数据结构各章重点
- 格式:doc
- 大小:53.00 KB
- 文档页数:2
A—熟练掌握B—理解C—了解第一章:绪论1. 基本概念:包括数据的逻辑结构、数据的存储结构和数据的相关运算。
C四类数据组织结构:集合、线性表、树形、图状结构C数据的存储方式:顺序存储和链式存储。
B2.算法和分析算法的特征、时间复杂度的分析和常见的时间复杂度增长率排序、空间复杂度B本章重点:分析算法时间复杂度例1. 下面关于算法说法错误的是()A.算法最终必须由计算机程序实现B.为解决某问题的算法同为该问题编写的程序含义是相同的C. 算法的可行性是指指令不能有二义性D. 以上几个都是错误的D例2. 以下那一个术语与数据的存储结构无关?()A.栈 B. 哈希表 C. 线索树 D. 双向链表A.例3..求下段程序的时间复杂度:void mergesort(int i, int j){int m;if(i!=j){m=(i+j)/2;mergesort(i,m);mergesort(m+1,j);merge(i,j,m);}}其中mergesort()用于对数组a[n]归并排序,调用方式为mergesort(0,n-1);,merge()用于两个有序子序列的合并,是非递归函数,时间复杂度为。
解:分析得到的时间复杂度的递归关系:为merge()所需的时间,设为cn(c为常量)。
因此令,有有第二章:线性表1.线性表的基本运算:….. C2.线性表的顺序存储(利用静态数组或动态内存分配)。
相应的表示与操作 A3.线性表的链式存储。
相应的表示与操作。
包括循环链表、双向链表。
A4.顺序存储与链式存储的比较:基于时间的考虑--分别适用于静态的和动态的操作:比如静态查找和插入删除);基于空间的考虑-- ……. B这也适用于后面用两种方式存储的其他数据结构。
★本章重点:很熟悉顺序表,单链表、双链表,循环链表的基本操作;并学会在各种链表上进行一些算法设计(与基本操作类似的操作或组合),请仔细复习。
例4.假设有两个按元素值递增次序排列的线性表,均以单链表形式存储。
第一章概论1。
数据结构描述的是按照一定逻辑关系组织起来的待处理数据元素的表示及相关操作,涉及数据的逻辑结构、存储结构和运算2。
数据的逻辑结构是从具体问题抽象出来的数学模型,反映了事物的组成结构及事物之间的逻辑关系可以用一组数据(结点集合K)以及这些数据之间的一组二元关系(关系集合R)来表示:(K, R)结点集K是由有限个结点组成的集合,每一个结点代表一个数据或一组有明确结构的数据关系集R是定义在集合K上的一组关系,其中每个关系r(r∈R)都是K×K上的二元关系3.数据类型a。
基本数据类型整数类型(integer)、实数类型(real)、布尔类型(boolean)、字符类型(char)、指针类型(pointer)b。
复合数据类型复合类型是由基本数据类型组合而成的数据类型;复合数据类型本身,又可参与定义结构更为复杂的结点类型4.数据结构的分类:线性结构(一对一)、树型结构(一对多)、图结构(多对多)5。
四种基本存储映射方法:顺序、链接、索引、散列6。
算法的特性:通用性、有效性、确定性、有穷性7.算法分析:目的是从解决同一个问题的不同算法中选择比较适合的一种,或者对原始算法进行改造、加工、使其优化8.渐进算法分析a.大Ο分析法:上限,表明最坏情况b.Ω分析法:下限,表明最好情况c.Θ分析法:当上限和下限相同时,表明平均情况第二章线性表1.线性结构的基本特征a.集合中必存在唯一的一个“第一元素”b。
集合中必存在唯一的一个“最后元素"c.除最后元素之外,均有唯一的后继d。
除第一元素之外,均有唯一的前驱2.线性结构的基本特点:均匀性、有序性3。
顺序表a.主要特性:元素的类型相同;元素顺序地存储在连续存储空间中,每一个元素唯一的索引值;使用常数作为向量长度b。
线性表中任意元素的存储位置:Loc(ki)= Loc(k0)+ i * L(设每个元素需占用L个存储单元)c. 线性表的优缺点:优点:逻辑结构与存储结构一致;属于随机存取方式,即查找每个元素所花时间基本一样缺点:空间难以扩充d.检索:ASL=【Ο(1)】e。
第一章数据结构概述基本概念与术语1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。
2.数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。
(补充:一个数据元素可由若干个数据项组成。
数据项是数据的不可分割的最小单位。
)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
(有时候也叫做属性。
)4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
(1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。
数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。
依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。
2.线性结构:结构中的数据元素之间存在“一对一“的关系。
若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。
3.树形结构:结构中的数据元素之间存在“一对多“的关系。
若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。
4.图状结构:结构中的数据元素存在“多对多”的关系。
若结构为非空集,折每个数据可有多个(或零个)直接后继。
(2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。
想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。
逻辑结构可以映射为以下两种存储结构:1.顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。
2.链式存储结构:借助指针表达数据元素之间的逻辑关系。
不要求逻辑上相邻的数据元素物理位置上也相邻。
第一章1、什么是数据结构①数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象以及它们之间的关系和操作等的学科。
②数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
③4类基本结构:⑴集合;⑵线性(一个前驱,一个后继)结构;⑶树形结构;⑷图状结构或网状结构。
2、数据结构的二元组表示:Data_Structure=(D,S)//D是数据元素的有限集,S是D上关系的有限集。
3、算法的5大特性:⑴有穷性;4、衡量算法的标准:时间复杂度和空间复杂度5、数据的逻辑结构分四类6、数据结构写出逻辑结构,反之。
第二章0、线性表的基本概念。
1、线性表的顺序存储的基本操作:Insert, E Is=n/2 Delete. E dl=(n-1)/22、线性表的顺序存储的特点:连续地址,随机查找。
3、线性表的链式存储的特点:地址不保证连续,顺序查找。
(1)重点1:结构类型P28Typedef struct LNode{ElemType data;Struct LNode *next;}LNode,*LinkList;(2)重点2:基本方法Status GetElem_L(LinkList L,int i,ElemType &e); Status ListInsert_L(LinkList &L,int i,ElemType e); Status ListDelete_L(LinkList &L,int i,ElemType &e); void CreateList_L(LinkList &L,int n);void Print(LinkList L){ LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ printf(“%d,”,p->data);while(p->next){p=p->next; printf(“%d,”,p->data); } printf(“\n”);}}void CountNodes(LinkList L,int &nd){ nd=0;//LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ nd++;//while(p->next){p=p->next; nd++;}//}}voidCountAve(LinkList L,int &av){ int n=0,s=0//av=0;LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ s=s+p->data; n++;//while(p->next){p=p->next;s=s+p->data; n++;}// av=s/n;}return av;//}void PrintMax(LinkList L,){ int max;LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ max=p->data;while(p->next){p=p->next; if(p->data>max) max=p->data;}//printf(“max=%d\n”,max);}}void DeletaMaxNode(LinkList L,){ int max;LinkList q,t;//q---记录p的前驱结点指针,t-----保存最大结点的前驱指针。
第一章复习要点是:数据、数据元素、数据结构(包括逻辑结构、存储结构)以及数据类型的概念、数据的逻辑结构分为哪两大类,及其逻辑特征、数据的存储结构可用的四种基本存储方法。
时间复杂度与渐近时间复杂度的概念,如何求算法的时间复杂度。
可能出的题目有选择题、填空题或简答题。
第二章复习要点是:线性表的逻辑结构特征、常见的线性表的基本运算,并可以根据这些基本运算组合得到更复杂的运算。
顺序表的特征、顺序表中结点地址的计算。
顺序表上实现的基本运算(算法):主要是插入和删除的算法。
顺序表的算法应该掌握。
算法时间复杂度要记住。
单链表的特征、图形表示法。
单链表的各种算法实现,并能运用这些算法解决一些简单问题;循环链表的特征、双链表的特征以及它们的主要算法实现。
可能出的题型有:填空题、简答题、应用题和算法题。
第三章复习要点是:栈的定义、其逻辑结构特征、栈的基本运算、栈的上溢、下溢的概念。
队列的逻辑结构,队列的基本运算;循环队列的边界条件处理;以上各种基本运算算法的实现。
算法的简单应用。
可能出的题型有填空、选择、简答、算法等。
第四章复习要点是:串是一种特殊的线性表,它的结点仅由一个字符组成。
空串与空白串的区别:空串是长度为零的串,空白串是指由一个或多个空格组成的串。
串运算的实现中子串定位运算又称串的模式匹配或串匹配。
串匹配中,一般将主串称为目标(串),子串称为模式(串)。
本章可能出的题型多半为选择、填空等。
第五章复习要点是:多维数组和广义表的逻辑结构特征:它们是复杂的非线性结构。
一个数据元素可能有多个直接前趋和多个直接后继。
多维数组的两种顺序存储方式:行优先顺序和列优先顺序。
这两种存储方式下的地址计算方法。
几种特殊矩阵的特征及其压缩存储地址对应关系。
稀疏矩阵的三元组表示(画图形表示)。
广义表是线性表的推广,也是树的推广。
能画出广义表的图形表示法。
广义表的取表头运算与取表尾运算要注意,表头是广义表的第一个元素,它不一定是原子,表尾则必是子表。
第4章栈和队列一、复习要点本章主要讨论3种线性结构:栈、队列与优先级队列。
这3种结构都是顺序存取的表,而且都是限制存取点的表。
栈限定只能在表的一端(栈顶)插入与删除,其特点是先进后出。
队列和优先级队列限定只能在表的一端(队尾)插入在另一端(队头)删除,不过优先级队列在插入和删除时需要根据数据对象的优先级做适当的调整,令优先级最高的对象调整到队头,其特点是优先级高的先出。
而队列不调整,其特点是先进先出。
这几种结构在开发各种软件时非常有用。
本章复习的要点:1、基本知识点要求理解栈的定义和特点,栈的抽象数据类型和在递归和表达式计算中的使用,在栈式铁路调车线上当进栈序列为1, 2, 3, , n时,可能的出栈序列计数,栈的顺序存储表示和链接存储表示,特别要注意,链式栈的栈顶应在链头,插入与删除都在链头进行。
另外,需要理解队列的定义和特点,队列的抽象数据类型和在分层处理中的使用,队列的顺序存储表示(循环队列)和链接存储表示,需要注意的是,链式队列的队头应在链头,队尾应在链尾。
还需要理解优先级队列的定义和特点。
优先级队列的最佳存储表示是堆(heap),本章介绍的表示看懂即可。
2、算法设计➢栈的5种操作(进栈、退栈、取栈顶元素、判栈空、置空栈)的在顺序存储表示下的实现,以及在链接存储表示下的实现。
➢使用栈的后缀表达式计算算法➢循环队列的进队列、出队列、取队头元素、判队列空、置空队列操作的实现➢链式队列的进队列、出队列、取队头元素、判队列空、置空队列操作的实现二、难点和重点1、栈:栈的特性、栈的基本运算➢栈的数组实现、栈的链表实现➢栈满及栈空条件、抽象数据类型中的先决条件与后置条件2、栈的应用:用后缀表示计算表达式,中缀表示改后缀表示3、队列:队列的特性、队列的基本运算➢队列的数组实现:循环队列中队头与队尾指针的表示,队满及队空条件➢队列的链表实现:链式队列中的队头与队尾指针的表示、三、习题的解析4-2 铁路进行列车调度时, 常把站台设计成栈式结构的站台,如右图所示。
第一章:绪论:数据结构课程的任务是:讨论数据的各种逻辑结构、在计算机中的存储结构以及各种操作的算法设计;:数据:是客观描述事物的数字、字符以及所有的能输入到计算机中并能被计算机接收的各种集合的统称;数据元素:表示一个事物的一组数据称作是一个数据元素,是数据的基本单位;数据项:是数据元素中有独立含义的、不可分割的最小标识单位;数据结构概念包含三个方面:数据的逻辑结构、数据的存储结构的数据的操作;数据的逻辑结构指数据元素之间的逻辑关系,用一个数据元素的集合定义在此集合上的若干关系来表示,数据结构可以分为三种:线性结构、树结构和图;:数据元素及其关系在计算机中的存储表示称为数据的存储结构,也称为物理结构;数据的存储结构基本形式有两种:顺序存储结构和链式存储结构;:算法:一个算法是一个有穷规则的集合,其规则确定一个解决某一特定类型问题的操作序列;算法规则需满足以下五个特性:输入——算法有零个或多个输入数据;输出——算法有一个或多个输出数据,与输入数据有某种特定关系;有穷性——算法必须在执行又穷步之后结束;确定性——算法的每个步骤必须含义明确,无二义性;可行性——算法的每步操作必须是基本的,它们的原则上都能够精确地进行,用笔和纸做有穷次就可以完成;有穷性和可行性是算法最重要的两个特征;:算法与数据结构:算法建立数据结构之上,对数据结构的操作需用算法来描述;算法设计依赖数据的逻辑结构,算法实现依赖数据结构的存储结构;:算法的设计应满足五个目标:正确性:算法应确切的满足应用问题的需求,这是算法设计的基本目标;健壮性:即使输入数据不合适,算法也能做出适当的处理,不会导致不可控结高时间效率:算法的执行时间越短,时间效率越高; 果;高空间效率:算法执行时占用的存储空间越少,空间效率越高;可读性:算法的可读性有利于人们对算法的理解;:度量算法的时间效率,时间复杂度,课本39页;:递归定义:即用一个概念本身直接或间接地定义它自己;递归定义有两个条件:至少有一条初始定义是非递归的,如1=1.由已知函数值逐步递推计算出未知函数值,如用n-1定义n;第二章:线性表线性表:线性表是由nn>=0个类型相同的数据元素a0,a1,a2,…an-1,组成的有限序列,记作:Linear List = a0,a1,a2,…an-1其中,元素ai可以是整数、浮点数、字符、也可以是对象;n是线性表的元素个数,成为线性表长度;若n=0,则LinearList为空表;若n>0,则a0没有前驱元素,an-1没有后继元素,ai0<i<n-1有且仅有一个直接前驱元素ai-1和一个直接后继元素ai+1;线性表的顺序存储是用一组连续的内存单元依次存放线性表的数据元素,元素在内存的物理存储次序与它们在线性表中的逻辑次序相同;线性表的数据元素数据同一种数据类型,设每个元素占用c字节,a0的存储地址为Loca0,则ai的存储地址Locai为:Locai = Loca0+ ic数组是顺序存储的随机存储结构,它占用一组连续的存储单元,通过下标识别元素,元素地址是下标的线性函数;:顺序表的插入和删除操作要移动数据元素;平均移动次数是属数据表长度的一半;课本第50页:线性表的链式存储是用若干地址分散的存储单元存储数据元素,逻辑上相邻的数据元素在物理位置上不一定相邻,必须采用附加信息表示数据元素之间的顺序关系;它有两个域组成:数据域和地址域;通常成为节点;课本第55页及56页单链表课本56页单链表的遍历:Node<E> p = head; whilep=null{ 访问p节点;p = ;}单链表的插入和删除操作非常简便,只要改变节点间的链接关系,不需移动数据元素;单链表的插入操作:1:空表插入/头插入2中间插入/尾插入ifhead == null Node<E> q = new Node<E>x;{ head = new Node<E>x; = ;}else{ = q;Node<E> q=new Node<E>x; 中间插入或尾插入都不会改变单表= head; 的头指针head;head = q;}单链表的删除操作:头删除:head = ;中间/尾删除:if=null{ =循环单链表:如果单链表最后一个节点的next链保存单链表的头指针head值,则该单链表成为环形结构,称为循环单链表;课本67若rear是单链表的尾指针,则执行=head;语句,使单链表成为一条循环单链表;当==head时,循环单链表为空;:双链表结构:双链表的每个结点有两个链域,分别指向它的前驱和后继结点,当==null时,双链表为空;设p指向双链表中非两端的某个结点,则成立下列关系:p=;双链表的插入和删除:1插入2删除q=new DLinkNodex;= ;=; =p; if=null{= q;=q; .prev = ;}循环双链表:当==head且==head时,循环双链表为空;第三章:栈和队列栈:栈是一种特殊的线性表,其中插入和删除操作只允许在线性表的一端进行;允许操作的一端称为栈顶,不允许操作的一端称为栈底;栈有顺序栈和链式栈;栈中插入元素的操作称为入栈,删除元素的操作称为出栈;没有元素的中称为空栈;栈的进出栈顺序:后进先出,先进后出;及75页的思考题;:队列:队列是一种特殊的线性表,其中插入和删除操作分别在线性表的两端进行;向队列中插入元素的过程称为入队,删除元素的过程称为出对,允许入队的一端称为队尾,允许出队的一端称为对头;没有元素的队列称为空队列;队列是先进先出;第四章:串:串是一种特殊的线性表,其特殊性在于线性表中的每个元素是一个字符;一个串记为:s=“s0s1s2…sn-1” 其中n>=0,s是串名,一对双引号括起来的字符序列s0s1s2…sn-1是串值,sii=0,1,2,…n-1为特定字符集合中的一个字符;一个串中包含的字符个数称为串的长度;长度为0的串称为空串,记作“”,而由一个或多个空格字符构成的字符串称为空格串;子串:由串s中任意连续字符组成的一个子序列sub称为s的子串,s称为sub 的主串;子串的序号是指该子串的第一个字符在主串中的序号;串比较:两个串可比较是否相等,也可比较大小;两个串子串相等的充要条件是两个串子串的长度相同,并且各对应位置上的字符也相同;两个串的大小由对应位置的第一个不同字符的大小决定,字符比较次序是从头开始依次向后;当两个串长度不等而对应位置的字符都相同时,较长的串定义为较“大”;第五章:数组和广义表:数组是一种数据结构,数据元素具有相同的数据类型;一维数组的逻辑结构是线性表,多维数组是线性表的扩展;:一维数组:一维数组采用顺序存储结构;一个一维数组占用一组连续的存储单元;设数组第一个元素a0的存储地址为Loca0,每个元素占用c字节,则数组其他元素ai的存储地址Locai为:Locai= Loca0+ic数组通过下标识别元素,元素地址是下标的线性函数;一个下标能够唯一确定一个元素,所划给的时间是O1;因此数组是随机存取结构,这是数组最大的优点;:多维数组的遍历:有两种次序:行主序和列主序;行主序:以行为主序,按行递增访问数组元素,访问完第i行的所有元素之后再访问第i+1行的元素,同一行上按列递增访问数组元素;a00,a01,…a0n-1, a10,a11,…a1n-1,…am-10,am-11,…,am-1n-12列主序:以列为主序,按列递增访问数组元素,访问完第j列的所有元素之后再访问第j+1列的元素,同一列上按列递增访问数组元素;多维数组的存储结构:多维数组也是由多个一维数组组合而成,组合方式有一下两种;静态多维数组的顺序存储结构:可按行主序和列主序进行顺序存储;按行主序存储时,元素aij的地址为:Locaij= Loca00+in+jc按列主序存储时,Locaij= Loca00+jm+ic动态多维数组的存储结构;二维数组元素地址就是两个下标的线性函数;无论采用哪种存储结构,多维数组都是基于一维数组的,因此也只能进行赋值、取值两种存取操作,不能进行插入,删除操作;第六章:树是数据元素结点之间具有层次关系的非线性结构;在树结构中,除根以外的结点只有一个直接前驱结点,可以有零至多个直接后继结点;根没有前驱结点;树是由nn>=0个结点组成的有限集合树中元素通常称为结点;N=0的树称为空树;n>0大的树T;有一个特殊的结点称为根结点,它只有后继结点,没有前驱结点;除根结点之外的其他结点分为mm>=0个互不相交的集合T0,T1,T3……..,Tm-1,其中每个集合Ti0<=i<m本身又是一棵树,称为根的子树;树是递归定义的;结点是树大的基本单位,若干个结点组成一棵子树,若干棵互不相交的子树组成一棵树;树的每个结点都是该树中某一棵子树的根;因此,树是由结点组成的、结点之间具有层次关系大的非线性结构;结点的前驱结点称为其父母结点,反之,结点大的后继结点称为其孩子结点;一棵树中,只有根结点没有父母结点,其他结点有且仅有一个父母结点;拥有同一个父母结点的多个结点之间称为兄弟结点;结点的祖先是指从根结点到其父母结点所经过大的所有结点;结点的后代是指该结点的所有孩子结点,以及孩子的孩子等;结点的度是结点所拥有子树的棵数;度为0的结点称为叶子结点,又叫终端结点;树中除叶子结点之外的其他结点称为分支结点,又叫非叶子结点或非终端结点;树的度是指树中各结点度的最大值;结点的层次属性反应结点处于树中的层次位置;约定根结点的层次为1,其他结点的层次是其父母结点的层次加1;显然,兄弟结点的层次相同;树的高度或深度是树中结点的最大层次树;设树中x结点是y结点的父母结点,有序对x,y称为连接这两个结点的分支,也称为边;设X0,X1,….,Xk-1是由树中结点组成的一个序列,且Xi,Xi+10<=i<k-1都是树中的边,则该序列称为从X0到Xk-1的一条路径;路径长度为路径上的边数;在树的定义中,结点的子树T0,T1…..,Tm-1之间没有次序,可以交换位置,称为无序树,简称树;如果结点的子树T0,T1……,Tm-1从左到右是有次序的,不能交换位置,则称该树为有序树;森林是mm>=0棵互不相干的树的集合;给森林加上一个根结点就变成一棵树,将树的根节点删除就变成森林;二叉树的性质1:若根结点的层次为1,则二叉树第i层最多有2 的i-1次方i>=1个结点;二叉树的性质2:在高度为k的二叉树中,最多有2的k次方减一个结点;二叉树的性质3:设一棵二叉树的叶子结点数为n0,2度结点数为n2,则n0=n2+1;一棵高度为k的满二叉树是具有2的k次方减一个结点的二叉树;满二叉树中每一层的结点数目都达到最大值;对满二叉树的结点进行连续编号,约定根节点的序号为0,从根节点开始,自上而下,每层自左至右编号;一棵具有n个结点高度为k的二叉树,如果他的每个节点都与高度为k的满二叉树中序号为0~n-1的结点一一对应,则这棵二叉树为为完全二叉树;满二叉树是完全二叉树,而完全二叉树不一定是满二叉树;完全二叉树的第1~k-1层是满二叉树第k层不满,并且该层所有结点必须集中在该层左边的若干位置上;二叉树的性质4:一棵具有n个结点的完全二叉树,其高度k=log2n的绝对值+1二叉树的性质5:一棵具有n个结点的完全二叉树,对序号为i的结点,有若i=0,则i为根节点,无父母结点;若i>0,则i的父母结点的序号为i-1/2;若2i+1<n,则i的左孩子结点序号为2i+1;否则i无左孩子;若2i+2<n,则i的右孩子结点的序号为2i+2,否则i无右孩子;二叉树的遍历二叉树的遍历是按照一定规则和次序访问二叉树中的所有结点,并且每个结点仅被访问一次;二叉树的三种次序遍历1:先根次序;访问根节点,遍历左子树,遍历右子树;2:中根次序;遍历左子树,访问右子树,遍历右子树;3:后根次序;遍历左子树,遍历右子树,访问根节点;先根次序遍历时,最先访问根节点;后根次序遍历时,最后访问根节点;中根次序遍历时,左子树上的结点在根节点之前访问,右子树上的结点在根节点之后访问;二叉树的插入和删除操作P147二叉树的层次遍历P149习题P167 6—10,6—19第七章图是由定点集合及顶点间的关系集合组成的一种数据关边系;顶点之间的关系成为边;一个图G记为G=V,E,V是顶点A的有限集合,E是边的有限集合;即V={A|A属于某个数据元素集合}E={A,B|A,B属于V}或E={<A,B>|A,B属于V且PathA,B}其中PathA,B表示从顶点A到B的一条单向通路,即PathA,B是有方向的;无向图中的边事没有方向,每条边用两个顶点的无序对表示;有向图中的边是有方向,每条边用两个顶点的有序对表示;完全图指图的边数达到最大值;n个顶点的完全图记为Kn;无向完全图Kn的边数为nn-1/2,有向完全图Kn的边数为nn-1;子图:设图G==V,E,G’=V’,E’,若V’包含于V且E’包含于E,则称图G’是G的子图;若G’是G的真子图;连通图:在无向图G中,若从顶点VI到Vj有路径,则称Vi和Vj是联通的;若图G 中任意一对顶点Vi和VjVi不等于Vj都是联通的,则称G为连通图;非连通图的极大联通子图称为该图的联通分量;强连通图:在有向图中,若在每一对顶点Vi和VjVi不等于Vj之间都存在一条从Vi到Vj的路径,也存在一条从Vi到Vj的路径,也存在一条从Vi到Vj的路径,则称该图的强连通图;非强连通图的极大强连通子图称为该图的强连通图分量;图的遍历遍历图是指从图G中任意一个顶点V出发,沿着图中的边前行,到达并访问图中的所有顶点,且每个顶点仅被访问一次;遍历图要考虑一下三个问题:指定遍历的第一个访问顶点由于一个顶点可能与多个顶点相邻,因此要在多个邻接顶点之间约定一种访问次序;由于图中可能存在回路,在访问某个顶点之后,可能沿着某条路径又回到该顶点;深度优先搜索图的深度优先搜索策略是,访问某个顶点v,接着寻找v的另一个未被访问的邻接顶点w访问,如此反复执行,走过一条较长路径到达最远顶点;若顶点v没有未被访问的其他邻接顶点,则回到前一个被访问顶点,再寻找其他访问路径;图的深度优先搜索遍历算法P188联通的无回路的无向图,简称树;树中的悬挂点又成为树叶,其他顶点称为分支点;各连通分量均为树的图称为森林,树是森林;由于树中无回路,因此树中必定无自身环也无重边否则他有回路若去掉树中的任意一条边,则变成森林,成为非联通图;若给树加上一条边,形成图中的一条回路,则不是树;P191生成树和生成森林:一个连通无向图的生成树是该图的一个极小联通生成子图,它包含原图中所有顶点n个以及足以构成一棵树的n-1条边;一个非联通的无向图,其各连通图分量的生成图组成该图的生成森林;图的生成图或生成森林不是唯一的,从不同顶点开始、采用不同遍历可以得到不同的生成树或森林;在生成树中,任何树中,任何两个顶点之间只有唯一的一条路径;第八章折半查找算法描述P206,P207二叉排序树及其查找:二叉排序树或者是一棵空树;或者是具有下列性质的二叉树:每个结点都有一个作为查找依据的关键字,所有结点的关键字互不相同;若一个结点的左子树不空,则左子树上所有结点的关键字均小于这个节点的关键字;每个结点的左右子树也分别为二叉排序树;在一棵二叉排序树中,查找值为value的结点,算法描述如下:从根结点开始,设p指向根结点将value与p结点的关键字进行比较,若两者相等,则查找成功;若value值较小,则在p的左子树中继续查找;若value值较大,则在p的右子树中继续查找;重复执行上一步,直到查找成功或p为空,若p为空,则查找不成功;习题8-6第九章直接插入排序算法描述:p228冒泡排序算法的描述:p232快速排序算法描述p233直接选择排序算法描述p236直接选择排序算法实现如下:Public static void selectSortinttable{forint i=0;i<;i++{int min=I;forint j=i+1;j<;j++{iftablej<tableminmin=j;ifmin=i{int temp=tablei;tablei==tablemin;tablemin=temp;}}}}堆排序是完全二叉树的应用,是充分利用完全二叉树特性的一种选择排序;堆定义:设n个元素的数据序列{k0,k1,;;;;kn-1},当且仅当满足下列关系k1<=k2i+1且ki<=k2i+2 i=0,1,2,3,….,n/2-1或ki>==k2i+1且ki>=2i+2i=0,1,2,3,…..n/2-1时,序列{k0,k1…….kn-1}称为最小堆或最大堆;将最小大堆看成是一颗完全二叉树的层次遍历序列,则任意一个结点的关键字都小于等于大于等于它的孩子节点的关键字值,由此可知,根结点值最小大;根据二叉树的性质5,完全二叉树中的第i0<=i<n个结点,如果有孩子,则左孩子为第2i+1个结点,右孩子为第2i+2个结点;。
第1章绪论内容提要:◆数据结构研究的内容。
针对非数值计算的程序设计问题,研究计算机的操作对象以及它们之间的关系和操作。
数据结构涵盖的内容:◆基本概念:数据、数据元素、数据对象、数据结构、数据类型、抽象数据类型。
数据——所有能被计算机识别、存储和处理的符号的集合。
数据元素——是数据的基本单位,具有完整确定的实际意义。
数据对象——具有相同性质的数据元素的集合,是数据的一个子集。
数据结构——是相互之间存在一种或多种特定关系的数据元素的集合,表示为:Data_Structure=(D, R)数据类型——是一个值的集合和定义在该值上的一组操作的总称。
抽象数据类型——由用户定义的一个数学模型与定义在该模型上的一组操作,它由基本的数据类型构成。
◆算法的定义及五个特征。
算法——是对特定问题求解步骤的一种描述,它是指令的有限序列,是一系列输入转换为输出的计算步骤。
算法的基本特性:输入、输出、有穷性、确定性、可行性◆算法设计要求。
①正确性、②可读性、③健壮性、④效率与低存储量需求◆算法分析。
时间复杂度、空间复杂度、稳定性学习重点:◆数据结构的“三要素”:逻辑结构、物理(存储)结构及在这种结构上所定义的操作(运算)。
◆用计算语句频度来估算算法的时间复杂度。
第二章线性表内容提要:◆线性表的逻辑结构定义,对线性表定义的操作。
线性表的定义:用数据元素的有限序列表示◆线性表的存储结构:顺序存储结构和链式存储结构。
顺序存储定义:把逻辑上相邻的数据元素存储在物理上相邻的存储单元中的存储结构。
链式存储结构: 其结点在存储器中的位置是随意的,即逻辑上相邻的数据元素在物理上不一定相邻。
通过指针来实现!◆线性表的操作在两种存储结构中的实现。
数据结构的基本运算:修改、插入、删除、查找、排序1)修改——通过数组的下标便可访问某个特定元素并修改之。
核心语句:V[i]=x;顺序表修改操作的时间效率是O(1)2)插入——在线性表的第i个位置前插入一个元素实现步骤:①将第n至第i 位的元素向后移动一个位置;②将要插入的元素写到第i个位置;③表长加1。
数据结构各章重点
第1章
1.数据结构、物理(存储)结构、逻辑结构的概念
2.算法的概念,算法设计要达到的目标,时间复杂度的计算
第2章
1.线性表的逻辑结构,顺序和链式两类存储结构的优缺点
2.顺序表的插入、删除算法及其效率
3.单链表概念及插入、删除算法及效率
4.单链表算法设计
第3章
1.栈的概念和运算规则
2.顺序栈的出栈、入栈算法
3.队列的概念和运算规则
4.顺序循环队列的概念及出队、入队算法
5.栈的应用算法设计
第4章
1.串的基本概念
2.串的存储结构
3.串的模式匹配算法:BF算法
第5章
1.数组的基本概念,存储地址的计算
第6章
1.递归算法执行
2.汉诺塔算法设计
第8章
1.二叉树的概念及性质、存储结构
2.完全二叉树
3.二叉树的遍历思想和算法(包括层序遍历)算法设计
4.哈夫曼树的构造和编码
第9章
1.图的基本概念
2.图邻接矩阵表示和邻接表表示
3.图的广度遍历和深度遍历算法思想
4.最小生成树构造方法
5.最短距离求解方法
第10章
1.交换排序方法(冒泡,快排)
2.插入排序方法(直插,希尔)
3.选择排序方法(直接选择,堆排序)
4.归并排序
5.基数排序
6.各种排序算法的比较
第11章
1.顺序查找算法及效率
2.折半查找算法及效率
3.二叉排序树的构造、查找
4.哈希表的构造、查找方法
考试题型:选择,填空,应用题,算法设计题
复习范围:PPT,教材,给出的习题,作业等等
祝大家考试顺利!。