数学一轮复习高频考点集中练概率统计含解析
- 格式:doc
- 大小:130.00 KB
- 文档页数:8
中考数学一轮复习专题解析—统计与概率复习目标1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;考点梳理一、数据的收集及整理1.一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果、得出结论.2.调查收集数据的方法:普查与抽样调查.要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想.(3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样.3.数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图.【特别提醒】这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.例1. 连云港市实行中考改革,需要根据该市中学生体能的实际情况重新制定中考体育标准.为此,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试.测试的情况绘制成表格如下:次数 6 12 15 18 20 25 27 30 32 35 36 人数 1 1 7 18 10 5 2 2 1 1 2⑴求这次抽样测试数据的平均数、众数和中位数;⑵根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由;⑶根据⑵中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少?【答案】⑴该组数据的平均数众数为18,中位数为18;⑵该市中考女生一分钟仰卧起坐项目测试的合格标准应定为18次较为合适,因为众数及中位数均为18,且50人中达到18次的人数有41人,确定18次能保证大多数人达标;⑶根据⑵的标准,估计该市中考女生一分钟仰卧起坐项目测试的合格率为82%.二、数据的分析1.基本概念:总体:把所要考查的对象的全体叫做总体;个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本;样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数;极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果通常称为方差.计算方差的公式:设一组数据是,是这组数据的平均数。
高频考点集中练概率统计1.(2019·全国卷Ⅰ)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是( )A.8号学生B.200号学生C.616号学生D.815号学生【解析】选C.由已知将1 000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{a n},公差d=10,所以a n=6+10(n-1)(n∈N*),若8=6+10(n-1),则n=1.2,不合题意;若200=6+10(n-1),则n=20.4,不合题意;若616=6+10(n-1),则n=62,符合题意;若815=6+10(n-1),则n=81.9,不合题意.故选C.【真题拾贝】系统抽样适合抽取样本较多且个体之间没有明显差异的总体,系统抽样最主要的特征是,所抽取的样本相邻编号等距离,可以利用等差数列的性质解答.2.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A.0.3B.0.4C.0.6D.0.7【解析】选B.方法一:画Venn图,如图设只用非现金支付(不用现金支付)的概率为x,则0.45+0.15+x=1,解得x=0.4,所以不用现金支付的概率为0.4.方法二:记“用现金支付”为事件A,“用非现金支付”为事件B,则“只用非现金支付(不用现金支付)”为事件B-(A∩B),由已知,P(A)=0.45+0.15=0.6,P(A∩B)=0.15,又P(A∪B)=P(A)+P(B)-P(A∩B)=0.6+P(B)-0.15=1,所以P(B)=0.55,P(B-(A∩B))=P(B)-P(A∩B)=0.55-0.15=0.4.【真题拾贝】解决此类问题:①判断事件的基本关系利用概率的计算公式计算;②若事件为互斥事件的和,则由公式P(A∪B)=P(A)+P(B)+P(AB)计算可得;③若事件为独立事件的积,则由公式P(AB)=P(A)P(B)计算可得.3.(2019·全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( )A.中位数B.平均数C.方差D.极差【命题思维分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【解析】选A.由于去掉1个最高分、1个最低分,不影响中间的数值,故中位数不变.【真题拾贝】本题旨在考查学生对中位数、平均数、方差、极差本质的理解.理解概念即可.4.(2019·全国卷Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )A.0.5B.0.6C.0.7D.0.8【解析】选C.由题意知阅读过《红楼梦》而没有阅读过《西游记》的学生人数为80-60=20,所以阅读过《西游记》的学生人数为90-20=70,故所求的估计值为=0.7.【真题拾贝】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.5.(2019·全国卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A. B. C. D.【命题思维分析】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.首先确定所有基本事件数,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【解析】选B.从5只兔子中随机取出3只,总的基本事件有10种;又因为只有3只测量过某项指标,故恰有2只测量过该指标的种数为6,则恰有2只测量过该指标的概率为,即.【真题拾贝】(1)基本事件是最简单的随机事件;不同的基本事件不可能同时发生.(2)画树形图时,应注意验证试验是否完成,避免漏掉中间环节;如果事件与顺序无关,则每一分支对应的基本事件中的元素位置可以互换,若事件与顺序相关,则每一分支对应的基本事件中的元素位置不能改变,否则就成为另一个基本事件了.6.(2018·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图: 世纪金榜导学号则下面结论中不正确的是( )A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【命题思维分析】首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.【解析】选A.设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项符合题意;新农村建设前其他收入为0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项不符合题意;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项不符合题意;新农村建设后,养殖收入与第三产业收入的总和占经济收入的30%+28%=58%>50%,所以超过了经济收入的一半,所以D项不符合题意.【真题拾贝】该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,从图中读出相应的信息即可得结果.7.(2018·全国卷Ⅰ)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC,△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为p1,p2,p3,则世纪金榜导学号( )A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3【命题思维分析】首先设出直角三角形三条边的长度,根据其为直角三角形,从而得到三边的关系,之后应用相应的面积公式求得各个区域的面积,根据其数值大小,确定其关系,再利用面积型几何概型的概率公式确定出p1,p2,p3的关系,从而求得结果.【解析】选A.方法一:取AB=AC=2,则BC=2,所以区域Ⅰ的面积为SⅠ=×2×2=2,区域Ⅲ的面积为SⅢ=·π()2-2=π-2,区域Ⅱ的面积为SⅡ=π·12-SⅢ=2,故p1=p2.方法二:设AC=b,AB=c,BC=a,则有b2+c2=a2,从而可以求得△ABC的面积为SⅠ=bc,黑色部分的面积为SⅡ=·+·-·-bc=+bc=·+bc=bc,其余部分的面积为SⅢ=·-bc=-bc,所以有SⅠ=SⅡ,根据面积型几何概型的概率公式,可以得到p1=p2.【真题拾贝】高考考查的问题常见类型有:长度型、角度型、面积型、体积型,求与长度、角度、面积、体积有关的几何概型问题,主要考查几何概型的基本事件的求解和概率的计算问题.一定要注意几何概型中基本事件的“等可能性”.8.(2018·全国卷Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下: 世纪金榜导学号未使用节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)[0.6,0.7)频数 1 3 2 4 9 26 5 使用了节水龙头50天的日用水量频数分布表日用水量[0,0.1)[0.1,0.2)[0.2,0.3)[0.3,0.4)[0.4,0.5)[0.5,0.6)频数 1 5 13 10 16 5(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图.(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率.(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【命题思维分析】(1)根据题中所给的使用了节水龙头50天的日用水量频数分布表,算出落在相应区间上的频率,借助于直方图中长方形的面积表示的就是落在相应区间上的频率,从而确定出对应矩形的高,从而得到直方图;(2)结合直方图,算出日用水量小于0.35的矩形的面积总和,即为所求的频率;(3)根据组中值乘以相应的频率作和求得50天日用水量的平均值,作差乘以365天得到一年能节约用水多少m3,从而求得结果.【解析】(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35 m3的概率的估计值为0.48.(3)该家庭未使用节水龙头50天的日用水量的平均数为=(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48.该家庭使用了节水龙头后50天的日用水量的平均数为=(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3).【真题拾贝】该题考查的是有关统计的问题,涉及的知识点有频率分布直方图的绘制、利用频率分布直方图计算变量落在相应区间上的概率、利用频率分布直方图求平均数,在解题的过程中,需要认真审题,细心运算,仔细求解,就可以得出正确结果.9.(2018·全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图: 世纪金榜导学号(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由.(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m 不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K2=,P0.050 0.010 0.001k0 3.841 6.635 10.828【命题思维分析】(1)计算两种生产方式的平均时间即可;(2)计算出中位数,再由茎叶图数据完成列联表;(3)由公式计算出K2,再与6.635比较可得结果.【解析】(1)第二种生产方式的效率更高.理由如下:方法一:由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80 min,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79 min.因此第二种生产方式的效率更高.方法二:由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5 min,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5 min.因此第二种生产方式的效率更高.方法三:由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80 min;用第二种生产方式的工人完成生产任务平均所需时间低于80 min,因此第二种生产方式的效率更高.方法四:由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.(2)由茎叶图知m==80.列联表如下:超过m 不超过m第一种生产方式15 5第二种生产方式 5 15(3)由于K2的观测值k==10>6.635,所以能在犯错误的概率不超过0.01的前提下认为两种生产方式的效率有差异.【真题拾贝】独立性检验的一般步骤:(1)根据样本数据制成2×2列联表;(2)根据公式K2=计算K2的值;(3)查表比较K2与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)独立性检验与统计、概率知识综合考查是高考经常考查的一种命题形式,是高考命题的焦点.。
6.2 古典概型及条件概率(精练)(基础版)题组一古典概型1.(2022·山东滨州)法国著名的数学家笛卡尔曾经说过:“阅读优秀的书籍,就是和过去时代中最杰出的人们(书籍的作者)一一进行交谈,也就是和他们传播的优秀思想进行交流,阅读会让精神世界闪光”.某研究机构为了解某地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示:(1)求a;(2)根据频率分布直方图,估计该地年轻人每天阅读时间的中位数(精确到0.1)(单位:分钟);(3)为了进一步了解年轻人的阅读方式,研究机构采用分层抽样的方法从每天阅读时间位于分组[50,60),[60,70)和[80,90)的年轻人中抽取5人,再从中任选3人进行调查,求其中恰好有2人每天阅读时间位于[80,90)的概率.2.(2022·青海西宁)新冠肺炎疫情期间,为确保“停课不停学”,各校精心组织了线上教学活动,开学后,某校采用分层抽样的方法从三个年级的学生中抽取一个容量为150的样本进行关于线上教学实施情况的问卷调查.已知该校高一年级共有学生660人,抽取的样本中高二年级有50人,高三年级有45人.下表是根据抽样调查情况得到的高二学生日睡眠时间(单位:h)的频率分布表.分组频数频率[)6,6.550.10[)6.5,780.16[)7,7.5x0.14[)7.5,812y(1)求该校学生总数及频率分布表中实数,,x y z 的值;(2)已知日睡眠时间在区间[)6,6.5的5名高二学生中,有2名女生,3名男生,若从中任选2人进行面谈,求选中的2人恰好为一男一女的概率.3.(2022·河北张家口)英才中学为普及法律知识,组织高一学生学习法律常识小册子,并随机抽出100名学生进行法律常识考试,并将其成绩制成如图所示的频率分布直方图.(1)估计这100人的平均成绩;(2)若成绩在[]90,100的学生中恰有两位是男生,现从成绩在[]90,100的学生中抽取3人去校外参加社会法律知识竞赛,求其中恰有一位男生的概率.4.(2022·河南·商丘市)蹦床是一项将运动和美学完美结合的运动,随着全民健身时代的到来,蹦床越来越受到人们的喜爱,某大型蹦床主题公园为吸引顾客,推出优惠活动对首次消费的顾客,先注册成为会员,首次按60元收费,对会员逐次消费给予相应优惠,标准如下:该蹦床主题公园从注册的会员中,随机抽取了100位统计他们的消费次数,得到数据如下:假设每消费一次,蹦床主题公园的成本为30元,根据所给数据,解答下列问题: (1)以频率估计概率,估计该蹦床主题公园一位会员至少消费2次的概率; (2)某会员消费6次,求这6次消费中,该蹦床主题公园获得的平均利润;(3)以样本估计总体,假设从消费次数为3次和4次的会员中采用分层抽样的方法共抽取6人进行满意度调查,再从这6人中随机选取3人进一步了解情况,求抽取的3人中恰有一人的消费次数为4次的概率. 5.(2022·广西柳州)某政府部门为促进党风建设,拟对政府部门的服务质量进行量化考核,每个群众办完业务后可以对服务质量进行打分,最高分为100分.上个月该部门对100名群众进行了回访调查,将他们按所打分数分成以下几组:第一组[)0,20,第二组[)20,40,第三组[)40,60,第四组[)60,80,第五组[]80,100,得到频率分布直方图如图所示.(1)估计所打分数的众数,平均数;(同一组中的数据用该组区间的中点值作为代表)(2)该部门在第一、二组群众中按比例分配的分层抽样的方法抽取6名群众进行深入调查,之后将从这6人中随机抽取2人聘为监督员,求监督员来自不同组的概率. 1.(2022·吉林)先后抛掷一颗质地均匀的骰子两次,观察向上的点数.在第一次向上的点数为奇数的条件下,两次点数和不大于7的概率为( ) A .1318B .712C .310D .232(2022·江西·高三阶段练习(理))从1,2,…,6这六个数字中随机抽取2个不同的数字,记事件A =“恰好抽取的是2,4”,B =“恰好抽取的是4,5”,C =“抽取的数字里含有4”.则下列说法正确的是( ) A .()()()P AB P A P B =B .1()6P C =C .()()P C P AB = D .(|)(|)P A C P B C =3.(2022·福建·莆田华侨中学模拟预测)甲罐中有3个红球、2个黑球,乙罐中有2个红球、2个黑球,先从甲罐中随机取出一球放入乙罐,以A 表示事件“由甲罐取出的球是黑球”,再从乙罐中随机取出一球,以B 表示事件“由乙罐取出的球是黑球”,则下列说法错误的是( ) A .()25P A =B .()3|5P B A =C .()1325P B =D .()1|2P A B =题组二 条件概型4.(2022·山东济宁)在8件同一型号的产品中,有3件次品,5件合格品,现不放回的从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是( ) A .128B .110 C .19D .275.(2022·黑龙江)已知()12P AB =,()35P A =,则()P B A 等于( ).A .56B .910C .310D .1106.(2022·湖南·长沙一中高三开学考试)每年的6月6日是全国爱眼日,某位志愿者跟踪调查电子产品对视力的影响,据调查,某高校大约有45%的学生近视,而该校大约有20%的学生每天操作电子产品超过1h ,这些人的近视率约为50%.现从每天操作电子产品不超过1h 的学生中任意调查一名学生,则他近视的概率为( ) A .716B .38C .516 D .147.(2022·河北张家口·高二期末)某个闯关游戏规定:闯过前一关才能去闯后一关,若某一关没有通过,则游戏结束.小明闯过第一关的概率为34,连续闯过前两关的概率为12,连续闯过前三关的概率为13,且各关相互独立.事件A 表示小明第一关闯关成功,事件C 表示小明第三关闯关成功,则()|P C A =( )A .18B .23C .13D .498.(2022·山东济宁)(多选)设M 、N 是两个随机事件,则下列等式一定成立的是( )A .()()()P M N P M P N ⋃=+ B .()()1P MN P MN =- C .()()()|P MN P M P N M =D .()()()()||P N M P M P M N P N =9.(2022·福建福州)(多选)甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱,分别以12,A A 和3A 表示由甲箱取出的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱取出的球是红球的事件,则( ) A .事件B 与事件3A 相互独立 B .()159P A B =C .()2655P A B =D .()922P B =题组三 古典与条件综合运用1.(2022·河南)从标有1,2,3,4的卡片中不放回地先后抽出两张卡片,则4号卡片“第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到的概率”分别是()A.14,14,12B.14,14,14C.13,13,12D.14,13,122.(2023·全国·高三专题练习(理))一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.(|)(|)P B AP B A与(|)(|)P B AP B A的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.(ⅰ)证明:(|)(|)(|)(|)P A B P A BRP A B P A B=⋅;(ⅰ)利用该调查数据,给出(|),(|)P A B P A B的估计值,并利用(ⅰ)的结果给出R的估计值.附22()()()()()n ad bcKa b c d a c b d-=++++,3.(2022·全国·高三专题练习)现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求:(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.6.2 古典概型及条件概率(精练)(基础版)1.(2022·山东滨州)法国著名的数学家笛卡尔曾经说过:“阅读优秀的书籍,就是和过去时代中最杰出的人们(书籍的作者)一一进行交谈,也就是和他们传播的优秀思想进行交流,阅读会让精神世界闪光”.某研究机构为了解某地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示:(1)求a ;(2)根据频率分布直方图,估计该地年轻人每天阅读时间的中位数(精确到0.1)(单位:分钟); (3)为了进一步了解年轻人的阅读方式,研究机构采用分层抽样的方法从每天阅读时间位于分组[50,60),[60,70)和[80,90)的年轻人中抽取5人,再从中任选3人进行调查,求其中恰好有2人每天阅读时间位于[80,90)的概率.【答案】(1)0.020a =(2)74.4分钟(3)310【解析】(1)因为频率分布直方图的所有矩形面积之和为1,所以(0.0100.0450.005)101a a ++++⨯=,解得0.020a =.(2)因为(0.0100.020)100.30.5+⨯=<,(0.0100.0200.045)100.750.5++⨯=>.则中位数位于区间[70,80)内,设中位数为x ,则0.3(70)0.0450.5x +-⨯=,解得74.4x ≈,所以估计该地年轻人阅读时间的中位数约为74.4分钟.(3)由题意,阅读时间位于[50,60)的人数为1000.110⨯=,阅读时间位于[60,70)的人数为1000.220⨯=,阅读时间位于[80,90)的人数为1000.220⨯=,所以在这三组中按照分层抽样抽取5人的抽样比例为515010=,则抽取的5人中位于区间[50,60)有1人,设为a ,位于区间[60,70)有2人,设为1b ,2b ,位于区间[80,90)有2人,设为1c ,2c .则从5人中任取3人,样本空间()()()(){12111221Ω,,,,,,,,,,,,a b b a b c a b c a b c =()()()()()()}2212121122112212,,,,,,,,,,,,,,,,,a b c a c c b b c b b c b c c b c c .含有10个样本点.设事件A 为“恰有2人每天阅题组一 古典概型读时间在[80,90)”,()()(){}12112212,,,,,,,,A a c c b c c b c c =,含有3个样本点.所以3()10P A =,所以恰好有2人每天阅读时间位于[80,90)的概率为310. 2.(2022·青海西宁)新冠肺炎疫情期间,为确保“停课不停学”,各校精心组织了线上教学活动,开学后,某校采用分层抽样的方法从三个年级的学生中抽取一个容量为150的样本进行关于线上教学实施情况的问卷调查.已知该校高一年级共有学生660人,抽取的样本中高二年级有50人,高三年级有45人.下表是根据抽样调查情况得到的高二学生日睡眠时间(单位:h )的频率分布表.(1)求该校学生总数及频率分布表中实数,,x y z 的值;(2)已知日睡眠时间在区间[)6,6.5的5名高二学生中,有2名女生,3名男生,若从中任选2人进行面谈,求选中的2人恰好为一男一女的概率.【答案】(1)1800人,7,0.24,8x y z ===(2)35【解析】(1)设该校学生总数为n ,由题意1501505045660n --=,解得1800n =, ∴该校学生总数为1800人.由题意0.1450x=,解得127,0.2450x y ===,()505812108.z x =-----= (2)记“选中的2人恰好为一男一女”为事件A ,记5名高二学生中女生为12,F F ,男生为123,,M M M , 从中任选2人有以下情况:()()()()()()()12111213212223,,,,,,,,,,,,,F F F M F M F M F M F M F M ,()()()121323,,,,,M M M M M M ,基本事件共有10个,其中事件A 包含的基本事件有6个,故()63105P A ==, 所以选中的2人恰好为一男一女的概率为35.3.(2022·河北张家口)英才中学为普及法律知识,组织高一学生学习法律常识小册子,并随机抽出100名学生进行法律常识考试,并将其成绩制成如图所示的频率分布直方图.(1)估计这100人的平均成绩;(2)若成绩在[]90,100的学生中恰有两位是男生,现从成绩在[]90,100的学生中抽取3人去校外参加社会法律知识竞赛,求其中恰有一位男生的概率.【答案】(1)73分(2)35【解析】(1)由频率分布直方图可知()0.0050.040.030.005101a ++++⨯=,解得0.02a =, 所以这100人的平均成绩为:()550.005650.04750.03850.02950.0051073⨯+⨯+⨯+⨯+⨯⨯=, 即这100人的平均成绩为73分.(2)依题意可知成绩在[]90,100的有1000.005105⨯⨯=人,其中2位男生、3位女生,设3位女生分别为a 、b 、c ,2位男生为A 、B ,从中任取3人的取法有(),,a b c 、(),,a b A 、(),,a b B 、(),,a c A 、(),,a c B ,(),,a A B ,(),,b c A ,(),,b c B ,(),,b A B ,(),,c A B 共10种取法,其中恰有一个男生的有(),,a b A 、(),,a b B 、(),,a c A 、(),,a c B ,(),,b c A ,(),,b c B 共6种, 所以恰有一位男生的概率63105P ==. 4.(2022·河南·商丘市)蹦床是一项将运动和美学完美结合的运动,随着全民健身时代的到来,蹦床越来越受到人们的喜爱,某大型蹦床主题公园为吸引顾客,推出优惠活动对首次消费的顾客,先注册成为会员,首次按60元收费,对会员逐次消费给予相应优惠,标准如下:该蹦床主题公园从注册的会员中,随机抽取了100位统计他们的消费次数,得到数据如下:假设每消费一次,蹦床主题公园的成本为30元,根据所给数据,解答下列问题: (1)以频率估计概率,估计该蹦床主题公园一位会员至少消费2次的概率; (2)某会员消费6次,求这6次消费中,该蹦床主题公园获得的平均利润;(3)以样本估计总体,假设从消费次数为3次和4次的会员中采用分层抽样的方法共抽取6人进行满意度调查,再从这6人中随机选取3人进一步了解情况,求抽取的3人中恰有一人的消费次数为4次的概率.【答案】(1)25(2)23(元)(3)35【解析】(1)随机抽取的100位会员中,至少消费2次的会员有20105540+++=(位), 所以该蹦床主题公园一位会员至少消费2次的概率4021005P == (2)第1次消费时,蹦床主题公园获取的利润为603030-=(元), 第2次消费时,蹦床主题公园获取的利润为600.953027⨯-=(元), 第3次消费时,蹦床主题公园获取的利润为600.903024⨯-=(元), 第4次消费时,蹦床主题公园获取的利润为600.853021⨯-=(元), 第5次或第6次消费时,蹦床主题公园获取的利润为600.803018⨯-=(元) 所以这6次消费中,该蹦床主题公园获得的平均利润为302724211818236+++++=(元)(3)由题意知,从消费次数为3次和4次的会员中抽取的人数分别为4人,2人, 这6人中,将消费3次的会员分别记为a ,b ,c ,d ,消费4次的会员分别记为e ,f 从6人中随机抽取3人的情况有(,,),(,,),(,,),(,,)a b c a b d a b e a b f ;(,,),(,,),(,,)a c d a c e a c f ;(,,),(,,)a d e a d f ;(,,)a e f ;(,,),(,,),(,,)b c d b c e b c f ;(,,),(,,)b d e b d f ;(,,)b e f ;(,,),(,,)(,,)c d e c d f c e f ;(,,)d e f ,共20种设“抽取的3人中恰有一人的消费次数为4次”为事件A ,则事件A 包含的情况有(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,),(,,)a b e a b f a c e a c f a d e a d f b c e b c f b d e b d f c d e c d f ,共12种.根据古典概型的概率计算公式可得,()123205P A ==5.(2022·广西柳州)某政府部门为促进党风建设,拟对政府部门的服务质量进行量化考核,每个群众办完业务后可以对服务质量进行打分,最高分为100分.上个月该部门对100名群众进行了回访调查,将他们按所打分数分成以下几组:第一组[)0,20,第二组[)20,40,第三组[)40,60,第四组[)60,80,第五组[]80,100,得到频率分布直方图如图所示.(1)估计所打分数的众数,平均数;(同一组中的数据用该组区间的中点值作为代表)(2)该部门在第一、二组群众中按比例分配的分层抽样的方法抽取6名群众进行深入调查,之后将从这6人中随机抽取2人聘为监督员,求监督员来自不同组的概率. 【答案】(1)众数为70,平均数为65;(2)815【解析】(1)由频率分布直方图可知,众数为6080=702+; 5个组的频率分别为0.05,0.1,0.2,0.35,0.3,所以平均数为 100.05300.1500.2700.35900.365⨯+⨯+⨯+⨯+⨯=;(2)由频率分布直方图可知第一组的频率为0.05,第二组的频率为0.1, 则第一组的人数为5人,第二组的人数为10人, 所以按分层抽样的方法抽到的6人中,第一组抽2人,记为12、a a ;第二组抽4人,记为1234b b b b 、、、,则121112131421222324121314232434{,,,,,,,,,,,,,,}a a a b a b a b a b a b a b a b a b b b b b b b b b b b b b Ω=, 设事件A 为抽到的2人来着不同的组,则1112131421222324{,,,,,,,}A a b a b a b a b a b a b a b a b =,所以8()15P A =. 1.(2022·吉林)先后抛掷一颗质地均匀的骰子两次,观察向上的点数.在第一次向上的点数为奇数的条件下,两次点数和不大于7的概率为( ) A .1318B .712C .310D .23【答案】D【解析】设事件A 表示“先后抛掷一颗质地均匀的骰子两次,第一次向上的点数为奇数”,题组二 条件概型事件B 表示“先后抛掷一颗质地均匀的骰子两次,两次点数和不大于7”, 则1()2P A =,121()363P AB ==,所以1()23()1()32P AB P B A P A ===.故选:D. 2(2022·江西·高三阶段练习(理))从1,2,…,6这六个数字中随机抽取2个不同的数字,记事件A =“恰好抽取的是2,4”,B =“恰好抽取的是4,5”,C =“抽取的数字里含有4”.则下列说法正确的是( ) A .()()()P AB P A P B = B .1()6P C =C .()()P C P AB =D .(|)(|)P A C P B C =【答案】D【解析】由题知,从6个数中随机抽取2个数,共有2615C =种可能情况,则1()15P A =,1()15P B =.对于A 选项,“恰好抽取的是2,4”和“恰好抽取的是4,5”为互斥事件,()0P AB =,()()0≠P A P B ,故A 错误;对于B 选项,1526C 1()C 3P C ==,故B 错误; 对于C 选项,()0P AB =,故C 错误;对于D 选项,由于1()()15P AC P BC ==,故由条件概率公式得()()()()(|)(|)P AC P BC P A C P B C P C P C ===,故D正确. 故选:D .3.(2022·福建·莆田华侨中学模拟预测)甲罐中有3个红球、2个黑球,乙罐中有2个红球、2个黑球,先从甲罐中随机取出一球放入乙罐,以A 表示事件“由甲罐取出的球是黑球”,再从乙罐中随机取出一球,以B 表示事件“由乙罐取出的球是黑球”,则下列说法错误的是( ) A .()25P A =B .()3|5P B A =C .()1325P B = D .()1|2P A B =【答案】C 【解析】因为甲罐中有3个红球、2个黑球,所以()25P A =,故选项A 正确; 因为236()5525P AB =⨯=,所以()()()6325|255P AB P B A P A ===,故选项B 正确; 因为()233212555525P B =⨯+⨯=,故选项C 错误;因为()2365525P AB =⨯=,所以()()()6125|12225P AB P A B P B ===,故选项D 正确. 故选:C .4.(2022·山东济宁)在8件同一型号的产品中,有3件次品,5件合格品,现不放回的从中依次抽取2件,在第一次抽到次品的条件下,第二次抽到次品的概率是( ) A .128B .110 C .19D .27【答案】D【解析】当第一次抽到次品后,还剩余2件次品,5件合格品,所以第二次抽到次品的概率为27.故选:D 5.(2022·黑龙江)已知()12P AB =,()35P A =,则()P B A 等于( ).A .56B .910C .310D .110【答案】A【解析】()()()152365P AB P B A P A ===.故选:A. 6.(2022·湖南·长沙一中高三开学考试)每年的6月6日是全国爱眼日,某位志愿者跟踪调查电子产品对视力的影响,据调查,某高校大约有45%的学生近视,而该校大约有20%的学生每天操作电子产品超过1h ,这些人的近视率约为50%.现从每天操作电子产品不超过1h 的学生中任意调查一名学生,则他近视的概率为( ) A .716B .38C .516 D .14【答案】A【解析】令事件1A =“玩手机时间超过1h 的学生”,2A =“玩手机时间不超过1h 的学生”,B =“任意调查一人,此人近视”,则样本空间12ΩA A =⋃,且12,A A 互斥,()()()()1210.2,0.8,0.5,0.45P A P A P B A P B ====∣, 依题意,()()()()()()112220.20.50.80.45P B P A P B A P A P B A P B A =+=⨯+⨯=∣∣∣, 解得()2716P BA =∣,所以所求近视的概率为716. 故选:A .7.(2022·河北张家口·高二期末)某个闯关游戏规定:闯过前一关才能去闯后一关,若某一关没有通过,则游戏结束.小明闯过第一关的概率为34,连续闯过前两关的概率为12,连续闯过前三关的概率为13,且各关相互独立.事件A 表示小明第一关闯关成功,事件C 表示小明第三关闯关成功,则()|P C A =( )A .18B .23C .13D .49【答案】D【解析】设事件B 表示小明第二关闯关成功,可得()()P AC P ABC =, 由条件概率的计算公式,可得()()()143394P ABC P CA P A ===∣.故选:D. 8.(2022·山东济宁)(多选)设M 、N 是两个随机事件,则下列等式一定成立的是( ) A .()()()P M N P M P N ⋃=+B .()()1P MN P MN =-C .()()()|P MN P M P N M =D .()()()()||P N M P M P M N P N =【答案】CD【解析】对A ,当,M N 不互斥时,()()()P M N P M P N ⋃=+不成立,故A 错误;对B ,当,M N 为对立事件时,()()0P MN P MN ==,则()()1P MN P MN =-不成立,故B 错误; 对C ,当()0P M =时,()()()|0P MN P M P N M ==成立,当()0P M ≠时,根据条件概率的公式()()()|P MN P N M P M =可得()()()|P MN P M P N M =成立,故C 正确;对D ,根据条件概率的公式,结合C 选项可得()()()()()()||P MN P N M P M P M N P N P N ==成立,故D 正确;故选:CD 9.(2022·福建福州)(多选)甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱,分别以12,A A 和3A 表示由甲箱取出的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱取出的球是红球的事件,则( ) A .事件B 与事件3A 相互独立 B .()159P A B =C .()2655P A B = D .()922P B =【答案】BD【解析】由题意知:()151102P A ==,()221105P A ==,()3310P A =,()1511P B A =,()2411P B A =,()3411P B A =, ()()()()()()()112233P B P A P B A P A P B A P A P B A ∴=++1514349211511101122=⨯+⨯+⨯=,D 正确;()()()()()()11111552119922P A P B A P A B P A B P B P B ⨯====,B 正确;()()()22214451155P A B P A P B A ==⨯=,C 错误;()()()333346101155P A B P A P B A ==⨯=,()()339271022220P A P B =⨯=, ()()()33P A B P A P B ∴≠,∴事件B 与事件3A 不相互独立,A 错误.故选:BD. 1.(2022·河南)从标有1,2,3,4的卡片中不放回地先后抽出两张卡片,则4号卡片“第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到的概率”分别是( )A .14,14,12B .14,14,14C .13,13,12D .14,13,12【答案】A【解析】4号卡片“第一次被抽到的概率”114P =, “第二次被抽到的概率”2311434P =⨯=,“在整个抽样过程中被抽到的概率”313114432P =+⨯=. 故选:A.2.(2023·全国·高三专题练习(理))一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据: 不够良好 良好 病例组 40 60 对照组 1090(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?题组三 古典与条件综合运用(2)从该地的人群中任选一人,A 表示事件“选到的人卫生习惯不够良好”,B 表示事件“选到的人患有该疾病”.(|)(|)P B A P B A 与(|)(|)P B A P B A 的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R .(ⅰ)证明:(|)(|)(|)(|)P A B P A B R P A B P A B =⋅;(ⅰ)利用该调查数据,给出(|),(|)P A B P A B 的估计值,并利用(ⅰ)的结果给出R 的估计值.附22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)答案见解析 (2)(i )证明见解析;(ii)6R =;【解析】(1)由已知222()200(40906010)=24()()()()50150100100n ad bc K a b c d a c b d -⨯-⨯==++++⨯⨯⨯,又2( 6.635)=0.01P K ≥,24 6.635>,所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.(2)(i)因为(|)(|)()()()()=(|)(|)()()()()P B A P B A P AB P A P AB P A R P B A P B A P A P AB P A P AB =⋅⋅⋅⋅,所以()()()()()()()()P AB P B P AB P B R P B P AB P B P AB =⋅⋅⋅所以(|)(|)(|)(|)P A B P A B R P A B P A B =⋅,(ii) 由已知40(|)100P A B =,10(|)100P A B =,又60(|)100P A B =,90(|)100P A B =,所以(|)(|)=6(|)(|)P A B P A B R P A B P A B =⋅3.(2022·全国·高三专题练习)现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求: (1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.【答案】(1)23(2)25(3)35【解析】(1)设第1次抽到舞蹈节目为事件A ,第2次抽到舞蹈节目为事件B ,则第1次和第2次都抽到舞蹈节目为事件AB ,从6个节目中不放回地依次抽取2个的基本事件总数为()26A 30n Ω==,根据分步计数原理有()1145A A 20n A ==,所以()()()202303n A P A n Ω===.(2)由(1)知,()24A 12n AB ==,所以()()()122305n AB P AB n Ω===. (3)由(1)(2)可得,在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率为 ()()()235253P AB P B A P A ===.。
高考数学第一轮复习概率专项练习(含答案)高考数学第一轮复习概率专项练习(含答案)概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。
以下是高考数学第一轮复习概率专项练习,请考生掌握。
一、选择题1.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:7527 0293 7140 9857 0347 4373 8636 69471417 4698 0371 6233 2616 8045 6011 36619597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为()A.0.852B.0.819 2C.0.8D.0.75答案:D 命题立意:本题主要考查随机模拟法,考查考生的逻辑思维能力.解题思路:因为射击4次至多击中2次对应的随机数组为7140,1417,0371,6011,7610,共5组,所以射击4次至少击中3次的概率为1-=0.75,故选D.2.在菱形ABCD中,ABC=30,BC=4,若在菱形ABCD内任取一C. 1/3D.1/4答案:B 解题思路:由题意知投掷两次骰子所得的数字分别为a,b,则基本事件有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),,(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个.而方程x2-ax+2b=0有两个不同实根的条件是a2-8b0,因此满足此条件的基本事件有:(3,1),(4,1),(5,1),(5,2),(5,3),(6,1),(6,2),(6,3),(6,4),共有9个,故所求的概率为=.5.在区间内随机取两个数分别为a,b,则使得函数f(x)=x2+2ax-b2+2有零点的概率为()A.1-B.1-C.1-D.1-答案:B 解题思路:函数f(x)=x2+2ax-b2+2有零点,需=4a2-4(-b2+0,即a2+b22成立.而a,b[-],建立平面直角坐标系,满足a2+b22的点(a,b)如图阴影部分所示,所求事件的概率为P===1-,故选B.6.袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球.从袋中任取两球,两球颜色为一白一黑的概率等于()A.5/6B.11/12C. 1/2D.3/4答案:B 解题思路:将同色小球编号,从袋中任取两球,所有基本事件为:(红,白1),(红,白2),(红,黑1),(红,黑2),(红,黑3),(白1,白2),(白1,黑1),(白1,黑2),(白1,黑3),(白2,黑1),(白2,黑2),(白2,黑3),(黑1,黑2),(黑1,黑3),(黑2,黑3),共有15个基本事件,而为一白一黑的共有6个基本事件,所以所求概率P==.故选B.二、填空题7.已知集合表示的平面区域为,若在区域内任取一点P(x,y),则点P的坐标满足不等式x2+y22的概率为________. 答案:命题立意:本题考查线性规划知识以及几何概型的概率求解,正确作出点对应的平面区域是解答本题的关键,难度中等.解题思路:如图阴影部分为不等式组表示的平面区域,满足条件x2+y22的点分布在以为半径的四分之一圆面内,以面积作为事件的几何度量,由几何概型可得所求概率为=.8.从5名学生中选2名学生参加周六、周日社会实践活动,学生甲被选中而学生乙未被选中的概率是________.答案:命题立意:本题主要考查古典概型,意在考查考生分析问题的能力.解题思路:设5名学生分别为a1,a2,a3,a4,a5(其中甲是a1,乙是a2),从5名学生中选2名的选法有(a1,a2),(a1,a3) ,(a1,a4),(a1,a5),(a2,a3),(a2,a4),(a2,a5),(a3,a4),(a3,a5),(a4,a5),共10种,学生甲被选中而学生乙未被选中的选法有(a1,a3),(a1,a4),(a1,a5),共3种,故所求概率为.9.已知函数f(x)=kx+1,其中实数k随机选自区间,则对x[-1,1],都有f(x)0恒成立的概率是________.答案:命题立意:本题主要考查几何概型,意在考查数形结合思想.解题思路:f(x)=kx+1过定点(0,1),数形结合可知,当且仅当k[-1,1]时满足f(x)0在x[-1,1]上恒成立,而区间[-1,1],[-2,1]的区间长度分别是2,3,故所求的概率为.10.若实数m,n{-2,-1,1,2,3},且mn,则方程+=1表示焦点在y轴上的双曲线的概率是________.解题思路:实数m,n满足mn的基本事件有20种,如下表所示.-2 -1 1 2 3 -2 (-2,-1) (-2,1) (-2,2) (-2,3) -1 (-1,-2) (-1,1) (-1,2) (-1,3) 1 (1,-2) (1,-1) (1,2) (1,3) 2 (2,-2) (2,-1) (2,1) (2,3) 3 (3,-2) (3,-1) (3,1) (3,2) 其中表示焦点在y轴上的双曲线的事件有(-2,1),(-2,2),(-2,3),(-1,1),(-1,2),(-1,3),共6种,因此方程+=1表示焦点在y轴上的双曲线的概率为P==.三、解答题11.袋内装有6个球,这些球依次被编号为1,2,3,,6,设编号为n的球重n2-6n+12(单位:克),这些球等可能地从袋里取出(不受重量、编号的影响).(1)从袋中任意取出1个球,求其重量大于其编号的概率;(2)如果不放回地任意取出2个球,求它们重量相等的概率. 命题立意:本题主要考查古典概型的基础知识,考查考生的计算能力.解析:(1)若编号为n的球的重量大于其编号,则n2-6n+12n,即n2-7n+120.解得n3或n4.所以n=1,2,5,6.所以从袋中任意取出1个球,其重量大于其编号的概率P==.(2)不放回地任意取出2个球,这2个球编号的所有可能情形为:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6.共有15种可能的情形.设编号分别为m与n(m,n{1,2,3,4,5,6},且mn)的球的重量相等,则有m2-6m+12=n2-6n+12,即有(m-n)(m+n-6)=0.所以m=n(舍去)或m+n=6.满足m+n=6的情形为1,5;2,4,共2种情形.故所求事件的概率为.12.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取一个球,将其编号记为a,然后从袋中余下的三个球中再随机抽取一个球,将其编号记为b,求关于x的一元二次方程x2+2ax+b2=0有实根的概率;(2)先从袋中随机取一个球,该球的编号记为m,将球放回袋中,然后从袋中随机取一个球,该球的编号记为n.若以(m,n)作为点P的坐标,求点P落在区域内的概率.命题立意:(1)不放回抽球,列举基本事件的个数时,注意不要出现重复的号码;(2)有放回抽球,列举基本事件的个数时,可以出现重复的号码,然后找出其中随机事件含有的基本事件个数,按照古典概型的公式进行计算.解析:(1)设事件A为方程x2+2ax+b2=0有实根.当a0,b0时,方程x2+2ax+b2=0有实根的充要条件为ab.以下第一个数表示a的取值,第二个数表示b的取值.基本事件共12个:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3).事件A中包含6个基本事件:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3).事件A发生的概率为P(A)==.(2)先从袋中随机取一个球,放回后再从袋中随机取一个球,点P(m,n)的所有可能情况为:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.落在区域内的有(1,1),(2,1),(2,2),(3,1),共4个,所以点P落在区域内的概率为.13.某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若该校高一年级共有学生640人,试估计该校高一年级期中考试数学成绩不低于60分的人数;(3)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.命题立意:本题以频率分布直方图为载体,考查概率、统计等基础知识,考查数据处理能力、推理论证能力和运算求解能力,考查数形结合、化归与转化等数学思想方法.解析:(1)由已知,得10(0.005+0.01+0.02+a+0.025+0.01)=1,解得a=0.03.(2)根据频率分布直方图可知,成绩不低于60分的频率为1-10(0.005+0.01)=0.85.由于该校高一年级共有学生640人,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为6400.85=544.(3)易知成绩在[40,50)分数段内的人数为400.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为400.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记这2名学生的数学成绩之差的绝对值不大于10为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个.所以所求概率为P(M)=.14.新能源汽车是指利用除汽油、柴油之外其他能源的汽车,包括燃料电池汽车、混合动力汽车、氢能源动力汽车和太阳能汽车等,其废气排放量比较低,为了配合我国节能减排战略,某汽车厂决定转型生产新能源汽车中的燃料电池轿车、混合动力轿车和氢能源动力轿车,每类轿车均有标准型和豪华型两种型号,某月的产量如下表(单位:辆):燃料电池轿车混合动力轿车氢能源动力轿车标准型 100 150 y 豪华型 300 450 600 按能源类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中燃料电池轿车有10辆.(1)求y的值;(2)用分层抽样的方法在氢能源动力轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆轿车,求至少有1辆标准型轿车的概率;(3)用随机抽样的方法从混合动力标准型轿车中抽取10辆进行质量检测,经检测它们的得分如下:9.3,8.7,9.1,9.5,8.8,9.4,9.0,8.2,9.6,8.4.把这10辆轿车的得分看作一个样本,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.4的概率.命题立意:本题主要考查概率与统计的相关知识,考查学生的运算求解能力以及分析问题、解决问题的能力.对于第(1)问,设该厂这个月生产轿车n辆,根据分层抽样的方法在这个月生产的轿车中抽取50辆,其中有燃料电池轿车10辆,列出关系式,得到n的值,进而得到y值;对于第(2)问,由题意知本题是一个古典概型,用列举法求出试验发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果;对于第(3)问,首先求出样本的平均数,求出事件发生包含的事件数和满足条件的事件数,根据古典概型的概率公式得到结果.解析:(1)设该厂这个月共生产轿车n辆,由题意,得=,n=2 000,y=2 000-(100+300)-150-450-600=400.(2)设所抽样本中有a辆标准型轿车,由题意得a=2.因此抽取的容量为5的样本中,有2辆标准型轿车,3辆豪华型轿车,用A1,A2表示2辆标准型轿车,用B1,B2,B3表示3辆豪华型轿车,用E表示事件在该样本中任取2辆轿车,其中至少有1辆标准型轿车,则总的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10个,事件E包含的基本事件有(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个,故所求概率为P(E)=.(3)样本平均数=(9.3+8.7+9.1+9.5+8.8+9.4+9.0+8.2+9.6+8.4)=9.设D表示事件从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.4,则总的基本事件有10个,事件D包括的基本事件有9.3,8.7,9.1,8.8,9.4,9.0,共6个.所求概率为P(D)==.高考数学第一轮复习概率专项练习及答案解析的全部内容就是这些,查字典数学网希望考生可以取得优异的成绩。
第八章统计与概率第二十七讲数据的收集与处理【基础知识回顾】一、数据的收集方式。
1、全面调查(普查):是为了一定的目的对考察对象进行的全面调查,其中所要考查对象的称为总体,组成总体的考查对象称为个体2、抽样调查(抽查):是指从总体中抽取对象进行调查,然后根据调查数据推理全体对象的情况,其中,被抽取的那些组成一个样本,样本中的数目叫做样本容量。
【名师提醒:1、对被考查对象进行全面调查还是抽样调查要根据就考查对象的特点而选择,例如:当被考查对象数量有限时可采取,当受条件限制无法对所有个体都进行调查或调查具有破坏性时,应采用,然后用样本估计总体的情况。
2、注意:被考察对象不是笼统的某人某物,而是某人某物的某项指标。
】二、统计图:1、统计图是表示统计数据的图形,是数据及其关系的直观表现的反映,几种常见的统计图有统计图统计图统计图2、频数分布直方图:⑴频数:在统计数据中落在不同小组中的个数,叫做频数⑵频率:=⑶绘制频数直方图的步骤:a:计算与的差,b:决定和c:确定分点d:列出f:画出【名师提醒:1、各类统计图的特点:条形统计图可以反映折线统计图能够显示从扇形统计图能够看出,扇形的圆心角=3600×2、频数分布直方圆中每个长方形的高是所有小长方形高的和为】【典型例题解析】1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.3.2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5-60.5 16 0.0860.5-70.5 40 0.270.5-80.5 50 0.2580.5-90.5 m 0.3590.5-100.5 24 n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m= ,n= ;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?第二十八讲数据分析【基础知识回顾】一、数据的代表:1、平均数:⑴算术平均数如果有n个数x1 ,x2 ,x3 …xn那么它们的平均数x=⑵加权平均数:若在一组数据中x1出现f1次,x2出现f2次...... xk出现fk次,则其平均数x= (其中f1+ f2+...... fk=n)2、中位数:将一组数据按大小依次排列,把处在或叫做这组数据的中位数。
第75讲 条件概率与事件的相互独立性1.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是(B )A .p 1p 2B .p 1(1-p 2)+p 2(1-p 1)C .1-p 1p 2D .1-(1-p 1)(1-p 2)“恰好有1人解决”=“甲解决乙没有解决”+“甲没有解决乙解决”.所以恰好1人解决的概率为p 1(1-p 2)+p 2(1-p 1).2.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为(D ) A .12 B .35C .23D .34设甲胜一局为事件A ,则甲获得冠军的概率为P(A +A A)=P(A)+P(A A)=12+12×12=34. 3.甲、乙、丙3人参加一次考试,他们合格的概率分别为23、34、25,那么恰有2人合格的概率为(B ) A .25 B .715C .1130D .16P =23×34×(1-25)+23×(1-34)×25+(1-23)×34×25=715.4.(2018·深圳一模)夏秋两季,生活在长江口外浅海域的中华鲟洄游到长江,历经3000 km 的溯流搏击,回到金沙江一带产卵繁殖.产后待幼鱼长大到15 cm 左右,又携带它们旅居外海.一个环保组织曾在金沙江中放生一批鲟鱼苗,该批鱼苗中的雌性个体能长成熟的概率为0.15,雌性个体长成熟又能成功溯流产卵繁殖的概率为0.05,若该批鱼苗中的一个雌性个体在长江口外浅海域已长成熟,则其能成功溯流产卵繁殖的概率为(C)A .0.05B .0.0075C.13D.16设“该雌性个体能长成熟”的事件为A ,“该雌性个体能成功溯流产卵繁殖”为事件B ,则所求概率为P(B|A).因为P(A)=0.15,P(AB)=0.05.所以P(B|A)=P (AB )P (A )=0.050.15=13. 5.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少3人出现发热反应的概率为 0.94 .(精确到0.01)本题考查独立重复试验发生的概念.5人接种该疫苗,至少有3人出现发热反应的概率为C 35×0.83×0.22+C 45×0.84×0.2+C 55×0.85=0.83×0.4+0.84+0.85=0.83×(0.4+0.8+0.82)=0.512×1.84≈0.94.6.如图,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)= 2π; (2)P(B|A)= 14. (1)由几何概型概率计算公式可得P(A)=S 正S 圆=2π; (2)由条件概率的计算公式可得P(B|A)==2π×142π=14. 7.(2016·全国卷Ⅱ节选)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率.(1)设A 表示事件“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)===0.150.55=311. 因此所求概率为311.8.将三颗骰子各掷一次,设事件A 为“三个点数都不相同”,B 为“至少出现一个6点”.则概率P(A|B)等于(A )A .6091B .12C .518 D .91216P(AB)=A 36-A 3563=60216. P(B)=1-P(B )=1-5363=91216, 所以P(A|B)==6021691216=6091. 9.如图所示,有一迷失方向的小青蛙在3处,它每跳动一次可以等机会地进入相邻的任意一格(如若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会进入1,2,4,5处),则它在第三次跳动后,进入5处的概率是 14.小青蛙的跳动路线:第一次跳动后由3到1,2,4,5的任意位置,第二次跳入3,第三次跳入5,根据相互独立事件同时发生的概率可知所求概率为P =14×1×14×4=14. 10.(2016·山东卷改编)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)记“星队”两轮得分之和为X ,试分别计算P(X =0),P(X =1),P(X =2)及P(X =6)的值.(1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”.由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D ,由事件的独立性与互斥性,P(E)=P(ABCD)+P(A BCD)+P(A B CD)+P(AB C D)+P(ABC D )=P(A)P(B)P(C)P(D)+P(A )P(B)P(C)P(D)+P(A)·P(B )P(C)P(D)+P(A)P(B)P(C )P(D)+P(A)P(B)P(C)P(D )=34×23×34×23+2×(14×23×34×23+34×13×34×23) =23,所以“星队”至少猜对3个成语的概率为23. (2)由事件的独立性与互斥性,得P(X =0)=14×13×14×13=1144, P(X =1)=2×(34×13×14×13+14×23×14×13) =10144=572, P(X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144, P(X =6)=34×23×34×23=36144=14.。
高考数学一轮复习概率与统计单元专项练习题附参考答案1.(理)设,那么的展开式中的系数不可能是( )A.10B.40C.50D.80(文)为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁-18岁的男生体重(kg) ,得到频率分布直方图如下:根据上图可得这100名学生中体重在〔56.5,64.5〕的学生人数是( )A.20B.30C.40D.502.(理)四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是平安的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么平安存放的不同方法种数为( )A.96B.48C.24D.0(文)从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A. B. C. D.3.甲:A1、A2是互斥事件;乙:A1、A2是对立事件,那么( )A.甲是乙的充分但不必要条件B.甲是乙的必要但不充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件,也不是乙的必要条件4.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,,270;使用系统抽样时,将学生统一随机编号1,2,,270,并将整个编号依次分为10段。
如果抽得号码有以下四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270;关于上述样本的以下结论中,正确的选项是( )A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样5.在正方体上任选3个顶点连成三角形,那么所得的三角形是直角非等腰三角形的概率为( )A. B. C. D.6.在三维柱形图中,主对角线上两个柱形高度的乘积与副对角线上的两个柱形的高度的乘积相差越大两个变量有关系的可能性就()A.越大B.越小C.无法判断D.以上都不对7.(理)抛掷两个骰子,至少有一个4点或5点出现时,就说这些试验成功,那么在10次试验中,成功次数的期望是( )A. B. C. D.(文)为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图,如右,由于不慎将局部数据丧失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a,视力在4.6到5.0之间的学生数为b,那么a, b的值分别为( )A.0,27,78B.0,27,83C.2.7,78D.2.7,838.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.这组数据的平均数为10,方差为2,那么|x-y|的值为( )A.1B.2C.3D.49.一项研究要确定是否能够根据施肥量预测作物的产量。
备考2023年中考数学一轮复习-统计与概率_概率_简单事件概率的计算-综合题专训及答案简单事件概率的计算综合题专训1、(2022开鲁.中考模拟) 有四张反面完全相同的纸牌,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是.(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.2、(2019徐州.中考真卷) 如图,甲、乙两个转盘分别被分成了等份与等份,每份内均标有数字.分别旋转这两个转盘,将转盘停止后指针所指区域内的两数相乘.乙1 2 3 4积甲123(2)积为的概率为;积为偶数的概率为;(3)从这个整数中,随机选取个整数,该数不是(1)中所填数字的概率为.3、(2018山西.中考模拟) 图1所示是一枚质地均匀的骰子.骰子有六个面并分别代表数字1,2,3,4,5,6.如图2,正六边形ABCDEF的顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子向上的一面上的点数是几,就沿正六边形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落到圈F……设游戏者从圈A起跳.;(1)小明随机掷一次骰子,求落回到圈A的概率P1(2)小亮随机掷两次骰子,用列表法或画树状图法求最后落回到圈A的概率P,并指出他与小明落回到圈A的可能性一样吗?24、(2018建邺.中考模拟) 超市水果货架上有四个苹果,重量分别是100g、110g、120g和125g.(1)小明妈妈从货架上随机取下一个苹果.恰是最重的苹果的概率是;(2)小明妈妈从货架上随机取下两个苹果.它们总重量超过232g的概率是多少?5、(2018玄武.中考模拟) 甲、乙两名同学参加1 000米比赛,由于参赛选手较多,将选手随机分A、B、C三组进行比赛.(1)甲同学恰好在A组的概率是;(2)求甲、乙两人至少有一人在B组的概率.6、(2018惠州.中考模拟) 甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?(2)若丙想使球经过三次传递后,球落在自己手中的概率最大,丙会让球开始时在谁手中?请说明理由.7、(2019洪江.中考模拟) 甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.8、(2018柳北.中考模拟) 在一个不透明的袋里装有分别标有数字1,2,3,4,5的5个小球,除所有数字不同外,小球没有其他分别,每次试验前先搅拌均匀.(1)若从中任取一球,球上的数字为奇数的概率为多少?(2)若从中任取一球不放回,再从中任取1球,请用画树状图或列表的方法求出两个球上的数字之和为偶数的概率.9、(2019玉林.中考真卷) 某校有20名同学参加市举办的“文明环保,从我做起”征文比赛,成绩分别记为60分、70分、80分、90分、100分,为方便奖励,现统计出80分、90分、100分的人数,制成如图不完整的扇形统计图,设70分所对扇形圆心角为α.(1)若从这20份征文中,随机抽取一份,则抽到试卷的分数为低于80分的概率是;(2)当α=108°时,求成绩是60分的人数;(3)设80分为唯一众数,求这20名同学的平均成绩的最大值.10、(2019南充.中考真卷) 现有四张完全相同的不透明卡片,其正面分别写有数字-2,-1,0,2,把这四张卡片背面朝上洗匀后放在桌面上.(1)随机抽取一张卡片,求抽取的卡片上的数字为负数的概率;(2)先随机抽取卡片,其上的数字作为点A的横坐标;然后放回并洗匀,再随机抽取一张卡片,其上的数字作为点A的纵坐标,试用画树状图或列表的方法求出点A在直线y=2x上的概率.11、(2018遵义.中考模拟) 学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.12、(2019岐山.中考模拟) 某校组织一项公益知识竞赛,比赛规定:每个代表队由3名男生、4名女生和1名指导老师组成.但参赛时,每个代表队只能有3名队员上场参赛,指导老师必须参加,另外2名队员分别在3名男生和4名女生中各随机抽出一名.七年级(1)班代表队有甲、乙、丙三名男生和A、B、C、D4名女生及1名指导老师组成.求:(1)抽到D上场参赛的概率;(2)恰好抽到由男生丙、女生C和这位指导老师一起上场参赛的概率.(请用“画树状图”或“列表”的方式给出分析过程)13、(2019陕西.中考模拟) 有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同一部电影的概率(请用画树状图的方法给出分析过程,并求出结果)14、(2020长春.中考模拟) 某商场举办抽奖活动,规则如下:在不透明的袋子中有2个红球和2个黑球,这些球除颜色外都相同,顾客每次摸出1个球,若摸到红球,则获得1份奖品,若摸到黑球,则没有奖品。
2025年武汉市中考数学一轮复习:统计与概率
一.选择题(共10小题)
1.“367个同学参加一个集会,他们中至少有两个同学的生日是同月同日”这个事件是()A.确定性事件B.必然事件
C.随机事件D.不可能事件
2.掷一枚质地均匀的硬币2024次,下列说法正确的是()
A.不可能1000次正面朝上
B.不可能2024次正面朝上
C.必有1000次正面朝上
D.可能2024次正面朝上
3.要调查下列两个问题:(1)了解班级同学中哪个月份出生的人数最多;(2)了解全市七年级学生早餐是否有喝牛奶的习惯.这两个问题分别采用什么调查方式更合适()A.全面调查,全面调查B.抽样调查,抽样调查
C.抽样调查,全面调查D.全面调查,抽样调查
4.华为手机锁屏密码是6位数,若密码的前5位数字已经知道,则一次解锁该手机密码的概率是()
A.12B.110C.1100D.11000
5.下列调查中,最适合采用全面调查(普查)的是()
A.调查全国中小学生对第二次太空授课的满意度
B.调查全国人民,掌握新冠防疫知识情况
C.了解某类型医用口罩的质量
D.检查神舟飞船十三号的各零部件
6.下列事件为必然事件的是()
A.张老师驾车到达长江大桥红绿灯路口时遇到绿灯
B.九年级数学特长小组的13名同学中有两个同学在同一月过生日
C.大概率事件
D.抛掷一枚硬币出现正面朝上
7.第十九届亚运会在中国杭州举行,某学校想了解本校学生关注亚运会情况,随机抽取了10个班进行调查,班上学生关注过亚运会人数是16,18,35,20,20,30,10,24,32,
第1页(共22页)。
高三一轮复习解答题专项训练(六) 姓名1.某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60%,参加过计算机培训的有75%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)任选1名下岗人员,求该人参加过培训的概率;(2)任选3名下岗人员,记ξ为3人中参加过培训的人数,求ξ的分布列和期望.2.某公司是否对某一项目投资,由甲、乙、丙三位决策人投票决定.他们三人都有“同意”、“中立”、“反对”三类票各一张.投票时,每人必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,他们的投票相互没有影响.规定:若投票结果中至少有两张“同意”票,则决定对该项目投资;否则,放弃对该项目投资.(Ⅰ)求此公司决定对该项目投资的概率;(Ⅱ)记投票结果中“中立”票的张数为随机变量ξ,求ξ的分布列及数学期望Eξ.3.在一个箱子里装有标记分别为1,2,3,4的4个小球,记下数字后再放回,连续摸三次,若三次摸出的小球ξ=的概率;②求ξ的概率分布及数学期望。
标记的数字最大为ξ,①求34.在盒子里有大小相同,仅颜色不同的乒乓球共10个,其中红球5个,白球3个,蓝球2个.现从中任取出一球确定颜色后放回盒子里,再取下一个球.重复以上操作,最多取3次,过程中如果取出蓝色球则不再取球.求:(1)最多取两次就结束的概率;(2)整个过程中恰好取到2个白球的概率;(3)取球次数的分布列和数学期望.5.某校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作. 规定:至少正确完成其中2题的便可提高通过. 已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是23,且每题正确完成与否互不影响. 求:(1) 分别写出甲、乙两考生正确完成题数的概率分布列,并计算数学期望;(2)试用统计知识分析比较两考生的实验操作能力.6.某工厂在试验阶段大量生产一种零件。
正四面体的外接球半径R 与内切球半径r 之比为r R :=3:1.第十一部分 概率统计1. 必然事件: 1)(=A P ;不可能事件: 0)(=A P ; 随机事件的定义: 1)(0≤≤A P 2. 等可能事件的概率:(古典概率))(A P =nm理解这里n m ,的意义. 互斥事件:(A 、B 互斥,即事件A 、B 不可能同时发生,这时0)(=⋅B A P ) )()()(B P A P B A P +=+对立事件:A 、B 对立,即事件A 、B 不可能同时发生,但A 、B 中必然有一个发生.这时()()1P A P B +=3. 条件概率:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,记作:)(A B P , ()()()P AB P B A P A =,可用定义,也可缩小样本空间求解.4. 相互独立事件:(事件A 、B 的发生相互独立,互不影响))()()(B P A P B A P ⋅=⋅5. 独立重复事件:(贝努里概型)k n kk n k np p C P --=)1()(表示事件A 在n 次独立重复试验中恰好发生了.....k 次.的概率.p 为在一次独立重复试验中 事件A 发生的概率.6. 分布列:随机变量所有的取值i x ,及随机变量取相应值时的概率i p .7. 统计(1)期望、方差、标准差定义 期望:()iiE X x p=∑D ξ=(x 1-E ξ)2·P 1+(x 2-E ξ)2·P 2+…+(x n -E ξ)2·P n +…称为随机变量ξ的方差. D ξ的算术平方根ξD =σξ叫做随机变量的标准差.随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度.随机变量取值越稳定(越集中),方差越小.(2)若),(~p n B ξ(n 次独立重复试验中事件A 发生的次数ξ服从二项分布,p 为在一次独立重复试验中事件A 发生的概率).则np E =ξ,npq D =ξ,其中1q p =-.(3)若随机变量ξ服从超几何分布(总数为N ,其中甲类为M ,从总体中选出n 个,其中甲类品数目ξ服从超几何分布):则()nME Nξ=. (4)如果连续型随机变量ξ的概率密度曲线为222)(21)(σμσπϕ--=x ex ,其中μσ,为常数,并且0>σ,则称ξ服从正态分布,简记为2~(,)N ξμσ,2,σξμξ==D E , 当0=μ,1=σ时,)(x ϕ可以写成2221)(x ex -=πϕ,这时称ξ服从标准正态分布,简记为)1,0(~N ξ.若总体服从正态分布,则在()3,3μσμσ-+之内的占到99%以上. (5)总体、个体、样本、,样本个体、样本容量的定义;抽样方法:1简单随机抽样:包括随机数表法,标签法;2系统抽样; 3分层抽样.样本平均数:∑==+⋯+++=ni i n x n x x x x n x 13211)(1样本方差:S 2 =n1[(x 1-x )2+(x 2-x )2+ (x 3-x )2+…+(x n -x )2] 样本标准差:s=2S 作用:估计总体的稳定程度.(6)理解频率直方图的意义,会用样本估计总体的期望和方差,用样本频率估计总体分布. (7)回归直线方程:y a bx =+,就是利用最小二乘法确定的直线(所有直线中使得()21niii y a bx =--∑最小的那一条),目的是用一条直线最好地反映散点图中,x y 之间的关系.其中b 称为“回归系数”(),i i x y 为散点图中的点的坐标, ,a b 为需要确定的系数.(可根据给出的公式求得). 回归直线方程,必定通过点(),x y .第十二部分 排列组合与二项式定理1. 计数原理 ①加法原理:分类计数②乘法原理:分步计数2. 排列(有序)与组合(无序))!(!)1()3)(2)(1(m n n m n n n n n A mn -=+----= !n A nn =;m n C =!)!(!!)1()2)(1(m m n n m m n n n n -=+-⋯--m n m n n C C -=;111m m m n n n C C C ++++=;11k k n n kC nC --=。
学习资料课后限时集训(七十)概率、统计的综合题建议用时:40分钟1.某小店每天以每份5元的价格从食品厂购进若干份某种食品,然后以每份10元的价格出售.如果当天卖不完,剩下的食品还能以每份1元的价格退回食品厂处理.(1)若小店一天购进16份这种食品,求当天的利润y(单位:元)关于当天需求量n(单位:份,n∈N)的函数解析式.(2)小店记录了100天这种食品的日需求量(单位:份),整理得下表:日需求量n 14151617181920频数10201616151310以100①若小店一天购进16份这种食品,X表示当天的利润(单位:元),求X的分布列及数学期望.②以小店当天利润的数学期望为决策依据,你认为一天应购进这种食品16份还是17份?[解](1)当日需求量n≥16时,利润y=80,当日需求量n〈16时,利润y=5n-4(16-n)=9n-64,∴y关于n的函数解析式为y=错误!(n∈N).(2)①由题意知,X的所有可能的取值为62,71,80,且P(X=62)=0。
1,P(X=71)=0。
2,P(X=80)=0.7,∴X的分布列为X 627180P 0.10。
20。
7∴E(X)=62×0。
1+71×0。
2②若小店一天购进17份这种食品,设Y表示当天的利润(单位:元),那么Y的分布列为Y 58677685P 0。
10.20.160。
54∴Y的数学期望E(Y)=58×0。
1+67×0.2+76×0.16+85×0。
54=77。
26。
由以上的计算结果可以看出E(X)〈E(Y),即购进17份这种食品时的平均利润大于购进16份时的平均利润,∴小店应选择一天购进17份这种食品.2.某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求E (X);②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?[解](1)20件产品中恰有2件不合格品的概率为f(p)=C错误!p2(1-p)18,因此f′(p)=C错误![2p(1-p)18-18p2(1-p)17]=2C错误!p(1-p)17(1-10p).令f′(p)=0,得p=0。
江苏专版2020届高三数学一轮复习典型题精选精练统计与概率一、填空题1、(南京市2018高三9月学情调研)某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业中抽取40名学生进行调查,则应从丙专业抽取的学生人数为▲.2、(南京市2019高三9月学情调研)已知某地连续5天的最低气温(单位:摄氏度)依次是18,21,22,24,25,那么这组数据的方差为▲.3、(南京市2019高三9月学情调研)不透明的盒子中有大小、形状和质地都相同的5只球,其中2只白球,3只红球,现从中随机取出2只球,则取出的这2只球颜色相同的概率是▲.4、(南京市六校联合体2019届高三12月联考)若一组样本数据3,4,8,9,a的平均数为6,则该组数据的方差s2=▲.5、(南京市六校联合体2019届高三12月联考)从1,2,3,4这四个数中一次性随机地取出2个数,则所取2个数的乘积为奇数的概率是____▲__.6、(南京市13校2019届高三12月联合调研)已知4瓶饮料中有且仅有2瓶是果汁饮料,从这4瓶饮料中随机取2瓶,则所取两瓶中至少有一瓶是果汁饮料的概率是▲.7、(南京市13校2019届高三12月联合调研)如图是样本容量为200的频率分布直方图.根据此样本的频率分布直方图估计,样本数据落在[6,10)内的频数为▲.8、(南师附中2019届高三年级5月模拟)某班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号、31号、44号学生在样本中,则样本中还有一个学生的编号是.9、(南师附中2019届高三年级5月模拟)3张奖券分别标有特等奖、一等奖和二等奖,甲、乙两人同时各抽取1张奖券,两人都未抽得特等奖的概率是.10、(苏州市2018高三上期初调研)为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2: 3,第2小组的频数为12,则报考飞行员的学生人数是.11、(徐州市2019届高三上学期期中)某水产养殖场利用100个网箱养殖水产品,收获时测量各箱水产品的产量(单位:kg),其频率分布直方图如图所示,则该养殖场有▲个网箱产量不低于50 kg.12、(海安市2019届高三上学期期中)已知某民营车企生产A,B,C三种型号的新能源汽车,库存台数依次为120,210,150,某安检单位欲从中用分层抽样的方法随机抽取16台车进行安全测试,则应抽取B型号的新能源汽车的台数为.13、(海安市2019届高三上学期期中)有红心1,2,3,4和黑桃5这五张扑克牌,现从中随机抽取两张,则抽到的牌均为红心的概率是.14、(南通市三地(通州区、海门市、启东市)2019届高三上学期期末)如图是某次青年歌手大奖赛上5位评委给某位选手打分的茎叶图,则这组数据的方差为▲15、(如皋市2019届高三上学期期末)为了解某地区的中小学生视力情况,从该地区的中小学生中用分层抽样的方法抽取300位学生进行调查,该地区小学、初中、高中三个学段学生人数分别为1200、1000、800,则从高中抽取的学生人数为▲16、(苏北三市(徐州、连云港、淮安)2019届高三期末)已知一组样本数据5,4,x,3,6的平均数为5,则该组数据的方差为.17、(南京市、盐城市2019届高三上学期期末)某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样的方法抽取一个容量为n的样本,其中样本中A型号产品有16件,那么此样本的容量n=▲18、(泰州市2019届高三上学期期末)从1,2,3,4,5这五个数中随机取两个数,则这两个数的和为6的概率为19、(无锡市2019届高三上学期期末)史上常有赛马论英雄的记载,田忌欲与齐王赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,先从双方的马匹中随机各选一匹进行一场比赛,则田忌的马获胜的概率为.20、(宿迁市2019届高三上学期期末)春节将至,三个小朋友每人自制1张贺卡,然后将3张贺卡装在一盒子中,再由三人依次任意抽取1张,则三人都没抽到自己制作的贺卡的概率为▲.21、(南京市、盐城市2019届高三第二次模拟)某药厂选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17),将其按从左到右的顺序分别编号为第一组、,第二组,……,第五组,右图市根据实验数据制成的频率分布直方图,已知第一组于第二组共有20人,则第三组钟人数为.22、(南京市2019届高三第三次模拟)已知某商场在一周内某商品日销售量的茎叶图如图所示,那么这一周该商品日销售量的平均数为▲.23、(南通、如皋市2019届高三下学期语数英学科模拟(二))随机抽取100名年龄在[10,20),[20,30),…,[50,60)年龄段的市民进行问卷调查,由此得到样本的频率分布直方图如图所示,从不小于40岁的人中按年龄段分层抽样的方法随机抽取8人,则在[50,60)年龄段抽取的人数为__24、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第一次模拟(2月))某中学组织学生参加社会实践活动,高二(1)班50名学生参加活动的次数统计如下:次数2345人数2015105则平均每人参加活动的次数为▲.25、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟)从甲、乙、丙、丁这4名学生中随机选派2人参加植树活动,则甲、乙两人中恰有1人被选中的概率为▲.26、(七市(南通、泰州、扬州、徐州、淮安、宿迁、连云港)2019届高三第二次模拟(5月))一只口袋装有形状、大小都相同的4只小球,其中有3只白球,1只红球.从中1次随机摸出2只球,则2只球都是白球的概率为▲.27、(苏锡常镇四市2019届高三教学情况调查(二))口装中有形状大小完全相同的四个球,球的编号分别为1,2,3,4.若从袋中随机抽取两个球,则取出的两个球的编号之积大于6的概率为.28、(苏锡常镇四市2019届高三教学情况调查(一))箱子中有形状、大小都相同的3只红球、1只白球,一次摸出2只球,则摸到的2只球颜色相同的概率为.29、(盐城市2019届高三第三次模拟)现有数学、物理、化学三个兴趣小组,甲、乙两位同学各随机参加一个,则这两位同学参加同一个兴趣小组的概率为_____.30、(江苏省2019年百校大联考)某路口一红绿灯东西方向的红灯时间为45s,黄灯时间为3s,绿灯时间为60s.从西向东行驶的一辆公交车通过该路口,遇到红灯的概率为.二、解答题1、(南京市2018高三9月学情调研)袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.(1)若两个球颜色不同,求不同取法的种数;(2)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.2、(南京市六校联合体2019届高三上学期12月联考)将4名大学生随机安排到A,B,C,D四个公司实习.(1)求4名大学生恰好在四个不同公司的概率;(2)随机变量X表示分到B公司的学生的人数,求X的分布列和数学期望E(X).3、(南京市13校2019届高三12月联合调研)在某次活动中,有5名幸运之星.这5名幸运之星可获得A、B两种奖品中的一种,并规定:每个人通过抛掷一枚质地均匀的骰子决定自己最终获得哪一种奖品(骰子的六个面上的点数分别为1点、2点、3点、4点、5点、6点),抛掷点数小于3的获得A奖品,抛掷点数不小于3的获得B奖品.(1)求这5名幸运之星中获得A奖品的人数大于获得B奖品的人数的概率;ξ=-,求随机变量ξ的分布列及数学(2)设X、Y分别为获得A、B两种奖品的人数,并记X Y期望.4、(徐州市2018高三上期中考试)某同学在上学路上要经过A 、B 、C 三个带有红绿灯的路口.已知他在A 、B 、C 三个路口遇到红灯的概率依次是13、14、34,遇到红灯时停留的时间依次是40秒、20秒、80秒,且在各路口是否遇到红灯是相互独立的.(1)求这名同学在上学路上在第三个路口首次遇到红灯的概率;,(2)求这名同学在上学路上因遇到红灯停留的总时间.5、(南京金陵中学、海安高级中学、南京外国语学校2019届高三第四次模拟)一个暗箱中有形状和大小完全相同的3只白球与2只黑球,每次从中取出一只球,取到白球得2分,取到黑球得3分.甲从暗箱中有放回地依次取出3只球.(1)求甲三次都取得白球的概率;(2)求甲总得分ξ的分布列和数学期望.6、(镇江市2018届高三第一次模拟(期末)考试)某学生参加4门学科的学业水平测试,每门得A 等级的概率都是14,该学生各学科等级成绩彼此独立,规定:有一门学科获A 等级加1分,有两门学科获A 等级加2分,有三门学科获A 等级加3分,四门学科全获A 等级加5分,记ξ1表示该生的加分数,ξ2表示该生获A 等级的学科门数与未获A 等级学科门数的差的绝对值。
《概率统计》知识点归纳总结1.加法公式结合独立性)()()()()(B P A P B P A P B A P -+=+例如:7.0)(,6.0)(==B P A P88.07.0*6.07.06.0)()()()()(=-+=-+=+B P A P B P A P B A P2. 分布函数的性质P39(其中分布函数)(x F 不是连续函数,非严格意义的单调递增性)3.方差的性质,二项分布)(p n B X ,~,泊松分布)(λπ~Y 的方差2,3.0,4===λp n44.312*97.0*3.0*4*16916)3()4()34(D =+=+=+=-DY DX Y D X D Y X4. ),(~2nN X σμ),N(~X 2σμ正态总体,b]U[a,~X 均匀总体),N(~X 2σμ正态总体,n X D X E 2)(,)(σμ==b]U[a,~X 均匀总体,n a b X D b a X E 12)()(,2)(2-=+=5总体均值()E X 的无偏估计量(系数相加等于1);P178:12(1)2121X 21X + ;5432151515151X 51X X X X ++++ 6加法公式结合独立性)()()()()(B P A P B P A P B A P -+=⋃减法公式结合独立性)()()()()()(B P A P A P AB P A P B A P -=-=-7.已知随机变量X 的分布律为记X 的分布函数为,则3F = 1 .8.平均值就是数学期望,P59:24; P117:11 9.置信区间10.假设检验中,犯第一类错误的概率就是显著性水平α犯第一类错误的概率,显著性水平α为 0.03,则在原假设 H 0成立的条件下,拒绝H 0的概率为___0.03________接受H 0的概率为______0.97_________ 11.A 和B 互斥(互不相容),A 和B 对立事件,P9,性质v12.概率等于0的事件,不一定是不可能的事件13.离散型随机变量,联合分布能唯一确定边缘分布,反之不成立14随机变量P143:(3.8),),1(~t 2n F15.显著性水平α是犯第I 类错误(弃真错误的概率)计算题: 16. 已知概率密度函数,利用概率密度函数求待定系数,分布函数,计算概率概率密度函数为⎩⎨⎧<≥=-0)(3x x Ae x f x 求{}01P X <<17.联合分布求边缘分布,判断独立性,判断是否相关,P7518.已知概率密度求方差(用方差的性质先化简),概率密度用P58:21(2),计算)13(XD19已知离散型随机变量的分布律求参数的最大似然估计值;P176:4(1),答案P6620全概率公式,贝叶斯公式的应用3. 已知一批产品中有95%是合格品,检查产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率是0.03.求(1)任意抽查一个产品,它被判为合格品的概率(2)一个经检查被判为合格的产品确实是合格品的概率.2、设A 表示合格品,A 表示次品,B 表示被检合格,则()0.95,()0.05,()1()0.98,()0.03P A P A P B A P B A P B A ===-== (1) 由全概率公式,得()=()()()()=0.950.98+0.050.03=0.9325P B P A P B A P A P B A +⨯⨯(2)由贝叶斯公式,得()()()()()()()P A P B A P A B P A P B A P A P B A =+=0.950.980.99840.950.980.050.03⨯=⨯+⨯3、某公司有甲、乙、丙三位秘书,让他们把公司文件的45%,40%,15% 进行归档,根据以往的经验,他们工作中出现错误的概率分别为0.01,0.02,0.05.现发现有一份文件归错档,试问该错误最有可能是谁犯的?解:设事件i A 表示“文件由第i 位秘书归档”()1,2,3i =,B 表示“文件归错档”. 依题意,()10.45P A =, ()20.4P A =, ()30.15P A =,()10.01P B A =, ()20.02P B A =,()30.05P B A =由全概率公式可知()()()()()()()112233P B P B A P A P B A P A P B A P A =++0.010.450.020.40.050.15=⨯+⨯+⨯0.02=()()()()1110.010.450.2250.02P B A P A P A B P B ⨯===()()()()2220.020.40.40.02P B A P A P A B P B ⨯===()()()()3330.050.150.3750.02P B A P A P A B P B ⨯===由此可见,这份文件由乙归错档的可能性最大.21. 正态分布计算概率;P59:28 答案P27。
专题4 概率与统计说明: A.了解 B.理解 C.掌握概率与统计是高考必考重点内容之一,理科高考考查的主要内容有:抽样方法、统计图表,统计数据的数字特征,变量间的相关关系、随机事件的概率(古典概型、几何概型),离散型随机变量及其分布列,回归分析及独立性检验。
学习中要让学生感悟解题中所蕴含建模思想,随机思想,形成阅读能力及数据处理能力。
复习教学中提出以下建议;教学中应注意“四化”,知识理解“深化”、考试题型“类化”、通性通法“强化”、解题思维“优化”。
高考复习内容四查:查考纲把握方向、查考题明辨重点、查课本回归基础、查学情对症下药。
数学教学与高考复习要求四通:对学生点,心有灵犀一点通;让学生悟,融会贯通;让学生做,触类旁通;让学生考,无师自通。
★★★通过研究近4年全国高考试卷,高考中概率与统计试题主要以中档题出现,通过研究近几年全国高考试卷,题目设置上,会有1个选填题;分值为5分。
解答题1道为12分。
○○○○概率与统计部分在高考中占据重要的地位,通过分析近几年的高考情况,考查特点如下表:2014-2017年全国高考解三角形(理科)试题分布表统计的主要问题是:简单随机抽样和用样本估计总体;概率的主要问题是:随机现象与概率模型.在本专题中,研究的基本思维模式是:对于统计问题,构建“随机抽样→收集数据→整理分析数据→提取信息→用信息去说明问题”的框架.在统计问题中,数据的获得是至关重要的.如果从总体中抽取的样本不均匀,不具备随机性,那么后期对样本的数据分析就变得苍白无力,因此无论是在学习统计问题的时候,还是在进行复习的时候,都要帮助学生遵循“随机获取、均匀抽样”的原则;另外,在数据处理之后,要养成运用数据说明问题的习惯,不能把统计题目只看成对数据进行计算. 因此,统计学的核心思想就是抽样思想,基本思维模式:首先确定研究的客观存在的总体,其次是抽取总体中的一个随机样本;最后是依据样本得出的数据信息(特征)来推测总体的某些数字信息(特征).对于概率问题,构建“认清随机事件,科学使用枚举法计数,并合理使用概率模型(古典概型、独立与互斥事件、超几何分布、二项分布)解题”的思维模式,最终帮助学生形成能用概率来解释生活中的一些随机现象的能力.概率与统计知识问题解决所需的核心技能与核心思想方法(1).核心思想:随机思想(2).核心技能:阅读技能(从文字语言、图表语言、数据中获取准确信息)、运算技能概率与统计知识体系框图典例.【2017课标II 理18】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下:(1) 设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不低于50kg”,估计A 的概率;(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:(3) 根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01)附:22()()()()()n ad bc K a b c d a c b d -=++++【答案】(1)0.4092; (2) 有99%的把握认为箱产量与养殖方法有关;(3)52.35kg 。
高频考点集中练概率统计1.(2018·全国卷Ⅲ)若某群体中的成员只用现金支付的概率为0。
45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0。
3B.0。
4C。
0。
6D。
0.7【解析】选B.方法一:画Venn图,如图设只用非现金支付(不用现金支付)的概率为x,则0。
45+0.15+x=1,解得x=0。
4,所以不用现金支付的概率为0。
4.方法二:记“用现金支付”为事件A,“用非现金支付”为事件B,则“只用非现金支付(不用现金支付)”为事件B—(A∩B),由已知,P(A)=0.45+0。
15=0。
6,P(A∩B)=0。
15,又P(A∪B)=P(A)+P(B)—P(A∩B)=0。
6+P(B)-0。
15=1,所以P(B)=0。
55,P(B—(A∩B))=P(B)—P(A∩B)=0.55—0.15=0。
4。
【真题拾贝】解决此类问题:①判断事件的基本关系利用概率的计算公式计算;②若事件为互斥事件的和,则由公式P(A∪B)=P(A)+P(B)+P(AB)计算可得;③若事件为独立事件的积,则由公式P(AB)=P(A)P(B)计算可得。
2。
(2019·全国卷Ⅱ)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分。
7个有效评分与9个原始评分相比,不变的数字特征是()A。
中位数B。
平均数 C.方差 D.极差【命题思维分析】可不用动笔,直接得到答案,亦可采用特殊数据,特值法筛选答案.【解析】选A.由于去掉1个最高分、1个最低分,不影响中间的数值,故中位数不变。
【真题拾贝】本题旨在考查学生对中位数、平均数、方差、极差本质的理解。
理解概念即可.3。
(2018·全国卷Ⅲ)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,D(X)=2。
4,P〈P,则p=()A.0。
7 B。
0.6 C.0。
4 D.0。
3【解析】选B.由题意可知X~B(10,p),故DX=10p(1-p)=2。
4,解得p=0。
6或p=0.4,当p=0。
6时,P(X=4)=×0。
64×0.46=×=××22,P(X=6)=×0。
66×0.44=×=××32,满足P(X=4)〈P(X=6),所以p=0。
6;同理可验证p=0。
4时不满足P(X=4)〈P(X=6)。
【快解】选B.由题意可知X~B(10,p),故DX=10p(1—p)=2。
4,解得p=0。
6或p=0。
4,由P(X=4)<P(X=6),即p4(1—p)6〈p6(1-p)4,解得p>。
【真题拾贝】判断二项分布的关键点:判断一个随机变量是否服从二项分布,要看两点:一是是否为n次独立重复试验.每次试验都只有两种结果,且在每次试验中事件A发生的概率是否均为p。
二是随机变量是否为在这n次独立重复试验中某事件发生的次数.且P(X=k)=表示在独立重复试验中,事件A恰好发生k次的概率。
4。
(2019·全国卷Ⅱ)11分制乒乓球比赛,每赢一球得1分,当某局打成10∶10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束。
甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0。
4,各球的结果相互独立.在某局双方10∶10平后,甲先发球,两人又打了X个球该局比赛结束。
(1)求P(X=2)。
(2)求事件“X=4且甲获胜"的概率。
【命题思维分析】(1)本题首先可以通过题意推导出P(X=2)所包含的事件为“甲连赢两球或乙连赢两球”,然后计算出每种事件的概率并求和即可得出结果;(2)本题首先可以通过题意推导出P(X=4)所包含的事件为“前两球甲、乙各得1分,后两球均为甲得分”,然后计算出每种事件的概率并求和即可得出结果。
【解析】(1)X=2就是10∶10平后,两人又打了2个球该局比赛结束,则这2个球均由甲得分,或者均由乙得分.因此P(X=2)=0。
5×0.4+(1-0.5)×(1-0.4)=0。
5。
(2)X=4且甲获胜,就是10∶10平后,两人又打了4个球该局比赛结束,且这4个球的得分情况为:前两球是甲、乙各得1分,后两球均为甲得分。
因此所求概率为[0.5×(1—0.4)+(1—0.5)×0。
4]×0.5×0.4=0.1.【真题拾贝】本题考查古典概型的相关性质,能否通过题意得出P(X=2)以及P(X=4)所包含的事件是解决本题的关键,考查推理能力,考查学生从题目中获取所需信息的能力,是中档题。
5。
(2019·全国卷Ⅰ)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两组白鼠对药效进行对比试验.对于两组白鼠,当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效。
为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得—1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为(1)求X的分布列.(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1, (8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效"的概率,则p0=0,p8=1,p i=ap i—1+bp i+cp i+1(i=1,2,…,7),其中a=P (X=-1),b=P(X=0),c=P(X=1)。
假设α=0.5,β=0。
8.①证明:{p i+1-p i}(i=0,1,2,…,7)为等比数列;②求p4,并根据p4的值解释这种试验方案的合理性.【命题思维分析】(1)首先确定X所有可能的取值,再计算出每个取值对应的概率,从而可得分布列;(2)①求解出a,b,c的取值,可得p i=0。
4p i-1+0。
5p i+0。
1p i+1(i =1,2,…,7),从而整理出符合等比数列定义的形式,问题得证;②列出证得的等比数列的通项公式,采用累加的方式,结合p8和p0的值可求得p1;再次利用累加法可求出p4.【解析】(1)X的所有可能取值为-1,0,1。
P(X=-1)=(1—α)β,P(X=0)=αβ+(1—α)(1—β),P(X=1)=α(1-β),所以X的分布列为(2)①由(1)得a=0。
4,b=0.5,c=0.1。
因此p i=0。
4p i—1+0。
5p i+0。
1p i+1,故0。
1(p i+1-p i)=0.4(p i—p i-1),即p i+1—p i=4(p i-p i—1)。
又因为p1—p0=p1≠0,所以{p i+1—p i}(i=0,1,2,…,7)为公比为4,首项为p1的等比数列。
②由①可得p8=p8-p7+p7-p6+…+p1-p0+p0=(p8—p7)+(p7-p6)+…+(p1-p0)=p1。
由于p8=1,故p1=,所以p4=(p4—p3)+(p3-p2)+(p2-p1)+(p1-p0)=p1=。
p4表示最终认为甲药更有效的概率,由计算结果可以看出,在甲药治愈率为0。
5,乙药治愈率为0.8时,认为甲药更有效的概率为p4=≈0.003 9,此时得出错误结论的概率非常小,说明这种试验方案合理。
【真题拾贝】本题考查离散型随机变量分布列的求解、利用递推关系式证明等比数列、累加法求解数列通项公式和数列中的项的问题。
本题综合性较强,要求学生能够熟练掌握数列通项求解、概率求解的相关知识,对学生分析和解决问题的能力要求较高。
6。
(2018·全国卷Ⅲ)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图: 世纪金榜导学号(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由。
(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m 不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?【命题思维分析】(1)计算两种生产方式的平均时间即可;(2)计算出中位数,再由茎叶图数据完成列联表;(3)由公式计算出χ2,再与6。
635比较可得结果。
【解析】(1)第二种生产方式的效率更高。
理由如下:方法一:由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80 min,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79 min。
因此第二种生产方式的效率更高.方法二:由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5 min,用第二种生产方式的工人完成生产任务所需时间的中位数为73。
5 min.因此第二种生产方式的效率更高.方法三:由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80 min;用第二种生产方式的工人完成生产任务平均所需时间低于80 min,因此第二种生产方式的效率更高。
方法四:由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高。
(2)由茎叶图知m==80.列联表如下:超过m不超过m第一种生产方式155第二种生产方式515(3)由于χ2==10>6.635,所以有99%的把握认为两种生产方式的效率有差异。