最新新人教版七级下册第六章实数全章教案复习过程
- 格式:doc
- 大小:456.50 KB
- 文档页数:8
人教版七年级数学下册第六章实数复习教学设计教学目标本节课的教学目标主要包括以下几点: - 复习并巩固学生对于实数的基本概念和性质的理解和掌握; - 引导学生运用实数的性质解决实际问题; - 培养学生的数学思维能力和解决问题的能力。
教学重点•实数的概念与性质的理解和掌握;•运用实数的性质解决实际问题。
教学难点•运用实数的性质解决复杂的实际问题。
教学准备•教材:人教版七年级数学下册;•教具:黑板、白板、彩色粉笔。
教学过程导入(5分钟)1.利用黑板上挂图,复习并巩固实数的概念和性质。
概念复习(10分钟)1.分发复习内容的手册并让学生互相检查彼此的手册。
老师利用黑板板书关键字让学生来解释。
2.整理学生的解释,对不明白的地方进行讲解和补充。
性质复习(15分钟)1.利用白板上的题目进行回顾复习,引导学生回想实数的性质和规律。
2.提问学生,让学生说出一些实数的性质,并解释其原因。
3.列举一些实例,让学生根据实数性质判断其真假。
实际问题解决(15分钟)1.通过黑板上的题目让学生掌握实数运算与实际问题解决的方法。
2.引导学生将日常生活中的实际问题转化为数学问题,并用实数的性质进行分析和解答。
3.讨论不同解题方法的优缺点,并让学生给出自己的思考和结论。
知识小结(5分钟)1.让学生根据课堂内容进行小结,总结实数复习的重点和难点。
练习与拓展(15分钟)1.分发练习册并布置一些巩固练习和拓展题目,让学生独立完成。
课堂讨论(10分钟)1.随机选择几道练习题进行课堂讨论,引导学生分享解题过程和策略。
2.对学生的答案进行点评,并讲解正确解题方法。
作业布置(5分钟)1.布置相应的家庭作业,要求学生继续巩固和拓展实数的相关知识。
教学反思通过本节课的复习教学设计,学生能够进一步巩固和理解实数的概念和性质,并能够运用实数的性质解决实际问题。
通过课堂上的讨论和练习,学生的数学思维能力和解决问题的能力得到了有效的培养和提升。
对于一些学习较慢的学生,可以给予更多的辅导和指导,帮助他们更好地理解和掌握实数的概念和性质。
6.1.1平方根(第一课时)】学问与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正驾驭算术平方根的意义。
情感看法与价值观:通过学习算术平方根,相识数与人类生活的亲密联络,建立初步的数感与符号感,开展抽象思维,为学生以后学习无理数做好打算。
教学重点:算术平方根的概念与求法。
教学难点:算术平方根的求法。
一、情境引入:问题:学校要实行美术作品竞赛,小欧很兴奋,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参与竞赛,这块正方形画布的边长应取多少?二、探究归纳:1.探究:学生能依据已有的学问即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm5。
接下来老师可以再深化地引导此问题:4,那么正方形的边长分别是假如正方形的面积分别是1、9、16、36、252,接下来老师可以引导性地提多少呢?学生会求出边长分别是1、3、4、6、5问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,老师需加以引导。
上面的问题,事实上是已知一个正数的平方,求这个正数的问题。
2.归纳:⑴算术平方根的概念:一般地,假如一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。
⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。
三、应用:例1、 求下列各数的算术平方根:注:①依据算术平方根的定义解题,明确平方与开平方互为逆运算; ②求带分数的算术平方根,须要先把带分数化成假分数,然后依据定义去求解;③0的算术平方根是0。
由此例题老师可以引导学生思索如下问题:你能求出-1,-36,-100的算术平方根吗?随意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。
人教版初中数学七年级下册第六章实数复习课教案课题 实数复习 课型 复习 备课人教学目标 1.体会特殊到一般、化零为整的认识过程,运用类比思想,强化符号意识,进一步培养估算和运算能力。
2.理解算术平方根、平方根、立方根概念;掌握算术平方根和平方根的区别于联系;了解平方根、立方根的计算器求法;巩固实数的运算。
3.从局部到整体,一点一练,分层过关。
教学过程设计教学环节教学学活动设计 一、知识网络专题一:平方根与立方根【1】算术平方根: 1.如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”。
特别规定:0的算术平方根仍然为0。
2.算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。
总体复习这一章的概况先复习平方根和立方根这一专题,熟悉概念,性质,以及这两个概念,性质之间的区别与联系3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。
【2】平方根: 1.概念:如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即)0(2≥=a a x ,当时,我们称x 是a 的平方根,记做)0(≥±=a a x :。
2.性质:(1)正数有两个平方根,他们互为相反数 (2)0的平方根是0; (3)负数没有平方根 3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。
【3】立方根 1.概念:如果x 的立方等于a ,那么,就称x 是a 的立方根,或者三次方根。
记做:3a (注意:这里的3是根指数,不能省略) 2.立方根的性质: (1)正数的立方根是正数, 负数的立方根是负数; 0的立方根是0. (2) 2.平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。
⼈教版七年级数学下册第六章《实数》单元复习教案设计⼈教版七年级下册《实数》单元复习教案教学⽬标:【知识与技能】掌握本章基本概念与运算,能⽤本章知识解决实际问题.【过程与⽅法】梳理本章知识点,挖掘知识点间的联系,并应⽤于实际解题中.【情感态度】领悟分类讨论思想,学会类⽐学习的⽅法.【教学重点】本章知识梳理及掌握基本知识点.【教学难点】应⽤本章知识解决实际与综合问题.【教学⽅法】演⽰法、类⽐法教学过程:⼀、作业回顾,提出错点【教学说明】将前⼀天的作业问题进⾏反馈,及时化解存在的问题。
⼆、课前⼩测,竞争⿎励1.下列说法正确的是()A.1的平⽅根是1B.1是1的算术平⽅根C. 22)(- 的平⽅根是2 D.0没有算术平⽅根 2.下列运算正确的是() A.31-=-31- B. 31-= 31 C. 31-= 31- D.31-=-313.化简:2242)()(-+-= . 4.6-的相反数是,倒数是,绝对值是 .5.绝对值⼩于7的正数有,它们的和是 .【教学说明】1.通过简单知识⼩测,让学⽣体会成就感的同时回顾本章知识.2.利⽤⼩组竞争提⾼学⽣的数学学习兴趣.三、知识要点,整体把握【教学说明】1.通过构建框图,帮助学⽣回忆本节所有基本概念和基本⽅法.2.帮助学⽣找出知识间联系,如平⽅与开平⽅,平⽅根与⽴⽅根,有理数与实数等等.四、类⽐精讲,释疑解惑【教学说明】在例题的分析讲解后,学⽣马上进⾏相关练习训练,通过师⽣互动形式,达到学以致⽤的效果。
例1.在实数21,3-,-3.14,0,π,2.161161161…,316中,⽆理数有() A.1个 B.2个 C.3个 D.4个分析:准确地进⾏实数的分类,能将各个数落相应类别的位置上.类⽐精练1.下列实数中,⽆理数是() A.4 B.2π C.2.161161116 D. 722 例2.若(a+1)2+02-b =,则a ,b 的值为 .【教学说明】本题由两个⾮负数的和为0,得到两个⾮负数为0,求出a,b 的值. 类⽐精练2.若x,y 为实数,且︱x+2︱+2-y =0,则2017)(y x 的值为() A.1 B.-1 C.2 D. -2 例3.计算(1)328163+-)((2)361535-++-【教学说明】实数的有关运算律及运算顺序、相反数、绝对值等与有理数的运算基本相同.有理数的运算律及运算顺序对实数同样适⽤.在进⾏实数混合运算时,⾸先要观察算式的特点,选择合适的⽅法进⾏计算.⼀般按照先乘⽅,后乘除,再加减的顺序计算,另外还要注意符号.类⽐精练3.(1)2325276)()(-+- (2)32274123-++-)(五、随堂练习,巩固要点4.下列等式正确的是()A. 13169±=B.552--=)(C. 327-D.1251253=--5.在10,3,325,-4中,最⼤的⼀个是()A. 10B.3C. 325D.-46.设a 为整数,若a 在数轴上的对应点如图所⽰,则a 的取值范围是()A.2﹤a ﹤3B. 4﹤a ﹤9C. -2﹤a ﹤3D. -4﹤a ﹤97.若1.1001.102=,则±0201.1=8.若10的纯⼩数是a ,则a =9.若a a --332=)(,则a 与3的⼤⼩关系是 .11.如果⼀个数的两个平⽅根分别是 2a-3和a+9,求这个数.【教学说明】结合中考考点,有针对性地进⾏训练,提⾼学⽣解题能⼒.六、拓展训练,能⼒提升14.已知a,b,c 为实数,且它们在数轴上的对应点位置如图所⽰:化简:a c a c b a b 2)(222---++-)(【教学说明】多块知识点相关结合,为中等能⼒的学⽣提升知识运⽤能⼒.七、作业布置:1.布置作业:课本P61 3.8.92.完成优化设计的课时的练习.教学反思:1.本课时教学可应⽤不同形式的练习引导学⽣认识相关的基本概念,强化对基本概念的理解以利于进⾏运算与判断.2.注重分类思想的认识与理解,强调实数计算能⼒的训练,打下坚实的运算能⼒的基础.。
6.1平方根(第1课时)邓伶亚赤壁市实验中学一、内容和内容解析1.内容《义务教育课程标准实验教科书——数学》(人教版)七年级下册第六章《实数》第一节第一课时的知识,主要介绍算术平方根的概念、表示方法和求法,以及用夹逼法估计2的大致范围.2.内容解析教材的地位和作用:第一,教科书先介绍算术平方根,让学生看到算术平方根与实际的联系,在学习算术平方根的基础上再学习平方根.算术平方根与之前学的平方运算存在互逆关系,也是下节课学习平方根的前提,具有承上启下的作用.第二,2是历史上人们发现的第一个无理数,引发了数学危机,也促使数系从有理数扩充到无理数。
教科书采用夹逼的方法,利用2的一系列不足近似值和过剩近似值来估计它的大小,进而给出2是无限不循环小数的结论,并指出53,等也是无限不循环小数,为后面学习无理数概念打下基础.第三,会用根号表示非负数的算术平方根,了解算术平方根的非负性,为以后学习二次根式做出了铺垫,提供知识积累.对本节课教学有利因素是:七年级学生会做加减乘除以及乘方运算了,但还是会发现一些生活中常见的数学问题(比如知道正方形面积求边长这一类的问题)没办法用这些计算方法解决,内心渴望新的计算方法出现,本节课的学习将实现他们内心的期盼.本节课教学不利因素是:第一、乘方运算是已知底数和指数,求幂,开方运算是已知幂和指数,求底数。
因为涉及到三个量的关系,与学过的互逆运算(加法和减法、乘法和除法)相比关系更为复杂,造成学生理解的困难.第二、对一个正数,开平方运算可以得到一正一负两个平方根,正的那个叫算术平方根.而教科书是从解决实际问题的需要出发,把算术平方根的学习放在平方根前面.对算术平方根是非负的理解,学生会有些困难.第三,对于可以表示成有理数的平方的数,由于它们的算术平方根都是有理数,所以学生容易把握这些算术平方根的大小.但是对于像2这样不能表示成一个有理数的平方的数,它的算术平方根到底有多大,对学生来说是一个新问题.基于以上分析,可以确定本节课的重点是:了解算术平方根的意义和性质.二、目标和目标解析1.目标(1)通过实际问题生成算术平方根的概念,了解平方与开平方互为逆运算,会用符号表示数的算术平方根.(2)通过互动游戏,巩固算术平方根的概念,并归纳出算术平方根的性质.(3)通过探究2的大小,了解2是无限不循环小数.2.目标解析目标(1)解析:学生经历由实际问题逐步抽象为数学问题的过程,建立初步的数感和符号感,发展抽象思维;在探索算术平方根概念的过程中,经历由具体到抽象、由特殊到一般的数学思想过程;通过对实际生活中问题的解决,体验数学来源于生活.目标(2)解析:学生在积极参与游戏的过程中,巩固算术平方根的概念;在师生问答互动的过程中,辨析概念,培养学生的推理、归纳能力.目标(3)解析:通过探究2的大小,培养估算意识,了解两个方向无限逼近的数学思想。
第六章 实数 小结与复习教学过程(一)引导学生复习知识要点: 1、平方根和开平方:(1)如果2(0)x a a =≥,那么x 叫做a 的平方根.a 的平方根记作a ±.若x≥0,则x 叫a 的算术平方根(2)求一个数平方根的运算叫开平方.开平方 互逆 平方(3)一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根 注:a 具有双重非负性:①被开方数a 是非负数,即a≥0.②算术平方根a 本身是非负数,即a ≥0.练习1:(1)求下列各数的算术平方根:① 900 ; ② 1 ; ③;6449④ 14 . (2) 求下列各数的平方根:① 11 ②49121③ 0.0004 ④ ()225- (3)25的算术平方根是 ;3的平方根是 ;16的平方根是 . (4)-27的立方根与16的平方根之和是 . (5)化简:①44.1-21.1; ②2328-+;2、立方根和开立方:(1)如果x 3=a ,那么x 叫做a 的立方根.a 的立方根记作3a .(2)求一个数平方根的运算叫开平方.互逆开立方 立方(3)正数有一个正的立方根,负数有一个负的立方根,0的立方根为0 练习2:(1).求下列各数的立方根:① -27; ②;1258③ 0.126; ④ -5. (2)求下列各式的值:①;83- ②;064.03③ 31258-; ④ ()339.3、实数:(1)实数定义及分类: ①按定义分类 ② 按正负分类(2)数从有理数扩充到实数后,有理数的相反数、倒数、绝对值、大小比较、运算律、运算顺序、运算法则对实数同样适用. (3)两个一一对应:实数 数轴上的点 有序实数对 坐标平面上的点 练习3:(1)下列说法正确的是( )A. 无限小数都是无理数B. 带根号的数都是无理数C. 无限不循环小数是无理数D. π是无理数, 故无理数也可能是有限小数 (2)2的相反数是 ,35的倒数是 ,3,0,—π的绝对值分别是 ,3—π的绝对值是 .(3)判断下列各数中,哪些是有理数,哪些是无理数.7,-π,3.14,1.732,0,722,-2,320,5-,38-,94,3.464664666, 0.3737737773……(相邻两个3之间7的个数逐次增加1). (4)计算:312564-38+-1001(-2)3×3064.0 4、重要公式2a =⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a aa (a )2=a (a≥0) 33a =a (a 取全体实数) (3a )3=a (a 取全体实数)练习4:若2x =3,则x= .23-a )(=3-a ,则a 的取值范围是 . 5、估算及比较大小 练习5:(1)17在两个相邻的整数 和 之间.(2)比较大小:(1)14与15;(2)4与15;(3)3与115- 6、利用平方根和立方根知识解方程 练习6:求下列各式中x 的值:(1)3x 2-27=0 (2) 2x 2=10 (3) 16(x-1)2=9 (4) 64-27x 3=0 (二)师生共同总结本章知识框架图 有理数互逆开平方平方根实数 乘方开方无理数 开立方 立方根 (三)课后巩固练习:1、(1)一个数的平方等于它本身,这个数是 ;一个数的平方根等于它本身,这个数是 ;一个数的算术平方根等于它本身,这个数是 ;(2)一个数的立方等于它本身,这个数是 ;一个数的立方根等于它本身,这个数是 . 2、求下列中的x 的值:①28)12(2=-x ②27)3(83=--x ③35123403-=+x 3、已知数m 的两个平方根分别为a+3和2a-15,求m 的值.4、若373-x 和互为相反数,试求x+y 的值.5、如果2-x +(x+y-3)2=0,求x,y 的值.6、已知322+-+-=x x y ,求x y 的平方根.7、当1<x<3时,求 ︳1-x ︳+23-x )(的值.8、已知a ,小数部分为b ,求代数式a 2-a -b 的值.9、判断下列各式中字母x 的取值范围: ①x - ②631-x ③2)3(-x ④34-+x x ⑤x x -+-44.10、(1)若 1.732 5.477==,.(2173808067.,.==, 板书设计:教学反思:本节课采取了以学生为主体的复习方式,注重对概念的理解与运用及内容间的相互联系.使学生在牢牢掌握基础知识的同时,进一步提高灵活运用知识解决实际问题的能力.。
6.1.1平方根(第一课时)】知识与技能:通过实际生活中的例子理解算术平方根的概念,会求非负数的算术平方根并会用符号表示;过程与方法:通过生活中的实例,总结出算术平方根的概念,通过计算非负数的算术平方根,真正掌握算术平方根的意义。
情感态度与价值观:通过学习算术平方根,认识数与人类生活的密切联系,建立初步的数感和符号感,发展抽象思维,为学生以后学习无理数做好准备。
教学重点:算术平方根的概念和求法。
教学难点:算术平方根的求法。
一、情境引入:问题:学校要举行美术作品比赛,小欧很高兴,他想裁出一块面积为225dm 的正方形画布,画上自己得意的作品参加比赛,这块正方形画布的边长应取多少?二、探索归纳:1.探索:学生能根据已有的知识即正方形的面积公式:边长的平方等于面积,求出正方形画布的边长为dm 5。
接下来教师可以再深入地引导此问题:如果正方形的面积分别是1、9、16、36、254,那么正方形的边长分别是多少呢?学生会求出边长分别是1、3、4、6、52,接下来教师可以引导性地提问:上面的问题它们有共同点吗?它们的本质是什么呢?这个问题学生可能总结不出来,教师需加以引导。
上面的问题,实际上是已知一个正数的平方,求这个正数的问题。
2.归纳:⑴算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a 那么这个正数x 叫做a 的算术平方根。
⑵算术平方根的表示方法:a 的算术平方根记为a ,读作“根号a ”或“二次很号a ”,a 叫做被开方数。
三、应用:例1、 求下列各数的算术平方根:⑴100 ⑵6449 ⑶971 ⑷0001.0 ⑸0 注:①根据算术平方根的定义解题,明确平方与开平方互为逆运算;②求带分数的算术平方根,需要先把带分数化成假分数,然后根据定义去求解;③0的算术平方根是0。
由此例题教师可以引导学生思考如下问题:你能求出-1,-36,-100的算术平方根吗?任意一个负数有算术平方根吗?归纳:一个正数的算术平方根有1个;0的算术平方根是0;负数没有算术平方根。
即:只有非负数有算术平方根,如果a x =有意义,那么0,0≥≥x a 。
注:0≥a 且0≥a 这一点对于初学者不太容易理解,教师不要强求,可以在以后的教学中慢慢渗透。
例2、 求下列各式的值:(1)4 (2)8149 (3)2)11(- (4)26 分析:此题本质还是求几个非负数的算术平方根。
解:(1)24= (2)978149= (3)1111)11(22==- (4)662= 例3、 求下列各数的算术平方根:⑴23 ⑵34 ⑶2)10(- ⑷6101 解:根据学生的学习能力和理解能力可进行如下总结:1、由332=,662=,可得)0(2≥=a a a2、由11)11(2=-,10)10(2=-,可得)0(2≤-=a a a教师需强调0=a 时对两种情况都成立。
四、随堂练习:1、算术平方根等于本身的数有_____。
2、求下列各式的值:1, 259, 25, 2)7(- 3、求下列各数的算术平方根:0025.0, 121, 24, 2)21(-,1691 4、已知,011=-++b a 求b a 2+的值。
五、课堂小结1、这节课学习了什么呢?2、算术平方根的具体意义是怎么样的?3、怎样求一个正数的算术平方根6.1.3平方根(第二课时)教学重点: 了解开方和乘方互为逆运算,弄懂平方根与算术平方根的区别和联系。
教学难点:平方根与算术平方根的区别和联系。
一、情境导入如果一个数的平方等于9,这个数是多少?讨论:这样的数有两个,它们是3和-3.注意()932=-中括号的作用. 又如:2542=x ,则x 等于多少呢? 二、探索归纳:1、平方根的概念:如果一个数的平方等于a ,那么这个数就叫做a 的平方根.即:如果2x =a ,那么x 叫做a 的平方根.求一个数的平方根的运算,叫做开平方.例如:±3的平方等于9,9的平方根是±3,所以平方与开平方互为逆运算.2、观察:课本P45的图6.1-2.图6.1-2中的两个图描述了平方与开平方互为逆运算的运算过程,揭示了开平方运算的本质.并根据这个关系说出1,4,9的平方根.例4 求下列各数的平方根。
(1) 100 (2) 169 (3) 0.25 3、按照平方根的概念,请同学们思考并讨论下列问题:正数的平方根有什么特点?0的平方根是多少?负数有平方根吗?一个是正数有两个平方根,即正数进行开平方运算有两个结果,一个是负数没有平方根,即负数不能进行开平方运算,符号:正数a 的算术平方根可用a 表示;正数a 的负的平方根可用-a 表示.例5 求下列各式的值。
(1)144, (2)-81.0, (3)196121± (4)256,()256 归纳:平方根和算术平方根两者既有区别又有联系.区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的负平方根是它的算术平方根的相反数,根据它的算术平方根可以立即写出它的负平方根。
四、小结:1、什么叫做一个数的平方根?2、正数、0、负数的平方根有什么规律?3、怎样求出一个数的平方根?数a 的平方怎样表示?6.2 立方根教学重点:立方根的概念和求法教学难点:立方根的求法。
一、情景引入:要制作一种容积为327m 的正方体形状的包装箱,这种包装箱的边长应该是多少?二、探索归纳:1.探索:设这种包装箱的边长为xm ,则273=x ,这就是要求一个数,使它的立方等于27.因为 2733=,所以 3=x ,即这种包装箱的边长应为m 3。
2.归纳:立方根的概念:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根。
① 立方根的表示方法:如果a x =3,那么x 叫做a 的立方根。
记作3a x =,3a 读作三次根号a 。
其中a 是被开方数,3是根指数,3a 中的根指数3不能省略。
② 开立方的概念:求一个数的立方根的运算,叫做开立方。
开立方与立方互为逆运算,可以根据这种关系求一个数的立方根。
3、探索立方根的特点:根据立方根的意义填空,思考正数、0、负数的立方根各有什么特点?(1)因为823= ,所以8的立方根是( );(2)因为( 125.0)3=,所以125.0的立方根是( ) ;(3)因为( 0)3=,所以0的立方根是( );(4)因为( 8)3-=,所以8- 的立方根是( );(5)因为( 278)3-=,所以278-的立方根是( )。
学生独立完成后,教师要引导学生从正、负数和零三方面去归纳总结立方根的特点。
归纳:正数的立方根是正数;负数的立方根是负数;0的立方根是0.4.探究互为相反数的两个数的立方根的关系: 填空:因为=-38___,=-38___,所以38-___38-;因为=-327___,=-327___,所以327-___327- 由上面两个例子可归纳出:一般地,33a a -=-。
注:这个关系对于正数、负数、零都成立。
求负数的立方根时,可以先求出这个负数的绝对值的立方根,然后再确它的相反数。
三、应用:例1、 求下列各式的值:(1)364 (2)3125- (3)36427- 分析:根据立方根的意义求解。
解:(1)4643= (2)51253-=- (3)3273-=-例2、 求下列各式中x 的值:(1)008.03=x (2)8333=-x (3)8)1(3-=-x 分析:此题的本质还是求立方根。
解:(1)∵008.03=x ∴3008.0=x ∴2.0=x(2)∵8333=-x ∴8273=x ∴23=x (3)∵8)1(3-=-x ∴21=-x ∴3=x 例3、用计算器计算3310,3610,3910,3310-,3610-的值,你发现了什么?并总结出来。
利用你前面发现的规律填空:已知62163=,则=3000216.0____,=3216000____。
分析:在用计算器求立方根时按键顺序是:3、被开立方的数字、=, 这样即可显示出计算结果 解:101033=,2361010=,3391010=,1331010--=,2361010--=由此发现:一个数扩大或缩小1000倍时,它的立方根扩大或缩小10倍。
=3000216.006.0,602160003=。
四、随堂练习:1、 立方根等于本身的数是___,如果,113a a -=-则=a ___。
2、64-的立方根是____,3)4(-的立方根是____。
3、已知163+x 的立方根是4,求42+x 的算术平方根。
4、已知43=+x ,求33)10(-x 的值。
5、比较大小:(1)32.1__31.2,(2)332-__343-,(3)3__37 五、课堂小结立方根和开立方的定义.2.正数、0、负数的立方根的特征3.立方根与平方根的异同.6.3.1实数(第一课时)教学重点:了解无理数和实数的概念;对实数进行分类。
一、复习引入无理数: 利用计算器把下列有理数95,119,847,53,3-写成小数的形式,它们有什么特征? 发现上面的有理数都可以写成有限小数或无限循环小数的形式 即:5.095,18.0119,875.5847,6.053,0.33&&&===-=-= 归纳:任何一个有理数(整数或分数)都可以写成有限小数或者无限循环小数的形式,反过来,任何有限小数或者无限循环小数也都是有理数。
通过前面的学习,我们知道有很多数的平方根或立方根都是无限不循环小数,把无限不循环小数叫做无理数。
比如33,5,2-等都是无理数。
14159265.3=π…也是无理数。
二、实数及其分类:1、实数的概念:有理数和无理数统称为实数。
2、实数的分类:3、实数与数轴上点的关系:我们知道每个有理数都可以用数轴上的点来表示。
物理是合乎是否也可以用数轴上的点表示出来吗?活动1:直径为1个单位长度的圆其周长为π,把这个圆放在数轴上,圆从原点沿数轴向右滚动一周,圆上的一点由原点到达另一个点,这个点的坐标就是π,由此我们把无理数π用数轴上的点表示了出来。
活动2:在数轴上,以一个单位长度为边长画一个正方形,则其对角线的长度就是2以原点为圆心,正方形的对角线为半径画弧,与正半轴的交点就表示2,与负半轴的交点就是2-。
事实上通过这种做法,我们可以把每一个无理数都在数轴上表示出来,即数轴上有些点表示无理数。
归纳:①实数与数轴上的点是一一对应的。
即没一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都表示一个实数。
②对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大。
三、应用:例1、下列实数中,无理数有哪些?2,172,37.0&&-,14.3,35,0,⋅⋅⋅11121211211121.10,π,2)4(-。