北大2011年自主招生数学题——求实数根
- 格式:doc
- 大小:148.00 KB
- 文档页数:1
自主招生模拟试题--03一、选择题(本大题共6小题,每小题3分,共18分)1.设A 是整数集的一个非空子集,对于A k ∈,如果A k ∉-1,且A k ∉+1,那么称k 是A 的一个“孤立元”.给定}8,7,6,5,4,3,2,1{=S ,由S 的三个元素构成的所有集合中,不含“孤立元”的集合个数为【 】. A.5 B.6 C.7 D.82.若函数1463)(23+++=x x x x f ,且1)(=a f ,19)(=b f ,则=+b a 【 】. A.2- B.0 C.1 D.23.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是【 】.A.12B.18C.24D.364.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n 年的累计产量为)12)(1(21)(++=n n n n f 吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限的年数为【 】.A.5B.6C.7D.8 5.若ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是【 】.A.(0,)+∞B.51(0,)2+ C.5151(,)22-+ D.51(,)2-+∞ 6.若设集合}10,,2,1{ =A ,则满足“每个子集至少有2个元素,且每个子集中任意两个元素之差的绝对值均大于1.”的A 的子集个数为【 】.A.55B.89C.109D.133 二、填空题(本大题共4小题,每小题3分,共12分) 7.函数424236131y x x x x x =--+--+的最大值为____________.8.若函数x x a y sin )3cos (2-=的最小值为3-,则实数a 的取值范围是____________.9.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6 局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为____________.10.多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A 在平面α内,其余顶点在α的同侧,正方体上与顶点A 相邻的三个顶点到α的距离分别为1,2和4,P 是正方体的其余四个顶点中的一个,则P 到平面α的距离可能是:①3; ②4; ③5; ④6; ⑤7以上结论正确的有______________.(写出所有正确结论的编号..) 三、解答题(本大题共5小题,每小题14分,共70分)11.设b x ax x f ++=4)(2)0(<a ,方程0)(=x f 的两实根为21,x x ,方程x x f =)(的两实根为βα,. (1)若1||=-βα,求b a ,的关系式;(2)若b a ,均为负整数,且1||=-βα,求)(x f 的解析式; (3)若21<<<βα,求证:7)1)(1(21<++x x .12.已知正实数12,,n a a a …,的和为1,求证:222211212231112n n n n n a a a a a a a a a a a a --++++≥++++…. 13.设AB 是抛物线px y 22=)0(>p 的一条过焦点的弦,且AB 与x 轴不垂直,点P 是y 轴上异于坐标原点O 的一点,且满足B A P O ,,,四点共圆,设B A P ,,的纵坐标依次为210,,y y y ,求210y y y +的值.14.在直角坐标平面内,设x 轴,y 轴正方向上的单位向量分别是i ,j,该坐标平面内的点n A ,n B 满足以下两个条件:①1OA j = ,且1+n n A A =i +j ;②i OB 31=,且1+n n B B =2()33n i ⨯.(1)求n OA 及n OB 的坐标;(2)若四边形11++n n n n A B B A 的面积是n a ,求n a 的表达式;(3)是否存在正整数M ,对*N n ∈都有n a <M 成立?若存在,求M 的最小值;若不存在,说明理由. 15.设ABC ∆的内切圆半径为1,三边长a BC =,b CA =,c AB =.若a ,b ,c 都是整数,求证:ABC ∆为直角三角形.自主招生模拟试题答题纸ABCDA 1B 1C 1D 1第10题图α一、选择题(本大题共6小题,每小题3分,共18分)题号 1 2 3 4 5 6 答案二、填空题(本大题共4小题,每小题3分,共12分)题号7 8 9 10 答案三、解答题(本大题共5小题,每小题14分,共70分)11.12.13.14.15.参考答案一、选择题(本大题共6小题,每小题3分,共18分)1.设A 是整数集的一个非空子集,对于A k ∈,如果A k ∉-1,且A k ∉+1,那么称k 是A 的一个“孤立元”.给定}8,7,6,5,4,3,2,1{=S ,由S 的三个元素构成的所有集合中,不含“孤立元”的集合个数为【 】. A.5 B.6 C.7 D.8解析:依题可知,由S 的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:62.若函数1463)(23+++=x x x x f ,且1)(=a f ,19)(=b f ,则=+b a 【 】. A.2- B.0 C.1 D.2()()()()()()()()()()()()()()()()()()3323333222223223614=13110,3131101,1311019,11123613=06380365=0f x x x x x xg y y y g y f a a a f b b b g a g b g a a b a a a a b a ab b a b b b b a =+++++++=+=++++==++++=⇒++∴+⇒+=-⎧+++⎪⇒+-+++++=⎨++-⎪⎩- 法一:设,则为奇函数且为单调递增函数,且=-9,=9,=-9=g -b-1,法二:易得()()()22260,380,0.D ab b a b a b ++>++>∴+<选。
2011年高水平大学自主招生选拔学业能力测试数学注意事项:1. 答卷前,考试务必将自己的姓名、准考证号填写在答题卡上。
2. 将答案写在答题卡上,写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共10小题,每小题3分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设复数z 满足|z|<1且15|z+|2z=,则|z |=( ) A 45 B 34 C 23 D 12解析:设|z |a bi =+代入15|z+|2z =整理得22221174a b a b ++=+,又|z |<1,所以2214a b +=,|z |=12=(2)在正四棱锥P-ABCD 中,M 、N 分别为PA 、PB 的中点,且侧面与底面所成二面角的正切.则异面直线DM 与AN 所成角的余弦值为( ) A13 B 16 C 18 D 112解析:设2AB =,容易算出2PB =,以底面中心为原点建立空间坐标系,1111(1,1,0),(1,1,0),(,,(,,222222D A M N ------,由1cos 6|DM AN ||DM ||AN |θ⋅==⋅uuu u r uuu ruuuu r uuu r (3)过点(1,1)-的直线l 与曲线3221y x x x =--+相切,且(1,1)-不是切点,则直线l 的斜率是( )A 2B 1C 1-D 2-解析:32221(),()322y x x x f x f x x x '=--+==--,设切点(),()t f t ,()()()y f t f t x t '-=-,把(1,1)-代入且1t ≠-得到1t =,所以2k =-(4)若23A B π+=,则22cos cos A B +的最小值和最大值分别为( )A.312-, B.1322,C.11D.112, 解析:2222211cos cos cos cos ()1cos(2)323A B A A A ππ+=+-=++,选B (5)如图,1O e 和2O e 外切于点C ,1O e ,2O e 又都和O e 内切,切点分别为,A B . 设AOB ACB αβ∠=∠=,,则( ) A cos sin02αβ+= B sin cos02αβ-=C sin 2sin 0βα+=D sin 2sin 0βα-= 解析:连接12O O 过点C ,设12CAO CBO ∠=∠∠=∠,,12O C O C 、,则+1+2=+21+22=βαπ∠∠∠∠,即2=βαπ-,只有D 是错的。
2012北⼤⾃主招⽣数学试题2012北⼤⾃主招⽣数学试题(理科)1.求x 的取值范围,使得()21f x x x x =+++-是增函数.2.1的实数根的个数.3.已知22(2)(2)0x x m x x n -+-+=的4个根组成⾸项为14的等差数列,求m n -.4.已知锐⾓ABC ?的外接圆的圆⼼为O ,求O 到三⾓形三边的距离之⽐.5.已知点(2,0),(0,2)A B -,若点C 是圆2220x x y -+=上的动点,求ABC ?⾯积的最⼩值.6.在1,2,,2012中取⼀组数,使得任意两数之和不能被其差整除,最多能取多少个数?7.设点A 、B 、C 分别在边长为1的正三⾓形的三边上,求222AB BC CA ++的最⼩值.8.若关于x 的⽅程sin 4sin 2sin sin 3x x x x a -=在[0,)π有唯⼀解的a ,求实数a 的范围.9.求证:若圆内接五边形的每个⾓都相等,则它为正五边形.10.求证:对于任意的正整数n ,(1n 的形式,其中s N +∈.2012年清华等五校⾃主招⽣试题??通⽤基础测试数学⼀、选择题1.若P 为ABC ?内部任⼀点(不包括边界),且()(2)0PB PA PB PA PC -+-=,则ABC ?必为( )A.直⾓三⾓形B.等边三⾓形C.等腰直⾓三⾓形D.等腰三⾓形2.圆锥的轴截⾯SAB 是边长为2的等边三⾓形,O 为底⾯中⼼,M 为SO 的中点,动点P 在圆锥底⾯内(包括圆周).若MA MP ⊥,则P 点形成的轨迹的长度为( )C.3D.32 3.某种型号的计算器上有⼀个特殊的按键,在计算器上显⽰正整数n 时按下这个按键,会等可能的将其替换为0,1,2,,1n -中的任意⼀个数.如果初始时显⽰2011,反复按这个按键使得最终显⽰0,那么这个过程中,9,99,999都出现的概率是( ) A.4110 B.5110 C.6110 D.7110 4.已知,R αβ∈,直线1sin sin sin cos x y αβαβA.0B.1C.1-D.25.若正整数集合A k 的最⼩元素为1,最元素为2007,并且各元素可以从⼩到⼤排成⼀个公差为k 的等差数列,则并集1759A A 中的元素个数为A.119B.120C.151D.1546.三⾓式111cos 0cos1cos1cos 2cos88cos89+++化简为 A.cot1csc1 B.tan1csc1 C.cot1sec1 D.tan1sec17.设k<3,k≠0,则⼆次曲线2213x y k k -=-与22152x y +=必有 (A)不同的顶点;(B)不同的准线;(C)相同的焦点;(D)相同的离⼼率.8.若P 为椭圆221169x y +=l 在第⼀象限上的动点,过点P 引圆x 2+y 2=9的两条切线PA 、PB ,切点分别为A 、B ,直线AB 与x 轴、y 轴分别交于点M 、N ,则S MON ?的最⼩值为( )(A)92;(B)(C)274;(D) 9. 设x 1、x 2是实系数⼀元⼆次⽅程ax 2+bx +c=0的根,若x 1是虚数,212x x 是实数,则 248200711111222221x x x x x S x x x x x =++++++ ? ? ? ?的值为A.0B.?1003C.1004D.?100410.函数f:R →R ,对任意的实数x 、y ,只要x+y≠0,就有f(xy)=()()f x f y x y++成⽴,则函数f(x)(x ∈R)的奇偶性为(A)⼀定是奇函数; (B)⼀定是偶函数; (C)既是奇函数,⼜是偶函数; (D)既不是奇函数,⼜不是偶函数.⼆、解答题11. 系统内有2k?1(k ∈N+)个元件,每个元件正常⼯作的概率为p(012.已知2n n x x f x x n =++++(*n N ∈),求证:当n 为偶数时,⽅程()0n f x =⽆解;当n 为奇数时,⽅程()0n f x =有唯⼀解n x ,且2n n x x +<. 13.已知锐⾓三⾓形ABC中,BE⊥AC于点E,CD⊥AB于点D,且BC=25,CE=7,BD=15,若BE、CD交于点H,联结DE,以DE为直径作圆,该圆与AC交于另⼀点F,求AF的长度.14.已知有n(n≥2)位乒乓球选⼿,他们互相进⾏了若⼲场乒乓球双打⽐赛,并且发现任两名选⼿作为队友恰好只参加过⼀次⽐赛,试求n的所有可能值·15.已知动点P在y轴上投影为H,A(?2,0),B(2,O),满⾜2AP BP PH.2||(1)求点P的轨迹⽅程C;(2)已知⼀条直线过点B,且与曲线C交于x轴下⽅两点C、D,M为CD中点,求M与点Q(0,?2)连线的斜率取值范围.2012年名牌⼤学⾃主招⽣考试试题(3)适⽤⾼校:北京理⼯⼤学、同济⼤学等⼗三校⼀、选择题1.正四⾯体的4个⽽上分别写若l,2,3,4,将4个这样的均匀正四⾯体投掷于桌⽽上,与桌⾯接触的4个⾯上的4个数的乘积被4整除的概率是( )(A)18 (B)964(C)116 (D)1316 2.设a>0,b >0,c >0,且a+b+c=1,则22a b c 的最⼤值为( )(A)613 (B)43123 (C)34123 (D)6123.已知F 1、F 2分别为双曲线22221x y a b-=的左、右焦点,P 为双曲线左⽀上的任意⼀点, 若221||||PF PF 的最⼩值为8a, 则双曲线的离⼼率的取值范围为( ) (A)(l ,+∞); (B)(0,3]; (C)(1,2]; (D)(1,3]4.如果关于x 的⽅程2x 2+3ax+a 2?a =0⾄少有⼀个根等于l 的根,那么实数a 的值( )(A)不存在;(B)有⼀个;(C)有三个;(D)有四个.5.5个顶点不共⾯的五边形叫空间五边形,空间五边形的5条边所在直线中,互相垂直的直线对⾄多有( )(A)5对; (B)6对; (C)7对; (D)8对.6.已知定义在实数集R 上的函数f(x),其值域也是R,井且时任意x 、y ∈R .都有f[xf(y)]=xy,则|f(2007)等于( )(A)0; (B)1; (C)20072; (D)20077.若k 是正位数,且0242401020054010401040104010333C C C C +?+?++?能被2k 整除,则k 的最⼤值为( )(A)2004; (B)2005; (C)2006; (D)2008.8.已知⾮零向量AB 与AC 满⾜0||||AB AC BC AB AC ??+= ,且12||||AB AC AB AC =则ABC ?为( ) (A)三边均为不相等的三⾓形; (B)直⾓三⾓形; (C)等腰⾮等边三⾓形; (D)等边三⾓形.x 、y 、z 的⽅程组333(6),(6),(6),y x z y x z -=-=-=的实数解的组数有( )(A)有⼀组解; (B)有两组解; (C)有⽆穷多组解; (D)⽆法确定10.在欧⾮杯排球赛中,欧洲的参赛队伍⽐⾮洲的参赛队伍多9⽀,每两⽀球队赛⼀场,胜者得1分,败者得0分,若欧洲球队所得总分为⾮洲球队所得总分的9倍,则⾮洲球队的各⽀球队中得分的最⼤可能值是( )(A)8; (B)9; (C)10; (D)11.⼆、解答题11.在m(m≥2)个不同数的排列P 1 P 2 ?P m 中, 若1≤i(1)求a 4、a 5,并写出a n 的表达式;(2)令b n =11n n n n a a a a +++,求证:2n<12n b b b +++ <2n+3,n=1,2,…12.在ABC ?中,⾓A 、B 、C 所对的边分别为a 、b 、c, 已知sinA +sinC=msinB(m ∈R),且4(A?C)+4cosB+cos2B=1.(1)求证:b 2=4ac;(2)当m=54, b=1时,求a 、c 的值; (3)若⾓B 为最⼤内⾓(即B≥A 且B≥C).求实数m 的取值范围.13.已知a、b为实数,i为虚数单位.且关于z的⼆次⽅程4z2+(2a+i)z?8b(9a+4)?2(a+2b)i=0⾄少有⼀个实根.求这个实根的最⼤值.14.双曲线C的渐近线⽅程为x±2y=0,点A(5,0)到双曲线C上动点P(1)求双曲线⽅程;(2)若过点B(1,0)的直线l交双曲线C上⽀⼀点M,下⽀⼀点N,且4MB=5BN,求直线l的⽅程.15.由抛物线x=y2+2与点(3,1)处的法线及x轴、y轴所围成⼀个平⾯图形.(1)求此平⾯图形的⾯积;(2)求该平⾯图形绕x轴旋转所成旋转体的体积.2013年“北约”⾃主招⽣试题⼀、以⼆、在6×6的表中停放3辆完全相同的红⾊车和3辆完全相同的⿊⾊车,每⼀⾏、每⼀列都只有⼀辆车,每辆车占⼀格,共有多少种停放⽅法?三、已知x2=2y+5,y2=2x+5,求x3?2x2y2+y2的值。
北大清华自主招生面试考题(完整版)北大清华自主招生面试考题(完整版)梧桐夜雨1.马克思在《资本论》中论述机器夺走了工人的饭碗时写道:“蒸汽机一开始就是人力的对头”。
请谈谈你的看法。
2.近期房产税、车船税、“馒头税”等均引发社会热议,请谈谈你对纳税与公民权利关系的理解。
3.哈佛大学图书馆墙上写有这样一句话:“请享受无法回避的痛苦”,谈谈你的理解。
4.假如用一种植物比喻中国人的国民性,你会选择什么?为什么?5.有人说:“智慧比体力更重要,成功的关键在于如何使用智慧”,请谈谈你的看法。
6.现在很多家长在高中阶段就把孩子送到国外学习,谈谈你的看法。
7.国家最近规定,中央和省级机构录用公务员,一般情况下都须具有两年以上基层工作经历,不再招收应届毕业生,你对此有何评论。
8.“穷则独善其身,达则兼济天下”,在今天是否还适用?9.目前一些人富裕了但并没感到幸福,谈谈你的看法。
10.有人认为“三纲”(君臣、父子、夫妻)无益,“五常”(仁义礼智信)可取。
试述你的观点。
11.近来续写《红楼梦》又成为社会热点话题。
你认为后人可以续写、仿写、改写经典名著吗?12.古人云“诗画同源”,“诗是无形画,画是有形诗”。
请谈谈你的见解。
13.请从世界历史和国际政治的角度,分析“只有永远的利益,没有永远的朋友”这句话的含义。
14.今年是辛亥革命100周年,海峡两岸将共同举行隆重庆典。
你认为大陆和台湾看待辛亥革命的角度和意义会有什么不同?15.网络带来丰富的信息,但也存在着许多虚假报道和伪装成民意的倾向性意见,你认为政府如何才能从网络上获取真实的社情民意?16.日本政府最近称,由于中国的GDP已经超过日本,所以要大幅削减对华援助,你如何看待此事?17.在鲁迅的小说《祝福》中,“我”作为一个现代知识分子,为什么不告诉祥林嫂“人死后是没有灵魂的”?18.牛顿第一定律可以被实验验证吗?19.“火”被古人当成一种物质元素,今天我们如何认识“火”?20.诗曰:“我看青山多妩媚,料青山看我应如是”,说说你的理解。
北大自主招生试题整理(2008--2012)2012北大自主招生数学试题(理科)1.求x 的取值范围,使得()21f x x x x =+++-是增函数.2.求1162271021x x x x +-+++-+=的实数根的个数.3.已知22(2)(2)0x x m x x n -+-+=的4个根组成首项为14的等差数列,求m n -. 4.如果锐角ABC ∆的外接圆的圆心为O ,求O 到三角形三边的距离之比.5.已知点(2,0),(2,0)A B -,若点C 是圆2220x x y -+=上的动点,求ABC ∆面积的最小值.6.在1,2,,2012 中取一组数,使得任意两数之和不能被其差整除,最多能取多少个数?7.求使得sin 4sin 2sin sin 3x x x x a -=在[0,)π有唯一解的a .8.求证:若圆内接五边形的每个角都相等,则它为正五边形.9.求证:对于任意的正整数n ,(12)n +都可以表示成1s s +-的形式,其中s N +∈. 2011北大自主招生数学试题(文科)1.已知平行四边形的两边长分别为3和5,一条对角线长为6,求另一条对角线长.2.求过抛物线2221y x x =--与2523y x x =-++的交点的直线方程.3.在等差数列{}n a 中,313a =-,73a =,n S 为其前n 项和,问数列{}n S 的哪一项最小?并求出最小项值.4.在ABC ∆中,若2a b c +≥,证明:60C ≤︒.5.是否存在四个正实数,使得两两之积分别为2,3,5,6,10,16?2010北大自主招生数学试题(文科)1.已知02απ<<,求证:sin tan ααα<<.(25分) 2.已知,A B 是边长为1的正五边形边上的点.证明:AB 最长为512+.(25分) 3.已知,A B 为21y x =-上在y 轴两侧的点,求过AB 的切线与x 轴围成面积的最小值.(25分)4.已知向量OA 与OB 夹角为θ,1OA =,2OB =,(1)OP t OA =-,OQ tOB =,01t ≤≤.PQ 在0t 时取得最小值,问当0105t <<时,夹角θ的取值范围.(25分) 2010北大自主招生数学试题(理科)1.已知,A B 是边长为1的正五边形边上的点.证明:AB 最长为512+.(25分) 2.已知,A B 为21y x =-上在y 轴两侧的点,求过AB 的切线与x 轴围成面积的最小值.(25分)3.已知向量OA 与OB 夹角为θ,1OA =,2OB =,(1)OP t OA =-,OQ tOB =,01t ≤≤.PQ 在0t 时取得最小值,问当0105t <<时,夹角θ的取值范围.(25分) 4.是否存在02x π<<,使得sin ,cos ,tan ,cot x x x x 为等差数列?(25分) 2009北大自主招生数学试题(理科)1.已知在圆内接四边形ABCD 中,1,2,3,4AB BC CD DA ====,求圆的半径.2.已知一无穷等差数列中有三项13,25,41,求证:2009为此数列中一项.3.是否存在实数x 使tan 3x +与cot 3x +均为有理数?4.已知对任意x 均有cos cos 21a x b x +≥-恒成立,求a b +的最大值.5.某次考试共有333名学生做对了1000道题.做对三道及以下为不及格,六道及以上为优秀,问不及格和优秀的人数哪个多?2008北大自主招生数学试题(理科) 1.求证:边长为1的正五边形对角线长为512+.2.已知六边形111AC BACB 中,11AC AB =,11BC BA =,11CA CB =,111A B C A B C ∠+∠+∠=∠+∠+∠.求证:ABC ∆面积是六边形111AC BACB 的一半.3.已知实数123123,,,,,a a a b b b 满足:123123a a a b b b ++=++,122331122331a a a a a a b b b b b b ++=++,且123{,,}min a a a 123{,,}min b b b ≤,求证:123{,,}max a a a 123{,,}max b b b ≤.4.排球单循坏赛,南方球队比北方球队多九支南方球队总得分是北方球队的九倍,求证:冠军是一支南方球队(胜得1分,败得0分).5.(理科)在空间直角坐标系内xoy 平面系内,平面区域202y x ≤≤-绕y 轴旋转一周构成一个不透光的几何体.在点(1,0,1)处设置一光源,在xoy 平面内有一以原点为圆心的圆C 被光照到的长度为2π,求圆C 上未被照到的长度.。
2011年“华约”自主招生数学试题一、选择题1.设复数z满足|z|<1且15||2zz+=则|z| =()A.45B.34C.23D.12【答案】D【解析】由15||2zz+=得25||1||2z z+=,已经转化为一个实数的方程.解得|z| =2(舍去),12.2.在正四棱锥P-ABCD中,M、N分别为P A、PB.则异面直线DM与AN所成角的余弦为()A.13B.16C.18D.112【答案】D【解析】本题有许多条件,可以用“求解法”,即假设题中的一部分要素为已知,利用这些条件来确定其余的要素.本题中可假设底面边长为已知(不妨设为2),利用侧面与底面所成二面角可确定其他要素,如正四棱锥的高等.然后我们用两种方法,一种是建立坐标系,另一种是平移其中一条线段与另一条在一起.解法一:如图1,设底面边长为2.如图建立坐标系,则A(1,-1,0),B(1,1,0),C(-1,1,0),D(-1,-1,0),P(0,0),则1111(,(,2222M N-,312132(,,),(,,)222222DM AN =-=-.设所成的角为θ,则1cos 6DM AN DM ANθ==.3.已知1223+--=x x x y ,过点(-1, 1)的直线l 与该函数图象相切,且(-1, 1)不是切点,则直线l 的斜率为 ( ) A .2B .1C .-1D .-2【答案】C【解析】显然(-1, 1)在1223+--=x x x y 的图象上.设切点为)12,(020300+--x x x x , 2232--='x x y ,所以223020--=x x k .另一方面,)1(1)12(002030---+--=x x x x k )2(00-=x x 223020--=x x .所以x 0=1,所以1-=k .选C . 4.若222cos cos 3A B A B π+=+,则的最小值和最大值分别为 ( ) A .321-,32B .12 ,32C .321-,321+D .12 ,221+【答案】B【解析】首先尽可能化简结论中的表达式22cos cos A B +,沿着两个方向:①降次:把三角函数的平方去掉;②去角:原来含两个角,去掉一个. 解:221cos 21cos 21cos cos 1(cos 2cos 2)222A B A B A B +++=+=++ 11cos()cos()1cos()2A B A B A B =++-=--,可见答案是B【答案】B【解析】题目中的条件是通过三个圆来给出的,有点眼花缭乱.我们来转化一下,就可以去掉三个圆,已知条件变为:ΔO O 1 O 2边O 1 O 2上一点C ,OO 1、OO 2延长线上分别一点A 、B ,使得O 1A =O 1C ,O 2B =O 2C . 解法一:连接12O O ,C 在12O O 上,则1221OO O OO O πα∠+∠=-,111212O AC O CA OO O ∠=∠=∠,222112O BC O CB OO O ∠=∠=∠,故1212211()22O CA O CB OO O OO O πα-∠+∠=∠+∠=, 12()2O CA O CB παβπ+=-∠+∠=,sin cos 2αβ=. 解法二:对于选择填空题,可以用特例法,即可以添加条件或取一些特殊值,在本题中假设两个小圆的半径相等,则12212OO O OO O πα-∠=∠=,1212124O CA O CB OO O πα-∠=∠=∠=,12()2O CA O CB παβπ+=-∠+∠=,sin cos2αβ=.6.已知异面直线a ,b 成60°角.A 为空间一点则过A 与a ,b 都成45°角的平面 ( ) A .有且只有一个B .有且只有两个C .有且只有三个D .有且只有四个【答案】D【解析】已知平面过A ,再知道它的方向,就可以确定该平面了.因为涉及到平面的方向,我们考虑它的法线,并且假设a ,b 为相交直线也没关系.于是原题简化为:已知两条相交直线a ,b 成60°角,求空间中过交点与a ,b 都成45°角的直线.答案是4个. 7.已知向量3131(0,1),(,),(,),(1,1)2222a b c xa yb zc ==--=-++=则222x y z ++的最小值为( ) A .1B .43C .32D .2【答案】B【解析】由(1,1)xa yb zc ++=得1)111222y z y z y z y z x x ⎧⎧+=-=⎪⎪⎪⎪⎨⎨+⎪⎪--=-=⎪⎪⎩⎩, 由于222222()()2y z y z x y z x ++-++=+,可以用换元法的思想,看成关于x ,y + z ,y -z三个变量,变形2(1)y z y z x ⎧-=⎪⎨⎪+=-⎩,代入222222()()2y z y z x y z x ++-++=+222228242(1)343()3333x x x x x =+-+=-+=-+,答案B 8.AB 为过抛物线y 2=4x 焦点F 的弦,O 为坐标原点,且135OFA ∠=,C 为抛物线准线与x 轴的交点,则ACB ∠的正切值为 ( ) A.B.5C.3D.3【答案】A【解析】解法一:焦点F (1,0),C (-1,0),AB 方程y = x – 1,与抛物线方程y 2 = 4x联立,解得A B (3+2+ (3-2- ,,于是22CA CB k k ==,tan 1CA CB CA CBk k ACB k k -∠==+ A 解法二:如图,利用抛物线的定义,将原题转化为:在直角梯形ABCD 中,∠BAD = 45°,EF ∥DA ,EF = 2,AF = AD ,BF = BC ,求∠AEB .tan tan 2DE GF AEF EAD AD AF ∠=∠===.类似的,有tan tan BEF EBC ∠=∠=2AEB AEF BEF AEF ∠=∠+∠=∠,tan tan 2AEB AEF ∠=∠= A【答案】DA .存在某种分法,所分出的三角形都不是锐角三角形B .存在某种分法,所分出的三角形恰有两个锐角三角形C .存在某种分法,所分出的三角形至少有3个锐角三角形D .任何一种分法所分出的三角形都恰有1个锐角三角形 【答案】D【解析】我们先证明所分出的三角形中至多只有一个锐角三角形.如图,假设ΔABC 是锐角三角形,我们证明另一个三角形ΔDEF (不妨设在AC 的另一边)的(其中的边EF 有可能与AC 重合)的∠D 一定是钝角.事实上,∠D ≥ ∠ADC ,而四边形ABCD 是圆内接四边形,所以∠ADC = 180°-∠B ,所以∠D 为钝角.这样就排除了B ,C .下面证明所分出的三角形中至少有一个锐角三角形.假设ΔABC 中∠B 是钝角,在AC 的另一侧一定还有其他顶点,我们就找在AC 的另一侧的相邻(指有FEDBCA DBCA公共边AC ) ΔACD ,则∠D = 180°-∠B 是锐角,这时如果或是钝角,我们用同样的方法继续找下去,则最后可以找到一个锐角三角形.所以答案是D . 二、解答题解:(I )tan tan tan tan()tan tan 1A BC A B A B +=-+=-,整理得tan tan tan tan tan tan A B C A B C =++(II )由已知3tan tan tan tan A C A B C =++,与(I )比较知tan 33B B π=,=.又11222sin 2sin 2sin 23sin 3A C B π+===,sin 2sin 2sin 2sin 23A C A C +=sin()cos()cos 2()cos 2()3A C A C A C A C +-=--+而3sin()sin 2A C B +==,1cos 2()cos 22A C B +==-,代入得2cos 2()13cos()A C A C -+=-,24cos ()3cos()10A C A C ----=,1cos()14A C -=-,,6cos 12A C -=,12.已知圆柱形水杯质量为a 克,其重心在圆柱轴的中点处(杯底厚度及重量忽略不计,且水杯直立放置).质量为b 克的水恰好装满水杯,装满水后的水杯的重心还有圆柱轴的中点处. (I )若b = 3a ,求装入半杯水的水杯的重心到水杯底面的距离与水杯高的比值; (II )水杯内装多少克水可以使装入水后的水杯的重心最低?为什么? 解:不妨设水杯高为1.(I )这时,水杯质量:水的质量=2 :3.水杯的重心位置(我们用位置指到水杯底面的距离)为12,水的重心位置为14,所以装入半杯水的水杯的重心位置为11237242320+=+(II)当装入水后的水杯的重心最低时,重心恰好位于水面上.设装x克水.这时,水杯质量:水的质量=a:x.水杯的重心位置为12,水的重心位置为2xb,水面位置为xb,于是122xa x xba x b+=+,解得x a=-13.已知函数21()(1)1()2xf x f fax b===+2,,3.令111()2n nx x f x+==,.(I)求数列{}nx的通项公式;(II )证明12112nx x xe+>.解:由12(1)1()1()21xf f a b f xx=====+2,得,3(I)方法一:先求出123412482359x x x x====,,,,猜想11221nn nx--=+.用数学归纳法证明.当n = 1显然成立;假设n = k成立,即11221kk kx--=+,则122()121kkk k kkxx f xx+===++,得证.方法二:121+=+nnn xxx取倒数后整理得)11(21111-=-+nnxx,所以)11()21(1111-=--xxnn所以12111+=-nx(II)方法一:证明12112nex x x+>.事实上,12111112(1)(1)(1)242nnx x x+=+++.我们注意到2212(1)12(1)nna a a a+<++<+,,,(贝努利(Bernoulli)不等式的一般形式:nxx n+≥+1)1(,x),1(+∞-∈)于是122121212111112(1)2(1)2(1)2222n n nn n nnex x x-+++-+<+=+<+<方法二:原不等式en<+++⇔)211()211)(211(21)]211()211)(211ln[(2<+++⇔n1)211ln()211ln()211ln(2<++++++⇔n构造函数)0()1ln()(>-+=x xx x g01111)(<+-=-+='xxx x g ,所以0)0()(=<g x g 所以)0()1ln(><+x x x令n x 21=则n n 21)211ln(<+ 1211212121)211ln()211ln()211ln(22<-=+++<++++++n n n14.已知双曲线221222:1(0,0),,x y C a b F F a b -=>>分别为C 的左右焦点.P 为C右支上一点,且使21212=,3F PF F PF π∠∆又的面积为.(I )求C 的离心率e ;(II )设A 为C 的左顶点,Q 为第一象限内C 上的任意一点,问是否存在常数λ(λ>0),使得22QF A QAF λ∠=∠恒成立.若存在,求出λ的值;若不存在,请说明理由.解:(I )如图,利用双曲线的定义,将原题转化为:在ΔP F 1 F 2中,21212=3F PF F PF π∠∆,的面积为,E 为PF 1上一点,PE = PF 2,E F 1 =2a ,F 1 F 2 = 2c ,求ca.设PE =PF 2=EF 2=x ,F F 2x ,1221211(222F PF S PF FF x a ∆==+=, 224120x ax a +-=,2x a =.ΔE F 1F 2为等腰三角形,1223EF F π∠=,于是2c =,ce a==. (II ) 21=λ此解法可能有误15.将一枚均匀的硬币连续抛掷n 次,以p n 表示未出现连续3次正面的概率. (I )求p 1,p 2,p 3,p 4;(II )探究数列{ p n }的递推公式,并给出证明;(III )讨论数列{ p n }的单调性及其极限,并阐述该极限的概率意义.解析:(I )显然p 1=p 2=1,878113=-=p ;又投掷四次连续出现三次正面向上的情况只有:正正正正或正正正反或反正正正,故161316314=-=p .(II )共分三种情况:①如果第n 次出现反面,那么前n 次不出现连续三次正面的概率121-⨯n P ;②如果第n 次出现正面,第n -1次出现反面,那么前n 次不出现连续三次正面和前n -2次不出现连续三次正面是相同的,所以这个时候不出现连续三次正面的概率是241-⨯n P ;③如果第n 次出现正面,第n -1次出现正面,第n -2次出现反面,那么前n 次不出现连续三次正面和前n -3次不出现连续三次正面是相同的,所以这个时候不出现连续三次正面的概率是381-⨯n P .综上,=n P +⨯-121n P +⨯-241n P 381-⨯n P .(4≥n ),④ (III )由(II )知=-1n P +⨯-221n P +⨯-341n P 481-⨯n P ,(5≥n )⑤,④-12×⑤,有=n P --1n P 4161-⨯n P (5≥n ) 所以5≥n 时,p n 的单调递减,又易见p 1=p 2>p 3>p 4>….3≥n 时,p n 的单调递减,且显然有下界0,所以p n 的极限存在.对=n P --1n P 4161-⨯n P 两边同时取极限可得0lim =-∞→n n p .其统计意义:当投掷的次数足够多时,不出现连续三次正面向上的次数非常少,两者比值趋近于零.。