵时并不了解正确的方法,导致设备效率低下,甚至出现故障。
因此,本文将为大家介绍热水循环泵的正确使用方法,帮助大家更好地使用该设备。
一、了解热水循环泵的工作原理在使用热水循环泵之前,我们需要先了解该设备的工作原理。
热水循环泵主要由电机和叶轮组成,电机通过驱动叶轮旋转,从而将水从锅炉中吸入,再将水压送到供暖系统中。
因此,热水循环泵的运行需要依靠电源供电,同时需要保持水路畅通,以确保水能够正常流通。
二、正确安装热水循环泵正确安装热水循环泵是使用该设备的前提。
在安装热水循环泵时,我们需要注意以下几点:1.选择合适的位置:热水循环泵应该安装在通风良好,干燥且温度适宜的位置,避免受潮和过热。
2.保持水路畅通:在安装热水循环泵时,我们需要保证水路畅通,避免出现管道堵塞或水泵进口处受阻的情况。
3.正确连接管道:在连接管道时,我们需要注意管道的连接方向和密封性,避免出现漏水或管道反向流动的情况。
三、保持热水循环泵的良好运行状态为了保持热水循环泵的良好运行状态,我们需要注意以下几点:1.定期清洗:热水循环泵在运行一段时间后,会出现水垢和污垢的积累,影响泵的效率和寿命。
因此,我们需要定期清洗热水循环泵,保持设备的清洁。
2.定期检查:定期检查热水循环泵的电线、管道和密封件,确保设备的电线接触良好,管道无渗漏,密封件无损坏。
3.注意维护:如果热水循环泵出现故障,我们需要及时维护设备,避免出现更严重的问题。
如果自己无法维护,可以请专业人员进行维修。
四、正确使用热水循环泵在使用热水循环泵时,我们需要注意以下几点:1.合理设置温度:热水循环泵的工作温度应该在适宜范围内,避免过高或过低的温度对设备造成损害。
2.适当调节水流量:热水循环泵的水流量应该适当,避免过大或过小的水流量对设备造成损害。
供热循环系统中的阻力分析及循环泵选择供热循环系统中的阻力分析及循环泵选择摘要:本文分析了供热系统中最不利环路中的各种阻力状况,并根据多年的工作实际提出了各种阻力的正常阻力范围,指出了在实际工作中,各种阻力元件阻力增大的原因、对供热系统的影响及解决的方法,并在此基础上提出了循环泵的选泵方法,具有比较强的实用性。
关键词:阻力分析,热源的阻力,除污器的阻力,用户系统阻力,水泵进出口的阻力,水泵的扬程,水泵的流量,怎样选泵供热循环系统的阻力主要来自两个方面,一是热水在输送管道中流动产生的阻力,叫做沿程阻力;二是由于各种水利元件和供热设备对水的流动产生的阻力,叫做局部阻力。
对于沿程阻力,根据规范中规定:最不利环路的比摩阻应在30-60Pa/m,其它环路的比摩阻应小于等于300 Pa/m,同时循环水的流速小于等于3m/s。
对于各种供热设备的局部阻力,不同的产品有不同的标准。
供热系统最不利环路中的局部阻力和沿程阻力的大小决定了选用循环水泵扬程的大小,循环水泵扬程的大小直接影响着水泵电耗的大小,因此,有必要对供热系统中,涉及最不利环路的各种阻力进行仔细的分析。
一、热力站的阻力供热系统的热力站有两种主要形式,一种是热水锅炉直接供暖的形式,另一种是换热器换热间接供暖的形式。
1、锅炉供热系统中使用的锅炉大多是热水锅炉,根据其额定发热量的大小分为7Mw、14 Mw、29 Mw、58 Mw等多种规格,根据其热媒参数可分为95/70°C、115/70°C、150/90°C等,其中95/70°C、115/70°C的两种参数的锅炉应用比较多。
锅炉在通过额定水量的情况下,锅炉的阻力应在40-80Kpa之间。
在供暖实际中,造成锅炉阻力增大的原因主要是锅炉通过的实际水量大于其额定的循环水量。
在锅炉的铭牌参数里,并没有提供额定循环水量的数据,具体到一台锅炉具体的循环水量是多少呢?可以通过下面的公式进行计算:G=860*Q/(tg-th)G:锅炉的额定循环水量,单位m3/hQ:锅炉的额定发热量,单位M w.tg-th:锅炉的额定进水温度与出水温度之差,单位°C。
热水供暖系统中循环水泵的选择和使用摘要:本文就循环水泵的选择原则、参数确定和选择中的几个问题进行分析,指出泵的特性与热网特性不相匹配的原因和解决的方法。
对并联泵的效果和管路联接方式进行了分析计算后,提出一些建设性意见和建议。
关键词:循环水泵并联管路联接1 前言由热源设备、热网和室内采暖系统组成的热水供暖系统是一个系统工程、一个整体,忽略任何一部分都会严重影响系统的供暖效果。
循环水泵是联接热源、热网和室内采暖系统的枢纽设备,通过它把温暖送给千家万户,所以,循环水泵的性能和参数的合理性,就显得格外重要。
因此合理选择和正确安装使用循环水泵,是取得较为满意的供暖效果的关键。
作者在近几年的实践中,遇到因循环水泵选择和使用不当而影响供暖效果的现象有以下几种:1循环水泵出口端的阀门不能百分之百打开,只能按电动机的允许额定电流控制阀门的开度,否则会引起电动机的实际运行电流超过其允许的额定电流而烧坏电动机。
2循环水泵的使用往往不是一台,而是二台、三台、多台并联使用,更有七台泵同时并联使用的先例,而且多台并联使用,有的是同型号、同性能,也有型号不同、性能也不相同。
1管道系统与泵的联接方式各异,不在同一位置、不在同一平面,造成系统不顺、阻力增加。
4循环水泵的出力达不到设计参数等。
在排除循环水泵因制造原因而达不到实际参数不可预见外,我们应根据供暖系统提供的参数,合理选择适用本系统的循环水泵的型号和参数,最大可能地满足系统要求。
2 循环水泵的选择2.1 选择的原则循环水泵在供暖系统中所占比例,无论是容量还是设备数量都是很大的,运行中的问题也比较多。
因此,正确选择、合理使用和管理,确保正常供暖和提高经济效益是十分重要的。
选择的原则是:设备在系统中能够安全、高效、经济地运行。
选择的内容主要是确定它的型式、台数、规格、转速以及与之配套的电动机功率。
选择时应具体考虑以下几个原则:1所选的循环泵应满足系统中所需的最大流量和扬程,同时要使循环水泵的最佳工况点,尽可能接近系统实际的工作点,且能长期在高效区运行,以提高循环水泵长期运行的经济性。
2力求选择结构简单、体积小、重量轻、效率相对比较高的循环水泵。
1力求运行时安全可靠、平稳、振动小、噪音低、抗汽蚀性能好。
4选择适用于流量变化大而扬程变化不大的水泵,即G—H特性曲线趋于平坦的水泵。
2.2 循环水泵的参数2.2.1 流量1根据设计热负荷计算流量;2根据室内采暖系统形式,在没有任何调节手段时,计算因重力或温降引起的垂直失调,并由此能克服或基本上克服这种垂直失调所需的最佳流量值;3根据室内采暖系统形式,在具备有调节功能手段且行为节能意识尚未具备时,可暂按2条确定流量。
待行为节能意识到位或基本上到位后,届时再采用调速泵的调节实现节能,为时不晚。
必须指出,最佳循环流量值的概念不是“大流量”,而是建立在目前的室内系统尚不具备调节手段的前提下,把垂直失调率控制在15%以内,层间室内温度的差值控制在0.2—0.4℃之间的最小流量值。
2.2.2 扬程1确定热源设备系统或换热设备系统的阻力:锅炉房系统应控制在15mH2O以内,换热设备系统应控制在10mH2O以内。
2热力管网的最不利环路阻力,主干线按经济比摩阻30.70pa/m进行计算,局部阻力可考虑1.15—1.20的附加。
3室内系统的阻力:一般为2—3 mH2O,水平单管串联在八组以上和共用立管分户控制系统应考虑3—5mH2O。
4系统富裕压力一般为3—5mH2O。
2.2.3 热水供暖系统的介质温度和工作压力,应根据设计计算而定,而不是锅炉的额定温度和压力。
为获得上述参数,新建供暖系统可通过计算求得,对扩建和改建的供暖系统,最好是对系统管路进行实际地测定,最后用理论计算校核,这样比较可靠。
2.3 选择方法利用“水泵性能表”选择水泵,目前市场水泵型号、品种繁多,适合于供暖系统的水泵有单级单吸或单级双吸立式管道泵、单级单吸卧式离心泵、直联单级单吸卧式离心泵、轴开式单级双吸卧式离心泵和单级双吸中开蜗壳式离心泵等。
选择步骤:1原有计算的流量和扬程可不再进行附加。
2在已定的水泵系列表中找某一型号的泵,查找的流量和扬程与“水泵性能表”列出的代表性(一般为中间一行)的流量和扬程一致,或者虽不一致,但在上下两行工作范围内。
如果有两种以上型号的泵都能满足要求,那就要权衡分析,通常应选其中比转速(ns)较高的、结构尺寸小、重量轻的泵。
ns的计算公式为:单级单吸离心泵:ns=单级双吸离心泵:ns=式中:n—转速,转/分;G—体积流量;m3/秒;H—扬程,米。
3具体选定了泵的型号后,要检查泵在该系统中运行时的工作情况,观察它的流量和扬程变化范围,是否处在高效区内工作。
如果运行工况点偏离高效区很远,则说明泵在该系统中工作经济性差,最好另行选择。
2.4 循环水泵特性与热网特性的匹配循环水泵的工作特性曲线能否与热网特性曲线相交在设计点上是很重要的,实践中,常出现热网特性曲线右移,表现在泵出口端的阀门不能全开,促使出口端的阀门长期处在节流状态,水流不断冲刷阀芯,一旦阀芯被冲刷变形,轻者失去关断功能,重者会失去节流作用,致使电机被过流烧坏,酿成事故。
再说,水泵出口端的阀门主要作用是关闭,不允许长期大关度节流使用。
造成这种状况的原因,有以下几方面:1凭经验过大的估算管网阻力,而不是进行系统的计算。
2新建管网按规划负荷计算阻力,而实际运行负荷差距很大。
3原有旧管网的管径比正常偏大,或利用二次网的管道改做一次管网使用。
4水泵配用电机功率偏小,市场经济后,厂家只按泵的最高效率点的流量值配用电机功率。
为达到目的,针对上述的情况,采用以下四种措施组织实施:1换水泵:重新选择循环水泵,满足热网所需流量和扬程的需要。
2换电动机,更换比原功率大一级的电动机,如原为90kw的电动机可更换为110kw或132kw的电动机。
3改变运行方式:如果原来系统配备的循环水泵是一开一备或二开一备,则应将备用泵开起来,就有可能满足系统要求。
4切削叶轮:切削叶轮直径后的水泵特性曲线与热网特性曲线应尽可能匹配。
叶轮允许切削量为15—20%,即(D1一D2)/D1=0.15—0.20,当叶轮外径切削到0.9D1范围内,泵的效率几乎不变,当切削叶轮直径至0.8—0.9D1时,泵的效率下降1%左右。
叶轮切削后泵的性能按下式计算:G2=G1·D2/D1H2=H1(D2/D1)2N2= N1(D2/D1)3式中:D1、D2—分别为叶轮切削前、后的叶轮直径(mm);G1、H1、N2—分别为叶轮直径切削前泵的流量(m3/h)、扬程(m)和功率(kw);G2、H2、N2—分别为叶轮直径切削后泵的流量(m3/h)、扬程(m)和功率(kw)。
上述四项措施,最可取的方法就是切削叶轮,促使水泵特性曲线与热网特性曲线相匹配。
这样可以既经济又快捷的满足供暖系统的要求。
2.5 几点建议2.5.1 设有二台(含二台)以上循环水泵的供暖系统可不设备用泵,目前市场上较好的水泵,其连续运行时数均在10000小时以上,且安全可靠。
2.5.2 直联单级单吸离心泵,适宜选用功率在200kw以下为好,流量在400m3/h以上时,应选用双涡室果壳水泵,因为它可以很好地消除叶轮在泵壳中工作的径向力,提高泵组的使用可靠性和寿命,同时可以降低因大流量而引起的噪声,该泵体积小、重量轻、效率高、不需设地脚螺栓,在同型号水泵中,推荐SB(R)—ZL型系列水泵。
2.5.3 流量在800m3/h以上时,宜选用轴开式或中开式单级双吸离心泵,特别是流量大于1200m3/h、扬程大于50 mH2O的泵,应选用单级双吸离心泵为好。
因为双吸泵在同比转速时的效率比单吸泵高出4—6%,并且运行平稳。
轴开式单级双吸离心泵,推荐SBR型系列水泵,中开式单级双吸离心泵和中开式大容量单级双吸离心泵,推荐SL0(w)系列和0mega系列水泵。
2.5.4 立式单级单吸管道泵和BA系列单级单吸泵,宜在功率45kw以下选用,由于泵的效率相对比较低,经济性差,宜慎选用。
2.5.5 选用机械密封水泵,因为机械密封比填料密封的密封性能好,泄漏量少,轴与轴套不易损坏。
机械密封的机械损失功率较小,约为填料密封的10—15%,所以近几年,机械密封被广泛使用在离心式水泵上。
2.5.6 循环水泵的扬程必须认真计算,决不是越大越好,扬程偏高不仅轴功率急剧增加,浪费电能,重要的是泵的特性曲线与热网特性曲线不能匹配,严重影响供暖效果,但这种现象在行业中时有发生,望引以为戒。
3 循环水泵的并联效果3.1 同性能(同型号)泵并联3.1.1 并联后的流量是单台泵额定流量的迭加:在供暖的特定密闭循环系统中,当网路特性曲线较平坦时(图1中2#线),即系统内管道实际阻力偏小,运行一台泵时泵出口端的阀门不能全部打开,二台泵并联后,泵出口端的阀门能全部打开,此时两台泵并联后的总流量可接近于两台泵额定流量的迭加数。
如果二台泵并联后,泵出口端的阀门还不能打开,须启动第三台泵并联后,泵出口端的阀门才能全部打开时,此时三台泵并联后的总流量可接近于三台泵额定流量的迭加数。
3.1.2 不适宜采用并联:在供暖的特定密闭循环系统中,当网路特性曲线较陡时(图1中3#线),说明系统内管道的实际阻力偏大,并联泵的效果特别差,此时应对管网阻力进行分析计算,找出阻力特别大的管段,采用泵串联的方式,可有效克服该管段的阻力,改善供暖效果。
3.1.3并联泵数量不宜超过三台:在供暖的特定密闭循环系统中,当网路特性曲线属正常时(图1中1#线),即管道比摩阻按规范30—70pa/m计算,单台泵运行时泵出口端的阀门能全部打开,此时如果启动第二台泵,二台泵并联后的总流量是单台泵额定流量的1.57倍,损失21.5%,如果继续启动第三台泵,那么三台泵并联后的总流量是单台泵额定流量的1.8倍,损失40%,若是再增加并联泵数量,其效果必然越来越差,因此,在正常的网路系统中,我们推荐单台泵运行,必要时最多不宜超过三台泵并联运行。
3.2 不同性能泵的并联两台不同性能泵的并联时,当网路特性曲线较平坦(图1中2#线)即系统内管道的实际阻力偏小,其总流量接近于两台泵额定流量之和;当网路特性曲线较陡时(图1中3#线),说明系统管道内实际阻力偏大,大小两台泵并联后,小容量的泵就没有效果。
同样,当网路特性曲线属正常时(图1中1#线),大小两台泵并联后,小容量泵的作用也是微不足道的。
4 循环水泵与系统的管路联接4.1 水的高流速引起泵出入口管段附件阻力骤增热网系统中主干线的水流速是遵照规范要求比摩阻在30—70Pa /m范围内进行计算的,那么水泵出入口管段的水流速应该如何控制,依据管段附件(阀门、弯头等)的阻力与水流速平方成正比的关系,即,R=ζ·V2/2g。