第六章实数教案
- 格式:doc
- 大小:60.50 KB
- 文档页数:15
人教版数学七年级下册6.3《实数》教案2一. 教材分析本节课是人教版数学七年级下册第六章第三节《实数》的教学内容。
在这一节中,学生将学习实数的概念、性质以及实数的运算。
实数是数学中的基础概念,包括有理数和无理数。
学生需要掌握实数的分类、实数的性质以及实数的运算方法。
这一节内容是学生进一步学习数学的基础,也是培养学生逻辑思维能力的重要环节。
二. 学情分析学生在七年级上学期已经学习了有理数的概念和运算,对数的概念和运算也有一定的了解。
但学生对无理数的概念和性质可能还比较陌生,需要通过本节课的学习来掌握。
同时,学生可能对实数的运算方法还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.知识与技能:使学生理解实数的概念,掌握实数的性质,学会实数的运算方法。
2.过程与方法:通过学生的自主探究和合作交流,培养学生的逻辑思维能力和问题解决能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学素养,使学生感受到数学的美。
四. 教学重难点1.重点:实数的概念、性质和运算方法。
2.难点:无理数的概念和性质,实数的运算方法。
五. 教学方法采用问题驱动法、自主探究法和合作交流法进行教学。
通过设置问题引导学生思考,激发学生的学习兴趣;给予学生足够的自主探究时间,培养学生的独立思考能力;学生进行合作交流,提高学生的团队协作能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示实数的概念、性质和运算方法。
2.练习题:准备一些关于实数的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过复习有理数和无理数的概念,引导学生思考实数的定义。
提问:同学们,我们已经学习了有理数和无理数,那么实数是什么呢?2.呈现(15分钟)利用PPT展示实数的概念和性质,让学生初步了解实数。
同时,介绍实数的运算方法,如加法、减法、乘法和除法。
3.操练(15分钟)让学生进行实数的运算练习,巩固所学知识。
可以让学生独立完成练习题,也可以进行小组合作,共同解决问题。
6.1.1平方根(第一课时)】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。
情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。
教学重点:算术平方根的概念和求法。
教学难点:算术平方根的求法。
一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm 5。
接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、254,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、52,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。
上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
2.归纳:⑴算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。
⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。
三、应用:例1、 求下列各数的算术平方根:⑴100 ⑵6449 ⑶971 ⑷0001.0 ⑸0 注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;③0的算术平方根是0。
由此例题教师可以引导学生思考如下问题:你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。
人教版七年级数学下册第六章《实数》教案执教七年级数学集体备课组2013.3. 8第六章实数6。
1平方根【第一课时】教学目标:【知识与技能】了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。
【过程与方法】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教具准备】小黑板科学计算器【教学过程】一、导入1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣。
2、板书:实数 1.1 平方根二、新授(一)探求新知1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。
3、你还能举出哪些无理数?(,)、、1/3是无理数吗?4、有理数和无理数统称为实数。
(二)知识归纳:1、板书:1.1平方根2、李老师家装修厨房,铺地砖10.8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)3、怎么算?每块地砖的面积是:10.8120=0。
09平方米。
由于0。
32=0。
09,因此面积为0。
09平方米的正方形,它的边长为0。
3米. 4、练习:由于( )=400,因此面积为400平方厘米的正方形,它的边长为()厘米。
5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。
6.1平方根(第1课时)邓伶亚赤壁市实验中学一、内容和内容解析1.内容《义务教育课程标准实验教科书——数学》(人教版)七年级下册第六章《实数》第一节第一课时的知识,主要介绍算术平方根的概念、表示方法和求法,以及用夹逼法估计2的大致范围.2.内容解析教材的地位和作用:第一,教科书先介绍算术平方根,让学生看到算术平方根与实际的联系,在学习算术平方根的基础上再学习平方根.算术平方根与之前学的平方运算存在互逆关系,也是下节课学习平方根的前提,具有承上启下的作用.第二,2是历史上人们发现的第一个无理数,引发了数学危机,也促使数系从有理数扩充到无理数。
教科书采用夹逼的方法,利用2的一系列不足近似值和过剩近似值来估计它的大小,进而给出2是无限不循环小数的结论,并指出53,等也是无限不循环小数,为后面学习无理数概念打下基础.第三,会用根号表示非负数的算术平方根,了解算术平方根的非负性,为以后学习二次根式做出了铺垫,提供知识积累.对本节课教学有利因素是:七年级学生会做加减乘除以及乘方运算了,但还是会发现一些生活中常见的数学问题(比如知道正方形面积求边长这一类的问题)没办法用这些计算方法解决,内心渴望新的计算方法出现,本节课的学习将实现他们内心的期盼.本节课教学不利因素是:第一、乘方运算是已知底数和指数,求幂,开方运算是已知幂和指数,求底数。
因为涉及到三个量的关系,与学过的互逆运算(加法和减法、乘法和除法)相比关系更为复杂,造成学生理解的困难.第二、对一个正数,开平方运算可以得到一正一负两个平方根,正的那个叫算术平方根.而教科书是从解决实际问题的需要出发,把算术平方根的学习放在平方根前面.对算术平方根是非负的理解,学生会有些困难.第三,对于可以表示成有理数的平方的数,由于它们的算术平方根都是有理数,所以学生容易把握这些算术平方根的大小.但是对于像2这样不能表示成一个有理数的平方的数,它的算术平方根到底有多大,对学生来说是一个新问题.基于以上分析,可以确定本节课的重点是:了解算术平方根的意义和性质.二、目标和目标解析1.目标(1)通过实际问题生成算术平方根的概念,了解平方与开平方互为逆运算,会用符号表示数的算术平方根.(2)通过互动游戏,巩固算术平方根的概念,并归纳出算术平方根的性质.(3)通过探究2的大小,了解2是无限不循环小数.2.目标解析目标(1)解析:学生经历由实际问题逐步抽象为数学问题的过程,建立初步的数感和符号感,发展抽象思维;在探索算术平方根概念的过程中,经历由具体到抽象、由特殊到一般的数学思想过程;通过对实际生活中问题的解决,体验数学来源于生活.目标(2)解析:学生在积极参与游戏的过程中,巩固算术平方根的概念;在师生问答互动的过程中,辨析概念,培养学生的推理、归纳能力.目标(3)解析:通过探究2的大小,培养估算意识,了解两个方向无限逼近的数学思想。
人教版七年级下册第六章实数教学设计
一、教学目标
1.知识目标:掌握实数的概念与性质,能够实现实数的加减乘除运算。
2.技能目标:能够应用实数进行简单实际问题的解决。
3.情感目标:培养学生的数学思维能力,提高数学学科的探索性与创造
性。
二、教学重点难点
1.教学重点:实数的概念与性质,实数的加减乘除运算。
2.教学难点:实数概念的理解与应用,实数加减乘除运算的实际应用。
三、教学步骤与方法
1. 激发兴趣,导入新课
通过一些有趣、生动的例子,引导学生认识实数的重要性与价值。
例如,通过一些实际应用情景的分析,让学生感受实数的实际应用之处。
2. 知识的教授
(1) 实数的概念与性质
通过教师讲解实数的定义与性质,以引导学生认识实数的本质特征:即包含所有有理数和无理数。
同时,带领学生感受实数与有理数、无理数之间的关系。
(2) 实数的加减运算
通过举例教学与练习,让学生掌握实数的加减运算,了解不同类型的实数加减操作的不同应用。
包括正数加正数、正数加负数、负数加正数、负数加负数的加减乘除运算。
1。
人教版七年级数学下册第六章《实数》教案执教七年级数学集体备课组2013。
3。
8第六章实数6.1平方根【第一课时】教学目标:【知识与技能】了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。
【过程与方法】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】会用平方根的概念求某些数的平方根,并能用根号加以表示.【教具准备】小黑板科学计算器【教学过程】一、导入1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣.2、板书:实数 1.1 平方根二、新授(一)探求新知1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。
3、你还能举出哪些无理数?(,)、、1/3是无理数吗?4、有理数和无理数统称为实数。
(二)知识归纳:1、板书:1。
1平方根2、李老师家装修厨房,铺地砖10。
8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)3、怎么算?每块地砖的面积是:10。
8120=0。
09平方米。
由于0.32=0。
09,因此面积为0。
09平方米的正方形,它的边长为0.3米。
4、练习:由于()=400,因此面积为400平方厘米的正方形,它的边长为()厘米。
5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。
(也可叫做二次方根)例如22=4,因此2是4的一个平方根;62=36,因此6是36的一个平方根。
6、说一说:9,16,25,49的一个平方根是多少?(三)探求新知:1、4的平方根除了2以外,还有别的数吗?2、学生探究:因为(—2)2=4,因此—2也是4的一个平方根。
3、除了2和-2以外,4的平方根还有别的数吗?(4的平方根有且只有两个:2与—2.)4、结论:如果r是正数a的一个平方根,那么a的平方根有且只有两个:r与—r.5、我们把a的正平方根叫做a的算术平方根,记作,读作:“根号a”;把a的负平方根记作-。
6、0的平方根有且只有一个:0。
0的平方根记作,即=0.7、负数没有平方根。
8、求一个非负数的平方根,叫做开平方.(四)巩固练习:1、分别求下列各数的平方根:36,25/9,1。
21。
(6和—6,5/3和—5/3,1.1和-1.1)(也可用号表示)2、分别求下列各数的算术平方根:100,16/25,0.49。
(10,4/5,0.7)三、小结与提高:1、面积是196平方厘米的正方形,它的边长是多少厘米?2、求算术平方根:81,25/144,0。
16四、教后感:6.1平方根【第二课时】【知识与技能】通过学习,进一步熟悉开平方的运算过程,能熟练的进行开平方的运算过程。
【过程与方法】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识.【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】能熟练的进行开平方运算,并熟悉各种不同形式的开平方运算,为后续学习打下基础.【教具准备】小黑板科学计算器【教学过程】一、复习导入1、求下列各数的平方根:0.81, 49/64,2、的算术平方根是( B )A.3 B.3 C.9 D.93、下列语句中正确的是( C )A.的平方根是 B.的算术平方根是C.的平方根是 D.的算术平方根是二、新授(一)平方根与算术平方根1、如果r是正数a的一个平方根,那么a的平方根有且只有两个:r与—r.我们把a的正平方根叫做a的算术平方根,记作,读作:“根号a";把a的负平方根记作—。
2、0的平方根有且只有一个:0。
0的平方根记作,即=0.3、负数没有平方根。
4、求一个非负数的平方根,叫做开平方。
5、小结:平方根的性质①一个正数有两个平方根,它们互为相反数;②0只有一个平方根,它就是0本身;③负数没有平方根。
算术平方根的性质①正数的算术平方根是正数;②0的算术平方根就是0;③负数没有算术平方根。
(二)课堂练习1、求下列各数的算术平方根:8+( )2; b2-2b+1 (b〈1)思路与技巧:被开方数是数字算式,一般可先算出算式的值,也可通过简单变形,把算式化为一个数的平方的形式。
被开方数是字母表达式时,应该先分析表达式的值是不是非负数,负数没有平方根.(参考答案:, 1—b)2、求各式的值: -= = =思路与技巧:此题要求正确理解的意义,其中a≥0.3、探究|a|与的关系。
(参考答案:|a|=)4、求下列各式中的x:(1)4x2—49=0; (2) x2=1.(此题的关键是把原等式转化成x2=a的形式,再利用平方根的定义及性质求出x.)5、如果一个正数的平方根是a+3与2a-15,那么这个正数是多少?思路与技巧:因为一个正数的两个平方根互为相反数,所以(a+3)+(2a—15)=0,从而求出a的值后,再求出这个数即可.(参考答案:49)三、小结与巩固1、平方根与算术平方根有怎样的性质?2、如果a2=b,已知b的值,求a的运算过程叫做(开平方)运算;它与(平方)运算互为逆运算.3、若=1。
732,那么=( 17。
32 ).4、盖房时,在墙上留出了0.81m2的正方形墙洞预备安装窗户,求正方形窗户的边长。
(参考答案:0。
9m)四、教后感:6。
1平方根【第三课时】【知识与技能】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【过程与方法】通过操作,拼出面积为8的正方形,抽象出无理数的概念.【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。
【教学难点】知道无理数的概念,并能正确进行表示。
【教具准备】小黑板科学计算器【教学过程】一、复习导入1、如果b=—169,那么-b有平方根吗?如果有,写出—b的平方根。
2、填空:()2= _______________(-)2=_______________= _______________ =_______________()2= _______________(-)2=_______________= _______________ =_______________二、无理数1、你能作出面积是8平方厘米的正方形吗?(学生交流讨论)2、将一个2×4的长方形,对折两次,得到如下的图形:沿着折痕DE、EC剪开,得到3个三角形,然后将这三个三角形拼成一个正方形,如图,这个正方形的面积等于原来长方形的面积8平方厘米。
3、分析:面积为8平方厘米的正方形,它的边长是多少呢?它的边长是整数吗?(估计面积为8平方厘米的正方形的边长的过程,就是一个用有理数无限逼近无理数的过程,这个过程注意不要忽略,一定要让学生动手去感受,体会到无理数是一个无限不循环的小数.)2.82=7。
84, 2。
92=8.412。
822=7.9524, 2.832=8.00892。
8282=7。
997584 2。
8292=8。
003241…………从上述数据,能看出什么?整个正方形的边长比2。
8大,比2。
9小;比2.82大,比2。
83小;比2。
828大,比2。
829小;……4、学生汇报,教师引导:面积为8平方厘米的正方形,它的边长是一个小数点后面的位数可以不断增加的小数.这个小数既不是有限小数,又不是无限循环小数,它叫做无限不循环小数.我们把这种无限不循环小数叫做无理数。
5、由于正方形的边长的平方等于它的面积,因此这个面积为8平方厘米的正方形的边长可以记作。
从上述分析可知,是一个无限不循环小数,因此是一个无理数.6、下列是无理数的有:,,,,,,,,0。
12213816……,7、用科学计算器求出平方根。
学生用科学计算器进行开平方运算,注意不同计算器的使用方法的区别。
三、小结与巩固1、什么是有理数?什么是无理数?2、有根号的数都是无理数,没有根号的都是有理数,这种说法对吗?如果不对,请举出反例。
四、教后感:6。
1平方根【第四课时】【知识与技能】12999 . c o m理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。
【过程与方法】通过练习,进一步熟悉开平方的运算过程,能熟练的进行开平方的运算过程。
【情感、态度与价值观】体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。
【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示.【教学难点】能熟练的进行开平方运算,并熟悉各种不同形式的开平方运算,为后续学习打下基础。
【教具准备】小黑板科学计算器【教学过程】一、复习导入1、小刚家厨房的面积为10平方米的正方形,它的边长是多少米?边长的近似值是多少?(用四舍五入的方法取到小数点后面第二位)(,)2、用计算器分别求,得近似值。
(用四舍五入的方法取到小数点后面第三位)3、0.36的平方根是( )4、(-5)2的算术平方根是( )二、练习内容(一)填空1、若=1.732,那么=()2、(—)2=( )3、 =()4、若x=6,则=()5、若=0,则x=()6、当x()时,有意义。
(二)选择1、下列各数中没有平方根的是A.(-3)2 B.0 C.1/3 D.-(-2)22、下列说法中正确的是( )A.—1的平方根是—1; B.2是4的平方根;C.如果一个数有平方根,那么这个数一定是正数;D.任何一个非负数的平方根都是非负数。
3、下列说法错误的是( )A.是2的一个平方根; B.是3的算术平方根;C.2的平方根也就是2的算术平方根; D.的平方等于2。