当前位置:文档之家› 气动比例、伺服控制

气动比例、伺服控制

气动比例、伺服控制
气动比例、伺服控制

气动比例、伺服控制

气动比例伺服控制系统是由电气信号处理部分和气动功率输出部分所组成的闭环控制系统。

气动比例、伺服控制系统与液压比例、伺服控制系统比较有如下特点:

1)能源产生和能量储存简单。

2)体积小、重量轻。

3)温度变化对气动比例、伺服机构的工作性能影响很小。

4)气动系统比较安全,不易发生火灾,并且不会造成环境污染。

5)由于气体的可压缩性,气动系统的响应速度低,在工作压力和负载大小相同时,液压系统的响应速度约为气动系统的50倍。同时,液压系统的刚度约为相当的气动系统的400倍。

6)由于气动系统没有泵控系统,只有阀控系统,阀控系统的效率较低。阀控液压系统和气动伺服系统的总效率分别为60%和30%左右。

7)由于气体的粘度很小,润滑性能不好。在同样加工精度情况下,气动部件的漏气和运动副之间的干摩擦相对较大,负载易出现爬行现象。

综合分析,气动控制系统适用于输出功率不大(气动控制系统的极限功率约为4kW),动态性能要求不高,工作环境比较恶劣的高温或低温,并对防火有较高要求的场合。

气动控制系统设计计算

气动控制系统的设计步骤

气动控制系统是由电气信号处理部分和气压功率输出部分所组成的闭环控制系统。通常,气动控制系统的设计步骤为:

1)明确气动控制系统的设计要求;

2)确定控制方案,拟定控制系统原理图;

3)确定气压控制系统动力元件参数,选择反馈元件;

4)计算控制系统的动态参数,设计校正装置并选择元件。

气动伺服机构举例

如图42.7-1所示,该伺服系统主要由波纹管、放大杠杆、控制滑阀、气缸及反馈机构等组成。供气压力为0.5MPa,信号压力为0.02~0.1MPa。

图42.7-1 波纹管滑阀式气动伺服系统结构原理图

当进入波纹管1的控制信号压力增加时,波纹管1的推力增加,推动杠杆3,带动控制滑阀15向上移动,从而使气缸下腔压力增加,上腔压力降低,活塞19向上移动,带动摇臂22输出角位移。这时连在活塞杆上的导槽21也带动正弦机构的摇臂6转动,连在同一转轴7上的凸轮8转向凸轮向径增加的方向。通过滚轮9把弧形杠杆10推向下转,将反馈弹簧12拉伸,反馈弹簧12对放大杠杆3的拉力随之增加,当反馈弹簧12对放大杠杆3的拉力与波纹管1的推力所产生的力矩相互平衡时,放大杠杆3连同控制滑阀15又回到了原来的平衡位置,整个系统又重新达到了平衡,而此时活塞已上升到相应的高度,气缸两腔所产生的压差与外负载相平衡。当控制信号压力降低时,动作相反。

(1)建立系统的数学模型

波纹管组件的传递函数

式中 T x(s)——波纹管输出力矩的拉氏变换;

P x(s)——波纹管输入压力信号的拉氏变换;K1=A1l1;

A1——波纹管受力面积;

l1——波纹管中线与支点A的距离。

放大杠杆力矩的传递函数

式中 T?(s)——反馈弹簧的反馈力矩的拉氏变换;

X(s)——控制滑阀阀芯位移的拉氏变换;

J——放大杠杆的转动惯量(kg·m2);

l3——控制滑阀与支点A的距离(m);

B K——控制滑阀的粘性阻尼系数(N·s/m);

C?——反馈弹簧刚度(N/m);

l2——反馈弹簧与支点A的距离(m);

——波纹管组件的增益;

——波纹管组件的固有频率;

——波纹管组件的阻尼比。

阀控气缸的传递函数

式中 K3——阀控气缸的开环增益;

ω3——阀控气缸的固有频率;

ζ3——阀控气缸的阻尼比。

反馈机构的传递函数

式中——反馈机构的放大系数;

l4——弹簧挂架与支点B的距离(m);

l5——弧形杠杆的有效长度(m)。

根据式(42.7-1~4)可画出系统的方块图,如图42.7-2所示。

(2)系统稳定性分析

根据方块图可以求得系统的闭环传递函数

而闭环特征方程各项系数的数值经过计算如下

用劳斯判据判定系统的稳定性,已知系统的特征方程式为

6.1188×10-9s5+2.1522×10-6s4+1.6912×10-4s3+0.0268s2+s+39.2914=0用上式各系数按劳斯判据计算得下表42.7-1

图42.7-2 系统方块图

上表中第一列各值都大于零,所以系统是稳定的,满足设计要求。

气动伺服元件

气动伺服阀的结构原理

气压伺服阀与液压伺服阀在原理上是基本相同的。图42.7-18所示是一种力反馈电-气伺服阀的结构图,其前置级为喷嘴挡板阀,功率级为滑阀式阀。

由于气压喷嘴挡板阀的固有频率低,气压伺服阀易产生振荡,因此有必要对气压伺服阀进行某些特性补偿。图42.7-18中,滑阀两端通过固定节流孔加设的阻尼气室,是为了对滑阀振动给予阻尼。在这种伺服阀中,除了用阻尼气室进行补偿以外,还在滑阀两端装入特性补偿用的弱弹簧,这种弹簧补偿的办法是相当有效的,气压伺服阀的频宽约为200Hz。

伺服定位气缸

该伺服气缸是一种新型气控定位气缸,它能把输入的气压信号成比例地转换为活塞杆机械位移,是以改变控制压力来操纵活塞杆行程的原理来达到定位的作用,具有任意位置停止,运动平稳,无冲击,重复定位精度高,操作简便等特点。广泛用于自动调节系统中,组成高自动化的定位机构。

图42.7-18 电-气伺服阀结构图

1—永久磁铁;2—导磁体;3—支撑弹簧;4—线圈;5—挡板;6—喷嘴;7—反馈弹簧杆;

8—阻尼气室;9—滤气器;10—固定节流孔;11—补偿弹簧(1)技术规格(见表42.7-13)

(2)外形尺寸(见表42.7-14)

典型电---气比例阀、伺服阀的工作原理

典型电---气比例阀、伺服阀的工作原理 电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。还取决于执行元件的负载大小。因此精确地控制气体流量往往是不必要的。单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。 电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。 一、滑阀式电---气方向比例阀 流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。图示即为这类阀的结构原理图。它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。控制放大器的主要作用是: 1)将位移传感器的输出信号进行放大; 2)比较指令信号Ue和位移反馈信号U f,得到两者的差植 3)U放大,转换为电流信号I输出。此外,为了改善比例阀的性能,控制放大器还含有对反馈信号Uf 和电压差PID调节等。 带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零位,此时气源口P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传感器的反馈电压Uf=0Uf,控制放大器将得到的 U=电磁铁产生的推力迫使阀芯回到零位。若指令Ue>0,则电压差U 增大,,比例电磁铁的输出推力也增大,推动阀芯右移。而阀芯的右移又引起反馈电压Uf的增大,直至Uf与指令电压Ue基本相等,阀芯达到力平衡。此时。

典型电-气比例阀,伺服阀的工作基本知识

典型电---气比例阀、伺服阀的工作原理电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。还取决于执行元件的负载大小。因此精确地控制气体流量往往是不必要的。单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。 电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。 一、滑阀式电---气方向比例阀 流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。图示即为这类阀的结构原理图。它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。控制放大器的主要作用是: 1)将位移传感器的输出信号进行放大; 2)比较指令信号Ue和位移反馈信号U f U; 3)I输出。此外,为了改善比例阀的性能,控制放大器还含有对反馈信号 Uf和电压差U的处理环节。比如状态反馈控制和PID调节等。

带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传 Uf=0。若阀芯受到某种干扰而偏离调定的零位时,位移传感器将输出一定的电压Uf,控制放大器将得到的U=-Uf放大后输出给电流比例电磁铁,电磁铁产生的推力迫使阀芯回到零位。若指令Ue>0,则电压差U增大,使控制放大器的输出电流增大,比例电磁铁的输出推力也增大,推动阀芯右移。而阀芯的右移又引起反馈电压Uf的增大,直至Uf与指令电压Ue基本相等,阀芯达到力平衡。此时。 Ue=Uf=KfX(Kf为位移传感器增益) 上式表明阀芯位移X与输入信号Ue成正比。若指令电压信号Ue<0,通过上式类似的反馈调节过程,使阀芯左移一定距离。 阀芯右移时,气源口P与A口连通,B口与排气口连通;阀芯左移时,P与B连通,A与排气口连通。节流口开口量随阀芯位移的增大而增大。上述的工作原理说明带位移反馈的方向比例阀节流口开口量与气流方向均受输入电压Ue的线性控制。 这类阀的优点是线性度好,滞回小,动态性能高。

电液比例与伺服控制期末考试大题

1、已知Ps=5MPa,负载力F=1000N,移动速度为v=s,活塞直径D=70mm,活塞杆直径d=50mm,流量系数Cd=,采用零开口滑阀,矩形全周开口,阀芯台肩直径dv=2mm,阀芯最大位移Xvm=1mm,油液密度为883kg/m3,试确定此阀控对称缸系统能否正常工作? 2、控制双出杆油缸的零开口四通滑阀,全周开口,阀芯直径d=12mm,供油压力Ps=4Mpa,动力粘度μ=×2-,径向间隙r=5×106-m,流量系数Cd=,油液密度ρ=900kg/m3。(1)计算阀的三个零位阀系数(其中压力增益K0p和压力流量系 数K0c按经验公式计算);(2)如果负载压力P L=,负载流量Q L=16L/min,计算三个阀系数。 3、阀控液压缸系统,液压缸面积Ap=150×104-m2,活塞行程L=,阀至液压缸的连接管道长度l=2m,管道截面积a=×104-m2,负载质量mt=2000kg,阀的流量—压力系数K c=×1012-m3/。试求液压固有频率ωh和液压阻尼比ζh。计算时取βe=700MPa,ρ=870kg/m3。 4、有一阀控液压马达系统,已知:液压马达的排量D m =6×106-m3/rad,马达容 积效率为95%,额定流量为q n =×104-m3/s,额定压力为p n =140×105Pa,高 低压腔总容积Vt=3×104-m3。拖动纯惯性负载,负载转动惯量J t =2,阀的流量增益Kq=4m2/s,流量―压力系数Kc=×1016-m3/,液压等效容积弹性模量βe=7×108Pa。试求出以阀芯位移为输入,液压马达转角为输出的传递函数。 5、有一四边阀控制的双作用缸,直接拖动负载做简谐运动。已知:供油压力 Ps=210×105Pa,负载质量m t =400Kg,负载位移规律为Xp=Xmsinωt,负载移动的最大振幅Xm=6×102-m,角频率ω=35rad/s,试根据最佳负载匹配求液压缸面积和四边阀的最大开口面积WXvm。计算时,取Cd=,ρ=870Kg/m3。6、阀控对称缸液压位置控制系统,运动部件最大质量m=35000Kg,行程H=,

比例伺服阀工作原理

典型电---气比例阀、伺服阀的工作原理 电---气比例阀和伺服阀按其功能可分为压力式和流量式两种。压力式比例/伺服阀将输给的电信号线性地转换为气体压力;流量式比例/伺服阀将输给的电信号转换为气体流量。由于气体的可压缩性,使气缸或气马达等执行元件的运动速度不仅取决于气体流量。还取决于执行元件的负载大小。因此精确地控制气体流量往往是不必要的。单纯的压力式或流量式比例/伺服阀应用不多,往往是压力和流量结合在一起应用更为广泛。 电---气比例阀和伺服阀主要由电---机械转换器和气动放大器组成。但随着近年来廉价的电子集成电路和各种检测器件的大量出现,在1电---气比例/伺服阀中越来越多地采用了电反馈方法,这也大大提高了比例/伺服阀的性能。电---气比例/伺服阀可采用的反馈控制方式,阀内就增加了位移或压力检测器件,有的还集成有控制放大器。 一、滑阀式电---气方向比例阀 流量式四通或五通比例控制阀可以控制气动执行元件在两个方向上的运动速度,这类阀也称方向比例阀。图示即为这类阀的结构原理图。它由直流比例电磁铁1、阀芯2、阀套3、阀体4、位移传感器5和控制放大器6等赞成。位移传感器采用电感式原理,它的作用是将比例电磁铁的衔铁位移线性地转换为电压信号输出。控制放大器的主要作用是: 1)将位移传感器的输出信号进行放大; 2)比较指令信号Ue和位移反馈信号U f U; 3)放大,转换为电流信号I输出。此外,为了改善比例阀的性能,控制放大器还含有对反馈信号 Uf的处理环节。比如状态反馈控制和PID调节等。 带位置反馈的滑阀式方向比例阀,其工作原理是:在初始状态,控制放大器的指令信号UF=0,阀芯处于零位,此时气源口P与A、B两端输出口同时被切断,A、B两口与排气口也切断,无流量输出;同时位移传Uf=0。若阀芯受到某种干扰而偏离调定的零位时,位移传感器将输出一定的电压Uf,控制放 放大后输出给电流比例电磁铁,电磁铁产生的推力迫使阀芯回到零位。若指令Ue>0,则 电压差增大,使控制放大器的输出电流增大,比例电磁铁的输出推力也增大,推动阀芯右移。而阀芯的右移又引起反馈电压Uf的增大,直至Uf与指令电压Ue基本相等,阀芯达到力平衡。此时。

气动比例、伺服控制

气动比例、伺服控制 气动比例伺服控制系统是由电气信号处理部分和气动功率输出部分所组成的闭环控制系统。 气动比例、伺服控制系统与液压比例、伺服控制系统比较有如下特点: 1)能源产生和能量储存简单。 2)体积小、重量轻。 3)温度变化对气动比例、伺服机构的工作性能影响很小。 4)气动系统比较安全,不易发生火灾,并且不会造成环境污染。 5)由于气体的可压缩性,气动系统的响应速度低,在工作压力和负载大小相同时,液压系统的响应速度约为气动系统的50倍。同时,液压系统的刚度约为相当的气动系统的400倍。 6)由于气动系统没有泵控系统,只有阀控系统,阀控系统的效率较低。阀控液压系统和气动伺服系统的总效率分别为60%和30%左右。 7)由于气体的粘度很小,润滑性能不好。在同样加工精度情况下,气动部件的漏气和运动副之间的干摩擦相对较大,负载易出现爬行现象。 综合分析,气动控制系统适用于输出功率不大(气动控制系统的极限功率约为4kW),动态性能要求不高,工作环境比较恶劣的高温或低温,并对防火有较高要求的场合。 气动控制系统设计计算 气动控制系统的设计步骤 气动控制系统是由电气信号处理部分和气压功率输出部分所组成的闭环控制系统。通常,气动控制系统的设计步骤为: 1)明确气动控制系统的设计要求; 2)确定控制方案,拟定控制系统原理图; 3)确定气压控制系统动力元件参数,选择反馈元件; 4)计算控制系统的动态参数,设计校正装置并选择元件。 气动伺服机构举例 如图42.7-1所示,该伺服系统主要由波纹管、放大杠杆、控制滑阀、气缸及反馈机构等组成。供气压力为0.5MPa,信号压力为0.02~0.1MPa。 图42.7-1 波纹管滑阀式气动伺服系统结构原理图

电液比例阀工作原理

电液比例阀是阀内比例电磁铁输入电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例压力、流量输出元件。阀芯位移也可以以机械、液压或电形式进行反馈。电液比例阀具有形式种类多样、容易组成使用电气及计算机控制各种电液系统、控制精度高、安装使用灵活以及抗污染能力强等多方面优点,应用领域日益拓宽。近年研发生产插装式比例阀和比例多路阀充分考虑到工程机械使用特点,具有先导控制、负载传感和压力补偿等功能。它出现对移动式液压机械整体技术水平提升具有重要意义。特别是电控先导操作、无线遥控和有线遥控操作等方面展现了其良好应用前景。 2 工程机械电液比例阀种类和形式 电液比例阀包括比例流量阀、比例压力阀、比例换向阀。工程机械液压操作特点,以结构形式划分电液比例阀主要有两类:一类是螺旋插装式比例阀(screwin cartridge proportional valve),另一类是滑阀式比例阀(spool proportional valve)。 螺旋插装式比例阀是螺纹将电磁比例插装件固定油路集成块上元件,螺旋插装阀具有应用灵活、节省管路和成本低廉等特点,近年来工程机械上应用越来越广泛。常用螺旋插装式比例阀有二通、三通、四通和多通等形式,二通式比例阀主比例节流阀,它常它元件一起构成复合阀,对流量、压力进行控制;三通式比例阀主比例减压阀,也是移动式机械液压系统中应用较多比例阀,它主对液动操作多路阀先导油路进行操作。利用三通式比例减压阀可以代替传统手动减压式先导阀,它比手动先导阀具有更多灵活性和更高控制精度。可以制成如图1所示比例伺服控制手动多路阀,不同输入信号,减压阀使输出活塞具有不同压力或流量进而实现对多路阀阀芯位移进行比例控制。四通或多通螺旋插装式比例阀可以对工作装置实现单独控制。 滑阀式比例阀又称分配阀,是移动式机械液压系统最基本元件之一,是能实现方向与流量调节复合阀。电液滑阀式比例多路阀是比较理想电液转换控制元件,它保留了手动多路阀基本功能,还增加了位置电反馈比例伺服操作和负载传感等先进控制手段。它是工程机械分配阀更新换代产品。 出于制造成本考虑和工程机械控制精度要求不高特点,一般比例多路阀内不配置位移感应传感器,具有电子检测和纠错功能。,阀芯位移量容易受负载变化引起压力波动影响,操作过程中要靠视觉观察来保证作业完成。电控、遥控操作时更应注意外界干涉影响。近来,电子技术发展,人们越来越多采用内装差动变压器(LDVT)等位移传感器构成阀芯位置移动检测,实现阀芯位移闭环控制。这种由电磁比例阀、位置反馈传感器、驱动放大器和其它电子电路组成高度集成比例阀,具有一定校正功能,可以有效克服一般比例阀缺点,使控制精度到较大提高。 3 电液比例多路阀负载传感与压力补偿技术 节约能量、降低油温和提高控制精度,同时也使同步动作几个执行元件运动时互不干扰,现较先进工程机械都采用了负载传感与压力补偿技术。负载传感与压力补偿是一个很相似概念,都是利用负载变化引起压力变化去调节泵或阀压力与流量以适应系统工作需求。负载传感对定量泵系统来讲是将负载压力负载感应油路引至远程调压溢流阀上,当负载较小时,溢流阀调定压力也较小;负载较大,调定压力也较大,但也始终存一定溢流损失。变量泵系统是将负载传感油路引入到泵变量机构,使泵输出压力随负载压力升高而升高(始终为较小固定压差),使泵输出流量与系统实际需要流量相等,无溢流损失,实现了节能。

气动位置伺服嵌入式控制器及控制策略探讨

气动位置伺服嵌入式控制器及控制策略探讨 发表时间:2019-04-29T11:43:39.343Z 来源:《建筑学研究前沿》2018年第36期作者:司雷明[导读] 气动系统在现代工业运动控制、食品包装机械、机器人、医疗器械等领域具有非常广泛的应用,且该系统具有成本低、清洁无污染、功率质量比大以及容易安装维护等优势特点。 特恩驰(南京)光纤有限公司 210000 摘要:目前针对嵌入式气动伺服控制器的软件在某方面的功能存在一定的缺陷,基于此,本文对基于DSP的嵌入式气动伺服控制器进行了优化;希望能够构建比例方向阀控气缸系统的模型,并选择使用基于反步法设计的自适应控制策略,最终进一步提升稳态跟踪精度。然后选择使用基于模型的设计方法,在MATLAB/SiMuLink工具下开展算法仿真运算,把模型实施转化后能够使其自动的、高效的生产算法控制软件,最终与DSP硬件驱动、上位机监控软件开展实证分析,最终的实证分析结果表明:气动伺服DSP控制器轨迹跟踪误差处于5%范围之内,其控制周期<1ms。 关键词:气动伺服;嵌入式控制器;自适应鲁棒控制;基于模型的设计;轨迹跟踪误差 气动系统在现代工业运动控制、食品包装机械、机器人、医疗器械等领域具有非常广泛的应用,且该系统具有成本低、清洁无污染、功率质量比大以及容易安装维护等优势特点。气动系统存在着气体的可压缩性大、系统的刚度低、气动元件流量特性和摩擦力特性非线性严重的特性,使得建模复杂,设计高精度气动伺服控制系统的控制策略困难,高性能气动伺服控制器发展受阻.传统简单的气动伺服控制算法,如PID等,取得的效果很一般,在此基础上提出改进的线性控制策略,如PID与模糊控制、神经网络等人工智能的结合,算法效果与设计人员经验密切;设计先进非线性控制策略,如自适应控制、滑模控制、自适应鲁棒控制等策略,设计较复杂,但充分利用模型信息,控制效果好.现阶段,气动伺服研究工作大多借助于PC机、DSPACE系统、NI-DAQ/CRIO、XPC等通用实时工具实现控制系统原型,系统稳定,精度高,开发调试便利;不足之处在于控制系统的成本高、结构体积大,极不利于嵌入式应用。 商用嵌入式气动伺服控制器有德国FESTO公司推出了SPC系列控制器,配合公司提供的比例方向阀和气缸等部件能实现“点到点”精确定位,但轨迹跟踪性能不足;意大利ATOS公司推出了液压伺服系统控制器及解决方案。国内学者对嵌入式气动伺服控制器的硬件结构,提出采用ARM、DSP、FPGA等为核心的多种解决方案,集成的伺服控制算法软件简单,效果差,且几乎处于调试实验阶段,未推出成熟产品.研发集成先进控制策略、性能稳定、通信完善、接口标准、体积小的嵌入式气动伺服控制器具有实际意义。 RPS控制系统实现方案 该系统以4D影院的动感座椅为应用对象,在ShAng等设计的3-RPS结构平台基础上,提出气动伺服系统框架,如图1所示.DSP控制器和3-RPS。 图1 基于DSP的气动位置伺服系统结构 气动平台组成一个工作节点,PC机连接UCB-CAN控制器与多节点DSP通信.在DSP内运行伺服控制策略,PC机作为监控中心,控制对象系统运行、发送运行控制指令、实时显示控制误差及内部状态参数.针对应用对象设计了一套动作采集子系统,结构是3-RPS平台的缩小版.采用手动拖拽方式进行示教编程,开发上位机软件连接NI-DAQ设备采集跟踪位姿信号,处理后可以存储及在3-RPS平台复现,方便了对3-RPS平台的位姿轨迹编程。 3-RPS平台由运动平台、固定平台及连接两平台的3支双作用气缸组成,FESTO的五位三通比例方向阀MPYE-5-1/4-010B 控制执行机构气缸DNC-63-200-P,采用电阻式位移传感器构成位置闭环。考虑到该控制器运行算法复杂,运算性能要求较高,选用TI公司推出的TMS320F28335型DSP芯片,是专用于运动控制而推出的,主频高达150M,集成高性能浮点运算处理单元,具备CAN 总线通信接口,适合该气动伺服系统的应用需求。 2 基于模型设计的控制器软件 2.1 控制策略仿真 在设计自适应鲁棒控制算法的同时,可以方便同步地在MATLAB/SiMuLink工具箱下实现与验证,联立系统模型进行仿真.在跟踪3RAD/S,幅值为90MM的正弦轨迹信号,同时加入噪声信号进行仿真,轨迹跟踪效果及跟踪误差如图4所示.图中,TRAj为实际轨迹,E 为误差.稳态控制精度在1MM以下,具有较强的鲁棒性抵抗干扰,控制误差逐步减小,表明基于最小二乘法的在线参数估计和自适应干扰估计有效,算法能够较好地收敛,有效提高了系统的控制精度。

液压伺服控制系统的优缺点

液压伺服控制系统的优缺点 参考资料:https://www.doczj.com/doc/54528359.html,/s/blog_71facf0001010n63.html 液压伺服控制系统,是在液压传动和自动控制理论基础上建立起来的一种自动控制系统。近年来,随着自动控制的发展,无论是电气或液压伺服系统,在所有的工业部门中都开始得到应用,并普遍地为人们所熟知起来。由于其具有结构紧凑、尺寸小、重量轻、出力大,刚性好,响应快,精度高等特点,因而在工业上获得了广泛的应用。 一、液压伺服控制系统的优点 现对液压伺服控制系统在设计和应用中体现的优缺点进行一下归纳和总结。同机电伺服系统、气动伺服系统相比较,液压伺服系统具有以下的突出特点,以致成为采用液压系统而不采用其他控制系统的主要原因: 1、重量比大 在同样功率的控制系统中,液压系统体积小,重量轻。这是因为对机电元件,例如电动机来说,由于受到激磁性材料饱和作用的限制,单位重量的设备所能输出的功率比较小。液压系统可以通过提高系统的压力来提高输出功率,这时只受到机械强度

和密封技术的限制。在典型的情况下,发电机和电动机的功率比仅为16.8W/N,而液压泵和液压马达的功率——重量比为 168W/N,是机电元件的10倍。在航空、航天技术领域应用的液压马达是675W/N。直线运动的动力装置更加悬殊。 这个特点,在许多场合下,在采用液压伺服而不采用其他伺服系统的重要原因,也是直线运动系统控制系统中多用液压系统的重要原因。例如在航空、特别是导电、飞行器的控制中液压伺服系统得到了很广泛的应用。几乎所有的中远程导弹的控制系统都是采用液压控制系统。 2、力矩惯量比大 一般回转式液压马达的力矩惯量比是同容量电动机的10倍至20倍,一般液压马达为61x10Nm/Kgm2。力矩惯量比大,意味着液压系统能够产生大的加速度,也意味着时间常数小,响应速度快,具有优良的动态性能。因为液压马达或者电动机消耗的功率一部分来克服负载,另一部分消耗在加速液压马达或者电动机本身的转子。所以一个执行元件是否能够产生所希望的加速度,能否给负载以足够的实际功率,主要受到它的力矩惯量比的限制。 这个特点也是许多场合下采用液压系统,而不是采用其他控制系统的重要原因。例如火箭炮武器的防真系统中,要求平台

我司液压伺服控制系统的控制原理

概述 随着国内经济的高速发展,塑料制品行业对高速,高精密注塑机的需 求量与日剧增,而液压机高速,精密成型的保证,就是一必须拥有合 理而高刚性的锁模和射胶机构,二它必须拥有强劲的动力和反应灵敏 而精确的液控系统。其中,液压伺服控制系统是使执行元件以一定的 精度自动地按照输入信号的变化规律而动作的一种自动控制系统。其 可从不同的角度加以分类,按输出的物理量分类,有位置伺服系统, 速度伺服系统,力(或压力)伺服系统等;按控制信号分类,有机液 伺服系统,电液伺服系统,气液伺服系统;按控制元件分类,有阀控 系统和泵控系统两大类。下面,我们讨论阀控伺服系统。阀控伺服系 统主要由压力传感器,位置传感器,控制器和伺服阀等构成一个闭环 的系统,按系统的需求来分别做到或按序做到速度伺服控制,位置伺 服控制和压力伺服控制。最终,达到系统的要求和重复精度。 如图,传感器与控制卡(也可集成在塑机工控电脑中),伺服阀的有 机组合,就形成了一个闭环控制系统,随着系统工作情况要求的不同,来实现不同的伺服控制。在注射过程,注射到终点前,注射速度较为 重要,则此系统以速度闭环控制为主,控制器对位置传感器高频采样,测出活塞的瞬时速度与塑机电脑要求的速度对比,再发出调整后的信 号给伺服阀。最终,使活塞的运动速度达到塑机电脑要求的速度。进 入快到射胶终点,保压和熔胶背压阶段,这时压力较为重要,则此系 统以压力闭环控制为主,装在射胶油缸两侧的压力传感器传回的信号 起主要作用,控制卡将其与塑机电脑给出的压力信号对比,来调整给 伺服阀的信号,最终,使注射腔的压力值与设定值相同。在塑机电脑

没有发出任何指令的情况下,此时位置保持就比较重要,所以,系统 这时会主要进行位置闭环的控制。同理,在锁模油缸伺服控制的情形下,也是如此按顺序控制,锁模开始,快速移模可作速度闭环控制, 模具快合上时,切换到位置控制,有快速锁模到锁模油缸活塞停止的 位置之间的转换也是可控的,最后,模具合上时,切换的压力控制。 上述只是某种工艺要求下的伺服控制逻辑,随着不同的要求,控制的 逻辑,种类也都不尽相同,但是,其控制理念,是相同的。最终的目的,都是为了精确,迅速的达到塑机电脑的指令要求和保证动作的重 复精度。 下面对伺服闭环控制系统各组成部分作简单介绍。 传感器 任何好的系统,都必须具有迅捷,准确的感知部件,只有及时,准确 的监测执行机构当前所处的状态,控制器才能主动地发出新的指令, 来调整执行机构的运动,使之接近控制电脑所要求的运动状态。因此,全方位的了解执行机构,是伺服系统的必备条件。主要由压力,位置 等传感器来共同构成准确,及时的跟踪监测系统。传感器的固有特性,包括线性,最大采样频率,抗干扰能力等都对准确,及时地感知有重 要影响。 伺服阀 伺服系统中最重要,最基本的组成部分,它起着信号转换,功率放大 及反馈等控制作用。常见的伺服阀有直动式阀(滑阀),射流管先导 级伺服比例阀喷嘴挡板阀伺服电磁阀等。下面简单介绍它们的结构原 理及特点。 *直动式阀 将一与所期望的阀芯位移成正比的电信号输入阀内放大电路,此信号 将转换成一个脉宽调制电流作用在线性马达上,力马达产生推力推动 阀芯产生一定的位移。同时激励器激励阀芯位移传感器产生一个与阀 芯实际位移成正比的电信号,解调后的阀芯位移信号与输入指令信号 进行比较,比较后得到的偏差信号将改变输入至力马达的电流大小; 直到阀芯位移达到所需值。阀芯位移的偏差信号为零。最后得到的阀

气动伺服定位技术及其应用

液压与气动990110 液压与气动 CHINESE HYDRAULICS & PNEUMATICS 1999年第1期No.11999 气动伺服定位技术及其应用* 周 洪** 1 前言 随着工业自动化技术的发展,传统气动系统只能在两个机械设定位置可靠定位并且其运动速度只能靠单向节流阀单一设定的状况,经常无法满足许多设备的自动控制要求。因而电-气比例和伺服控制系统,特别是定位系统得到了越来越广泛的应用。因为采用电-气伺服定位系统可非常方便地实现多点无级定位(柔性定位)和无级调速,此外,利用伺服定位气缸的运动速度连续可调性以替代传统的节流阀加气缸端位缓冲器方式,可以达到最佳的速度和缓冲效果,大幅度降低气缸的动作时间,缩短工序节拍,提高生产率。 虽然对气动伺服定位系统的学术研究可追溯到80年代初期,但真正实现其工业实用化却是近几年的事。关键的技术困难是状态反馈控制参数的优化设定十分复杂,难以被一般的用户掌握。由于缺乏具有工程可靠度的参数优化算法,目前一般在市场能得到的气动伺服定位系统其控制参数往往是预先在生产厂家设定的,即根据用户提出的使用要求,由厂家提供整套已调试完毕的系统。同时,为了容易地得到令人满意的控制结果,往往要对所采用的气缸进行特殊设计,以使其摩擦特性得到优化(见图5)。这种系统在应用中的局限性是十分明显的: 大幅度增加气动伺服定位系统的成本,缩短其寿命并且气缸的最大运动速度受到 限制; 用户选择气缸的机械结构时受到很大的限制,因为并不是每种机械结构的特种气缸都能在市场上找到的; 由于用户得到的是一套他们无法自行重新调整的系统,因此当一些重要使用参数改变时(如负载质量),必须请厂家派人对控制参数重新调整,既费时又费钱。 本文将系统地介绍一种达到工业实用化的气动伺服定位系统智能控制器—— SPC100,用户只需要给入最基本的元件尺寸和运行数据(如气缸行程和缸径,负载重量及气源压力等),SPC100即可自动地完成其反馈控制参数计算和优化。因此用户无需掌握复杂的控制技术和气体力学等方面知识即可操作气动伺服定位系统。这一成果改变了只有专家才能对气动伺服定位系统进行操作和调整的传统局面。 2 系统描述以及最优控制参数的理论设计 一个气动伺服定位系统主要由4部分元件组成(见图1)。 file:///E|/qk/yyyqd/yyyq99/yyyq9901/990110.htm(第 1/8 页)2010-3-23 14:06:16

电液比例技术复习题

液压课程复习 1. 比例阀、伺服比例阀、伺服阀的性能及应用特点;P2,P228 1. 比例阀:其主要缺陷,由于比例阀不可避免的存在死区,因此它不能很好的用于位置、 力控制闭环。但是能进行电控,能满足70%工业用户要求的动态响应特性,因此能得到 广泛的使用。因此,比例阀一般多用于开环控制,其控制较伺服阀要灵活,控制精度要 低,频响较低,最高才几十赫兹。 2伺服阀:伺服阀要求加工精度高,油液需要精过滤,因此价格比较昂贵,但是它的动 态性能是所有液压阀中最高的,其阀口多为零遮盖的,且无零位死区,控制精度较高, 频响较高。因此,伺服阀一般用于闭环系统,且工作在零位附近。 3伺服比例阀:伺服比例阀的性能介于伺服阀和比例阀之间,其最重要的特征之一是, 阀口为零遮盖,无零位死区,解决了位置、压力等要求无零位死区的闭环控制系统中的 应用。采用比例电磁铁作为电机械转换器,可用于各类闭环系统,频响较一般比例阀为高,可靠性比伺服阀高。 2. 比例放大器的颔振、零位(死区)跳跃、缓冲功能及作用;P50 ,P45,P44 1.颤振:颤振信号是指叠加在直流控制信号中的高频(50— 100HZ)小振幅交流信号, 用于减小摩擦力及磁滞所造成的滞环,并有利于消除卡涩现象。 2.零位(死区)跳跃:零位跳跃信号是由阶跃函数发生器发出的,该信号发出后经放大,可以给 比例电磁铁一个阶跃电流,使比例阀阀芯迅速越过零位死区,即削弱或排除比例阀阀芯正遮盖的影响,适应零区控制特性的要求。 死区补偿:输入电压大于+-0.1V时用补偿环节加大放大器输出(如1.3V)将(+-20% 总位移)正遮盖(零位死区)的影响减少到最低程度。 3.缓冲:缓冲信号以一个设定值阶跃作为输入信号,斜坡信号发生器产生一个缓慢上升或者下降 的输出信号,输出信号的变化速率可以通过电位器调节,以实现被控系统或运动速度等无冲击过渡,满足系统控制的缓冲要求。 将设定值的阶跃输入转化成精确可控的斜坡输出,使压力变化或者加减速过程平缓, 减少冲击。 3. 比例放大器PWM的功率放大原理; P53,原理简图+文字说明 4. 比例调速阀的组成及工作原理;P167 ,P178 比例调速阀由定压式减压阀和电液比例节流阀组成。 工作原理:由定差减压阀对节流阀口前后的压力变化进行补偿,使节流阀口压差近似保 持为定值,从而实现输入信号对流量的单调控制。 比例调速阀的工作原理与一般的调速阀相似,调速阀进口压力p1由溢流阀调整,基本上保持恒定。调速阀的出口压力由活塞上的负载决定。所以当负载增大时,作用在减压 阀芯左端的液压力增大,阀芯右移,减压口加大,压降减小,从而使节流阀的压差保持不变,反之亦然。这样就使通过调速阀的流量恒定不变,活塞运动的速度稳定,不受负载变化的影响。而比例电磁铁和放大器则可以调节流量,从而根据需要调节速度大小。 5. 先导液压桥路(液压半桥)分析;P111,P101 先导液压半桥多用于液压控制期间的先导控制油路,它是由液阻构成的无源网络,因此 需要外部压力源供油。就半桥本身构成而言,可归纳为以下几点:

比例调节气动阀结构与静力分析

文章编号:100225855(2007)0420022202 作者简介:吴健(1976-),河南省鹿邑县人,讲师,主要从事过程装备与控制技术的教学与研究工作。 比例调节气动阀结构与静力分析 吴健,肖俊建 (浙江工业大学浙西分校,浙江衢州324006) 摘要 分析了新型比例调节气动阀的结构以及工作原理,并对该阀进行了静力分析,通过给定的参数,计算并绘制出了该阀的调节特性曲线,指出了该阀的应用场合以及现实意义。 关键词 比例阀;静力分析;调节特性曲线 中图分类号:TH 134 文献标识码:A Structure and static force analysis of ne w type proportionalregulated pneumatic valve WU Jian ,XIAO J un 2jian (West Branch of Zhejiang University of Technology ,Quzhou 324006,China ) Abstract :Analyzed the structure and operational principle of the new type proportional regulated pneumatic valve ,and analyzed its static force.Under given conditions ,calculated and draw an ad 2justment curve of the the valve.Pointed out application and operation significance of the valve.K ey w ords :proportional valve ;static force analysis ;adjustment curve 1 概述 常规比例压力控制阀(溢流阀或减压阀)的输出压力均随输入压力的增大而升高。本文所介绍的新型比例调节气动阀同时具有正比例调节和反比例调节(输出压力随着输入压力的增大而降低)两种功能。常规减压阀无论是直动式、先导式或二通型、三通型,在输入弹簧力或电磁力为零时,连接一次进口压力与二次出口压力之间的可变节流口通流面积均为最小,即为“常闭”状态,因而此时输出压力最低。而新型比例调节气动阀在输入压力为零时,连接一、二次压力的可变节流口通流面积最大,即为“常开”状态,因而此时输出压力最高。当进口压力增加到一定值时,可变节流口通流面积则变成最小为零。目前该阀最具前景的应用场合是空气压缩机行业,通过反比例阀的控制作用使得压缩机的外部用气量与压缩机的进气量保持一致。2 工作原理 比例调节气动阀(图1)的进口压力P 1比较小时,垫片将不会顶起,小锥形阀瓣处于全开状态,此时,出气口压力P 2随进气口P 1增大而增大,起到正比例调节的作用。 当进气口压力P 1增加到一定值时,垫片在进气 口压力P 1、大弹簧的作用力W 1、复位小弹簧的作用力W 2以及出气口压力P 2的作用下而左移,同时,小锥形阀瓣也将左移,致使节流孔的通流面积减小,从而使出气口压力P 2随进气口压力P 1的增大而减小,起到反比例调节的作用 。 11阀体 21带阻尼孔螺钉 31螺塞 41可调旋钮51上弹簧座 61大弹簧 71下弹簧座 81活塞 91垫片101小阀瓣(锥形) 111复位小弹簧 121微调旋钮 图1 比例调节气动阀 当进气口压力P 1达到设定最大值时,垫片和复位小弹簧左移到最大值,小锥形阀瓣将出气口完全堵塞,即节流孔通流面积为零,气体只能从旁边的 — 22— 阀 门 2007年第4期

液压伺服控制

1液压传动系统与液压控制系统的异同: 同:液压控制技术是在液压传动技术的基础上发展起来的(介质相同、元件大部分相同、遵循的物理规律相同、融合了控制理论) 异:①目的不同(传递动力;对运动量进行精确的控制) ②组成不同(5个组成部分、开环;7个组成部分、闭环) ③设计理念不同(以静态参数设计为主;静动态结合,动为主) ④特点不同(有的缺点被放大(对污染的敏感度),有点缺点被消除(传动比)) 2液压控制系统的工作原理 3液压控制系统的组成及作用: ①输入元件:(指令元件)给出输入信号(指令信号)加于系统的输入端。②反馈测量元件:测量系统的输出并转换为反馈信号。 ③比较元件:将反馈信号与输入信号进行比较,给出偏差信号。④放大转换元件(中枢元件):将偏差信号故大、转换成液压信号(流量或压力)。⑤执行元件:产生调节动作加于控制对象上,实现调节任务。⑥控制对象:被控制的机器设备或物体,即负载。 ⑦液压能源装置:定压源 4液压控制系统的特点 具有负反馈的闭环控制系统 优:(1)液压元件的功率—重量比和力矩-惯量比大 可以组成结构紧凑、体积小、重量轻、加速性好的控制系统。(2)液压动力元件快速性好,系统响应快。(3)液压控制系统抗负载的刚度大,即输出位移受负载变化的影响小,定位准确,控制精度高。 缺:(1) 液压元件,特别是精密的液压控制元件(如电液伺服阀)抗污染能力差,对工作油液的清洁度要求高。(2) 油温变化时对系统的性能有很大的影响。(3) 当液压元件的密封设计、制造相使用维护不当时.容易引起外漏,造成环境污染。(4) 液压元件制造精度要求高,成本高。(5) 液压能源的获得和远距离传输都不如电气系统方便。 22 控制系统的分类: ⑴按系统输入信号的变化规律:定值,程序,伺服(随动),比例; ⑵按被控物理量的名称:位置,速度,力; ⑶按液压动力元件的控制方式或液压控制元件的形式:节流式(阀控),容积式(变量泵控或变量马达控),阀控系统根据液压能源型式的不同可分为恒压控制系统和恒流控制系统; ⑷按信号传递的介质的形式:机械,电液,气动。 5液压放大元件的功能(液压放大元件考了定义) 也称液压放大器,是一种以机械运动控制流体动力的元件。将输入的机械信号(位移或转角)转换为液压信号(流量,压力)输出,并进行功率放大 6液压放大元件分为:滑阀,喷嘴挡板阀和射流管阀等 7滑阀 ⑴结构分类及其特点 通道数(4、3、2)工作边数(4、2、1)凸肩数(2、3、4)预开口型式(+、0、-) ⑵滑阀的P-Q 特性方程 ⑶滑阀的静态特性曲线 流量特性曲线 压力特性曲线 压力-流量特性曲线 ⑷滑阀的三个阀系数 ①流量增益:定义为 ,是流量特性曲线在某一点的切线斜率,表示负载压降一定时,阀单位输入位移所引起的负载流量变化的大小,其值越大,阀对负载流量的控制就越灵敏。直接影响系统的开环增益,对系统的稳定性,响应特性,稳态误差有直接影响。 ②流量-压力系数:定义为 ,是压力-流量曲线的切线斜率冠以负号,流量-压力系数表示阀开度一定时,负载压降所引起的负载流量变化。K 值小,阀抵抗负载变化的能力大,即阀的刚度大。直接影响阀空执行元件的阻尼比和速度刚度。 ③压力增益:定义为 ,是压力特性曲线的切线斜率,通常压力增益是指q =0时阀单位输入位移所引起的负载压力变化的大小。此值大,阀对负载压力的控制灵敏度高。表示阀控执行元件组合启动大惯量或大摩擦力负载的能力。 8三种液压放大元件的性能特点及适用场合比较 圆柱滑阀 双喷嘴挡板阀 射流管阀 ①工作原理:前两者流量特性,后者能量转换和守恒定理; ②输入量:阀芯位移,挡板位移,射流管摆角; ③输出量:负载流量和压力,皆为负载压力 ④运动惯量:滑阀>射流管阀>双; ⑤响应速度:双>射流管阀>滑阀; ⑥功放系数:滑阀>射流管阀>双; ⑦抗污染能力:射流管阀>双>滑阀; ⑧适用场合: 9液压动力元件的基本概念及其分类 液压动力元件(或称液压动力机构)是由液压放大元件(液压比控制元件)、液压执行元件以及负载组成。四种基本型式的液压动力元件:阀控液压缸、阀控液压马达、泵控液压缸、泵控液压马达。 10阀控液压缸 ⑴模型组成:比例环节,积分换节,二阶振荡环节 ⑵阀控缸动力机构主要性能参数为阀控液压缸的增益Kq/Ap 、液压固有频率 、液压阻尼比 ①动力机构的增益速度放大系数Kq/Ap :直接影响系统的稳定性、响应速度和精度。提高增益可以提高系统的响应速度和精度,但使系统的稳定性变坏。 ②液压固有频率 表示液压动力元件的响应速度。 ③液压阻尼比表示系统的相对稳定性。 ⑶提高“阀控缸”动力机构的液压固有频率 ①提高油液的体积弹性模量 ;(可通过提高供油压力来实现)②增大液压缸活塞面积③减小总压缩容积 ,主要是减小液压缸的无效容积和连接管道的容积 ④减小折算到活塞上的总质量 ⑷提高阻尼比(因素:总流量-压力系数K ,负载的粘性阻尼洗漱B )①设置旁通泄漏通道②采用正开口阀,正开口阀的K 值大,可以增加阻尼③增加负载的粘性阻尼 11阀控马达动力机构数学模型(化解为最简单) 12泵控马达动力机构数学模型(化解为最简单) 13三种动力机构的性能特点比较 控制元件相同,执行元件不同(阀控缸与阀控马达)时的比较:两者的动态特性完全相同(只需做变量替换,数学模型即完全一致) 控制元件不同,执行元件相同(阀控马达与泵控马达)时的比较:两者的动态特性类似(数学模型结构一致,但参数特征不同) 阀控响应速度高于泵控(80%-90%),但能量损失大(至少三分之一),效率低;泵控工作效率高,最大效益可达90%,适应于大功率,对响应速度要求不高的系统。 14电液伺服阀的组成及个部分功能 ⑴力矩马达(或力马达)即电机转换元件—把输入的电气控制信号转换为力矩或力控制液压放大器运动; ⑵液压放大器(先导级和功率级)即机液转换元件—控制液压能源流向液压执行机构的流量或压力; ⑶反馈机构(平衡机构)--将输出级(功率级)的阀芯位移,或输出流量,或输出压力以位移,力或电信号的形式反馈到第一级或第二级的输入端,也有反馈到力矩马达衔铁组件力矩马达输入端的。 15采用反馈机构是为了使伺服阀的输出流量或输出压力获得与输入电气控制信号成比例的特性。由于反馈机构的存在,使伺服阀本身成为一个闭环控制系统,提高了伺服阀的控制性能。 16按反馈形式可分为: 滑阀位置反馈 负载流量反馈 负载压力反馈 17典型电液伺服阀的结构及工作原理 ⑴力矩马达 ⑵力反馈两级电液伺服阀(闭环)考了工作原理 (不能直接控制负载信号,因为反馈信号不是力,是滑阀的位移) 第一级液压放大器为双喷嘴挡板阀,由永磁动铁式力矩马达控制,第二级液压放大器为四通滑阀,阀芯位移通过反馈杆与衔铁挡板组件相连,构成滑阀位移力反馈回路。 ⑶直接反馈两级电液伺服阀(闭环)前置级是带两个固定节流孔的四通阀(双边滑阀),功率级是零开口四边滑阀,功率级阀芯也是前置级的阀套,构成直接位置反馈 ⑷弹簧对中型两极(开环)第一级是双喷嘴,第二级是滑阀,阀芯两端各有一根对中弹簧,当有控制电流输入时,对中弹簧力与喷嘴挡板阀输出的也压力相平衡,使阀芯取得一个相应的位移,输出相应流量 18电液伺服阀的性能参数(电液伺服阀考了定义)

气动比例伺服控制

气动比例、伺服控制 气动比例、伺服控制气动比例、伺服控制概述 气动比例、伺服控制气动比例伺服控制系统是由电气信号处理部分和气动功率输出部分所组成的闭环控制系统。 气动比例、伺服控制系统与液压比例、伺服控制系统比较有如下特点: 1)能源产生和能量储存简单。 2)体积小、重量轻。 3)温度变化对气动比例、伺服机构的工作性能影响很小。 4)气动系统比较安全,不易发生火灾,并且不会造成环境污染。 5)由于气体的可压缩性,气动系统的响应速度低,在工作压力和负载大小相同时,液压系统的响应速度约为气动系统的50倍。同时,液压系统的刚度约为相当的气动系统的400倍。 6)由于气动系统没有泵控系统,只有阀控系统,阀控系统的效率较低。阀控液压系统和气动伺服系统的总效率分别为60%和30%左右。 7)由于气体的粘度很小,润滑性能不好。在同样加工精度情况下,气动部件的漏气和运动副之间的干摩擦相对较

大,负载易出现爬行现象。 综合分析,气动控制系统适用于输出功率不大(气动控制系统的极限功率约为4kW),动态性能要求不高,工作环境比较恶劣的高温或低温,并对防火有较高要求的场合。 气动控制系统的设计步骤 气动控制系统设计计算气动控制系统的设计步骤气动控制系统是由电气信号处理部分和气压功率输出 部分所组成的闭环控制系统。通常,气动控制系统的设计步骤为: 1)明确气动控制系统的设计要求; 2)确定控制方案,拟定控制系统原理图; 3)确定气压控制系统动力元件参数,选择反馈元件; 4)计算控制系统的动态参数,设计校正装置并选择元件。 气动伺服机构举例 气动伺服机构举例如图42.7-1所示,该伺服系统主要由波纹管、放大杠杆、控制滑阀、气缸及反馈机构等组成。供气压力为0.5MPa,信号压力为0.02~0.1MPa。 图42.7-1 波纹管滑阀式气动伺服系统结构原理图当 进入波纹管1的控制信号压力增加时,波纹管1的推力增加,推动杠杆3,带动控制滑阀15向上移动,从而使气缸下腔压力增加,上腔压力降低,活塞19向上移动,带动摇臂22输

液压伺服控制课后题答案大全(王春行版).

第二章 液压放大元件 习题 1. 有一零开口全周通油的四边滑阀,其直径m d 3 108-?=,径向间隙m r c 6105-?=,供油压力Pa p s 51070?=,采用10号航空液压油在40C ?工作,流量系数62.0=d C ,求阀的零位系数。s pa ??=-2104.1μ3/870m kg =ρ 解:对于全开口的阀,d W π= 由零开口四边滑阀零位系数 s m p w C K s d q /4.1870/107010814.362.02530=????=?=-ρ ()s p m r K a c c ??=???????=?=----/104.410 4.13210814.310514.3323 122 3620μπ m p K K r p C K a c q c s d p /1018.332110 02 0?== ?= πρ μ 2. 已知一正开口量m U 3 1005.0-?=的四边滑阀,在供油压力Pa p s 51070?=下测得零位泄漏流量min /5L q c =,求阀的三个零位系数。 解:正开口四边滑阀零位系数ρ s d q p w c k 20= s s d co p p wu c k ρ = ρ s d c p wu c q 2= s m q K c q /67.11005.060/1052 3 30 =??==--ν s a s c c p m p q K ?--?=???==/1095.51070260/10523125 30 m p K K K a c q p /1081.2110 00?==

3. 一零开口全周通油的四边滑阀,其直径m d 3 108-?=,供油压力Pa p s 510210?=,最大开口量m x m 30105.0-?=,求最大空载稳态液动力。 解:全开口的阀d W π= 最大空载液动力: 4.11310 5.010********.343.043.035300=???????=??=--?m s s x p W F 4. 有一阀控系统,阀为零开口四边滑阀,供油压力Pa p s 510210?=,系统稳定性要求阀的流量增益s m K q /072.22 0=,试设计计算滑阀的直径d 的最大开口量m x 0。计算时取流量系数62.0=d C ,油液密度3 /870m kg =ρ。 解:零开口四边滑阀的流量增益: 870 /1021014.362.0072.25 0????=??=d p W C K s d q ρ 故m d 3 1085.6-?= 全周开口滑阀不产生流量饱和条件 67max >v X W mm X om 32.0=

相关主题
文本预览
相关文档 最新文档