离散数学树知识点总结
- 格式:doc
- 大小:175.00 KB
- 文档页数:7
离散数学知识点总结离散数学是一门重要的数学学科,它涉及到离散的对象和离散的结构,而不是连续的对象和结构。
以下是离散数学的几个重要知识点的总结:集合论- 集合:集合是由元素组成的对象的集合。
集合的运算包括并集、交集和差集等。
集合:集合是由元素组成的对象的集合。
集合的运算包括并集、交集和差集等。
- 子集和超集:如果一个集合的所有元素都是另一个集合的元素,则称前者为后者的子集,反之则称后者为前者的超集。
子集和超集:如果一个集合的所有元素都是另一个集合的元素,则称前者为后者的子集,反之则称后者为前者的超集。
- 幂集:一个集合的幂集是所有可能的子集构成的集合。
幂集:一个集合的幂集是所有可能的子集构成的集合。
逻辑- 命题:一个命题是一个陈述句,可以被判断为真或假。
命题:一个命题是一个陈述句,可以被判断为真或假。
- 逻辑运算:逻辑运算包括与、或、非等,用来连接和否定命题,构成复合命题。
逻辑运算:逻辑运算包括与、或、非等,用来连接和否定命题,构成复合命题。
- 真值表:用来列出复合命题在各种可能情况下的真值。
真值表:用来列出复合命题在各种可能情况下的真值。
关系- 关系:关系用来描述元素之间的联系。
关系可以是二元的或多元的。
关系:关系用来描述元素之间的联系。
关系可以是二元的或多元的。
- 等价关系:等价关系是一种满足自反性、对称性和传递性的关系。
等价关系:等价关系是一种满足自反性、对称性和传递性的关系。
- 偏序关系:偏序关系是一种满足自反性、反对称性和传递性的关系。
偏序关系:偏序关系是一种满足自反性、反对称性和传递性的关系。
- 图的表示:图可以用邻接矩阵或邻接表来表示。
图的表示:图可以用邻接矩阵或邻接表来表示。
图论- 连通性:图中的连通性用来描述图中顶点之间是否存在路径。
连通性:图中的连通性用来描述图中顶点之间是否存在路径。
- 最短路径:最短路径问题是寻找两个顶点之间最短路径的问题。
最短路径:最短路径问题是寻找两个顶点之间最短路径的问题。
离散数学必备知识点总结资料离散数学是指离散的数学概念和结构,独立于连续的数学。
它是在计算机科学、信息科学、数学基础研究、工程技术等领域中的基础课程之一。
以下是离散数学必备的一些知识点总结。
一、逻辑与集合1. 命题与谓词:命题是一个陈述,可以被判断为真或假,而谓词是一种用来描述命题所涉及实体之间关系的语句。
2. 命题逻辑:重点关注命题真假和与或非等运算关系,包括真值表和主范式。
3. 一阶谓词逻辑:注意包含全称量词和存在量词,也包括a|b, a//b等符号的理解。
4. 集合与运算:集合是指不同元素组成的一个整体。
基本的集合运算包括并、交、差等。
5. 关系与函数:关系是一种元素之间的对应关系,而函数是一种具有确定性的关系,即每一个自变量都对应唯一的函数值。
6. 等价关系与划分:等价关系是指满足自反性、对称性和传递性的关系。
划分是指将一个集合分成若干个不相交的子集,每个子集称为一个等价类。
二、图论1. 图的定义和基本概念:图由节点和边构成,节点间的连线称为边。
包括度、路径、连通性等概念。
2. 图的表示方法:邻接矩阵和邻接表。
3. 欧拉图与哈密顿图:欧拉图是指能够一笔画出的图,哈密顿图是指含有一条经过每个节点恰好一次的路径的图。
4. 最短路径与最小生成树:最短路径问题是指在图中找出从一个节点到另一个节点的最短路径。
最小生成树问题是指在图中找出一棵覆盖所有节点的树,使得边权之和最小。
三、代数系统1. 代数结构:包括群、环、域等概念。
2. 群的定义和基本概念:群是在一个集合中定义一种二元运算满足结合律、单位元存在和逆元存在的代数结构。
四、组合数学1. 排列、组合和二项式系数:排列是指从n个元素中任选r个进行排序,组合是指从n个元素中任选r个但不考虑排序,二项式系数是指组合数。
2. 生成函数:将组合数与多项式联系起来的一种工具,用于求出某种算法或结构的某些特定函数。
3. 容斥原理:一个集合的容斥原理指在集合的并、交、补之间的关系。
离散数学树
离散数学中的树(Tree)是一种常见的图论结构,它是一种无向、连通且没有简单回路的无向图,或者是一个有向连通图,其中每个节点都只有唯一一个父节点(除了根节点)。
树形结构中的每一个节点都可以视为一个子树的根节点,因为它下面连接了若干个子节点,这样就形成了一棵向下生长的树状结构。
树形结构还有一个重要的特点就是它具有很好的递归性质,因为每个节点下面都可以再建立一棵子树,这样就可以逐层递归地构建出整棵树。
在离散数学中,树被广泛应用于算法设计、数据结构以及对计算机网络和信息系统进行建模等领域。
树的深度和广度优先遍历、树的一些基本性质(如高度、度、叶子节点等)以及树的遍历应用在图的搜索算法、排序、哈夫曼编码、抽象语法树等算法中都有广泛的应用。
第六章树一、掌握根本概念树的子树是互不相交的,树可以为空〔空树〕非空的树中,只有一个结点是没有前趋的,那就是根。
非空树只有一个树根,是一对多的关系。
叶子结点、结点的度、树的度、结点的层次、树的深度、树的四种表示方法二、二叉树的定义、特点、五种根本形态二叉树是有序树,左右子树不能互相颠倒二叉树中结点的最大度为2,但不一定都是2。
三、二叉树的性质要掌握性质1:二叉树的第i层上至多有2 i-1〔i 1〕个结点。
性质2:深度为k的二叉树中至多2k-1个结点。
性质3:对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,那么n0=n2+1。
证明:1)结点总数n=n0+n1+n2 (n1是度为1的结点数)2)进入分支总数m(每个结点唯一分支进入) n=m+13)m个分支是由非叶子结点射出m=n1+2n2性质4:具有n个结点的完全二叉树的深度k为[log2n]+1四、满二叉树和完全二叉树的区别是什么?满二叉树一定是完全二叉树,但是完全二叉树不一定是满二叉树。
深度为k的二叉树,最少有k个结点,最多有2k-1深度为k的完全二叉树,最少有2k-1-1+1个结点,最多有2k-1五、二叉树的存储构造〔可以通过下标找结点的左右孩子〕1.顺序存储构造适用于满二叉树和完全二叉树。
〔其缺点是必须把其他二叉树补成完全二叉树,从上到下,从左到右依次存储在顺序存储空间里,会造成空间浪费〕2.二叉链表存储构造〔其优点是找左孩子和右孩子方便,但缺点是找父节点麻烦〕lchild Data rchild〔重点〕3. 三叉链表存储构造不仅找其左、右孩子很方便,而且找其双亲也方便六、遍历的概念是什么?七、二叉树的遍历有三种:前序〔先序、先根〕遍历、中序〔中序、中根〕遍历、后序〔后序、后根〕遍历1.给出一棵二叉树,要会二叉树的三种遍历2.给出两种遍历〔必须有中序遍历〕,要求会画该二叉树。
八、了解引入线索〔中序、先序、后序〕二叉树的原因是什么?九、会在二叉树上画先序线索化、中序线索化、后序线索化。
离散数学树知识点
总结
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
第六章树
一、掌握基本概念
树的子树是互不相交的,树可以为空(空树)
非空的树中,只有一个结点是没有前趋的,那就是根。
非空树只有一个树根,是一对多的关系。
叶子结点、结点的度、树的度、结点的层次、树的深度、树的四种表示方法二、二叉树的定义、特点、五种基本形态
二叉树是有序树,左右子树不能互相颠倒
二叉树中结点的最大度为2,但不一定都是2。
三、二叉树的性质要掌握
性质1:二叉树的第i层上至多有2 i-1(i 1)个结点。
性质2:深度为k的二叉树中至多2k-1个结点。
性质3:对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为
n2,则n0=n2+1。
证明:1)结点总数 n=n0+n1+n2 (n1是度为1的结点数)
2)进入分支总数m(每个结点唯一分支进入) n=m+1
3)m个分支是由非叶子结点射出 m=n1+2n2
性质4:具有n个结点的完全二叉树的深度k为[log2n]+1
四、满二叉树和完全二叉树的区别是什么?
满二叉树一定是完全二叉树,但是完全二叉树不一定是满二叉树。
深度为k的二叉树,最少有k个结点,最多有2k-1
深度为k的完全二叉树,最少有2k-1-1+1个结点,最多有2k-1
五、二叉树的存储结构(可以通过下标找结点的左右孩子)
1.顺序存储结构适用于满二叉树和完全二叉树。
(其缺点是必须把其他二叉树补成完全二叉树,从上到下,从左到右依次存储在顺序存储空间里,会造成空间浪费)
2.二叉链表存储结构(其优点是找左孩子和右孩子方便,但缺点是找父节点麻烦)
lchild Data rchild
(重点)
3. 三叉链表存储结构
不仅找其左、右孩子很方便,而且找其双亲也方便
六、遍历的概念是什么?
七、二叉树的遍历有三种:前序(先序、先根)遍历、中序(中序、中根)遍历、后序(后序、后根)遍历
1.给出一棵二叉树,要会二叉树的三种遍历
2.给出两种遍历(必须有中序遍历),要求会画该二叉树。
八、了解引入线索(中序、先序、后序)二叉树的原因是什么?
九、会在二叉树上画先序线索化、中序线索化、后序线索化。
在线索二叉树的格式中,可以找到任意结点的直接后继。
(错)
在线索二叉树中,如果某结点的右孩子为空,那么可以找到该结点的直接后继。
(对)
在线索二叉树中,如果某结点的左孩子为空,那么可以找到该结点的直接前趋。
(对)
十、树.森林和二叉树的相互转换
树转换成二叉树后,转换后的二叉树根的右子树为空。
十一、森林的遍历(只有先序遍历和后序遍历)
先序遍历一棵树,相当于先序遍历该树所对应的二叉树。
后序遍历一棵树,相当于中序遍历该树所对应的二叉树。
十二、赫夫曼树(又称最优二叉树或哈夫曼树)、赫夫曼树编码
1. 赫夫曼树中,权越大的叶子离根越近,其形态不唯一,但是WPL带权路径长度一定是最小。
2.一定要会构造哈夫曼树,在构造好的哈夫曼树上会构造哈夫曼编码。
(认真看题目要求)
第6章算法设计题
1.已知二叉树中的结点类型用BiTNode表示,被定义描述为:
Typedef struct BiTNode {
TElemType data ;
struct BiTNode * LChild , *RChild;
} BiTNode,*BiTree;
其中data为结点值域,LChild和RChild分别为指向左、右孩子结点的指针域,编写出求一棵二叉树高度的算法。
Int BTreeHeight(BiTree BT){
if (BT==NULL) return 0;
else {
h1=BTreeHeight(BT->LChild);
h2=BTreeHeight(BT->RChild);
if (h1>h2) return(h1+1);
else return( h2+1);
}
}
2.已知二叉树中的结点类型用BiTNode表示,被定义描述为:
Typedef struct BiTNode {
TElemType data ;
struct BiTNode * LChild , *Rchild;
} BiTNode,*BiTree;
BiTree T;
其中data为结点值域,LChild和RChild分别为指向左、右孩子结点的指针域,编写算法,求出二叉树中2度结点个数。
int degree2nodenum(BiTree T)
{if (T){
if(T->lchild!=NULL &&T->child!=NULL)
count++;
leafnodenum(l->lchild);
leafnodenum(l->rchild);
}
return count;
}
3.已知二叉树中的结点类型用BiTNode表示,被定义描述为:
Typedef struct BiTNode {
TElemType data ;
struct BiTNode * LChild , *RChild;
} BiTNode,*BiTree;
BiTree T;
其中data为结点值域,LChild和RChild分别为指向左、右孩子结点的指针域,写一算法,求出二叉树中的叶子结点个数。
void BTreeLeaf (BiTree BT)
{
if(BT)
{
if(BT-> LChild==NULL && BT->RChild==NULL) count++;
BTreeLeaf (BT->LChild); // 访问左子树
BTreeLeaf (BT->RChild); // 访问右子树
}
}
或下面算法均可
编写递归算法,计算二叉树中叶子结点的数目。
int LeafCount_BiTree(Bitree T)//求二叉树中叶子结点的数目
{
if(!T) return 0; //空树没有叶子
else if(!T->lchild&&!T->rchild) return 1; //叶子结点
else return Leaf_Count(T->lchild)+Leaf_Count(T->rchild);//左子树的叶子数加上右子树的叶子数
}//LeafCount_BiTree
4.PPT上的三种遍历递归算法和课本上P131先序递归创建二叉链表。
5. 给定一棵二叉树,其根指针为root。
试写出求二叉树结点数目的算法(递归算法或非递归算法)。
【提示】采用递归算法实现。
int count(BiTree t){
if (t==NULL)
return 0;
else
return count(t->lchild)+count(t->rchild)+1;
}
6. 以二叉链表为存储结构,写一算法交换各结点的左右子树。
【分析】
依题意,设t 为一棵用二叉链表存储的二叉树,则交换各结点的左右子树的运算基于后序遍历实现:交换左子树上各结点的左右子树;交换右子树上各结点的左右子树;再交换根结点的左右子树。
【算法】
void Exchg(BiTree *t){
BinNode *p;
if (t){
P=(*t)->lchild;
(*t)->lchild=(*t)->rchild;
(*t)->rchild=p;
Exchg(&((*t)->lchild));
Exchg(&((*t)->rchild));
}
}
7. 已知一棵二叉树采用二叉链表结构存储,每个结点的值为整数类型。
要求:给出相应的语言描述,在此基础上设计计算二叉树中所有结点值之和的算法。
typedef struct link
{int data;
struct link * lchild;
struct link * rchild;
} bitnode , *bitree ;
void sum(bitree *bt,int &s)
{
if(bt!=0) {s=s+bt->data; sum(bt->lchild,s); sum(bt->rchild,s);} }。