自主招生北大2011数学测试试题
- 格式:pdf
- 大小:70.07 KB
- 文档页数:1
()()1132,(123x +的交点的直线方程()()1132得⎧⎪⎪⎨⎪⎪⎩252x x -++解析:因为222cos 2a b c C ab +-=22222a b a b ab +⎛⎫+- ⎪⎝⎭≥()2231422a b ab ab +-= 312422ab ab ab⋅-≥12=,当且仅当a b =时,""=成立,又因为()0,C π∈,所以060C ∠≤。
所以211212CC CC r r C C -=-<,由双曲线的定义,C 的圆心的轨迹是以1C ,2C 为焦点、实轴长为12r r -的双曲线;所以211212CC CC r r C C -=+<,由双曲线的定义,C 的圆心的轨迹是以1C ,2C 为焦点、实轴长为12r r +的双曲线;21121212点、实轴长为12r r -的双曲线;所以211212CC CC r r C C -=+=或211212CC CC r r C C +=+=,所以C 的圆心的轨迹是过1C ,2C 的直线(除直线与圆1C 、2C 的交点外);所以211212CC CC r r C C -=-<,由双曲线的定义,C 的圆心的轨迹是以1C ,2C 为焦点、实轴长为12r r -的双曲线(圆1C 、2C 的交点除外);21121212实轴长为12r r +的椭圆(圆1C 、2C 的交点除外);所以211212CC CC r r C C -=-=或2112CC CC r r +=-,所以C 的圆心的轨迹是过1C ,2C 的直线(除直线与圆1C 、2C 的交点外);(ⅱ)若C 与1C 内切,2C 外切,则11CC r r =-,22CC r r =+,所以211212CC CC r r C C +=+>,所以C 的圆心的轨迹是以1C ,2C 为焦点、实轴长为12r r +的椭圆(两圆1C 、2C 的交点除外);(ⅰ)若C 与1C ,2C 都内切,则11CC r r =-,22CC r r =-,所以211212CC CC r r C C +=->,所以C 的圆心的轨迹是以1C ,2C 为焦点、实轴长为12r r -的椭圆;(ⅱ)若C 与1C 内切,2C 外切,则11CC r r =-,22CC r r =+,所以211212CC CC r r C C +=+>,所以C 的圆心的轨迹是以1C ,2C 为焦点、实轴长为12r r +的椭圆。
绝密★使用完毕前2011年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时间长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是(A )(-∞, -1] (B )[1, +∞) (C )[-1,1] (D )(-∞,-1] ∪[1,+∞) (2)复数212i i-=+(A )i(B )-i(C )(D )4355i--4355i -+(3)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标系是(A)(B) (C) (1,0)(1,)2π(1,2π-(D)(1,)π(4)执行如图所示的程序框图,输出的s 值为(A )-3 (B )-12(C )13(D )2(5)如图,AD ,AE ,BC 分别与圆O 切于点D ,E ,F ,延长AF 与圆O 交于另一点G 。
给出下列三个结论:AD+AE=AB+BC+CA ;○1回归往日精品,再现今日辉煌AF·AG=AD·AE○2③△AFB ~△ADG 其中正确结论的序号是(A )①② (B )②③ (C )①③ (D )①②③(6)根据统计,一名工作组装第4件某产品所用的时间(单位:分钟)为(A ,C 为常数)。
已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是(A )75,25 (B )75,16 (C )60,25 (D )60,16 (7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是(A) 8 (B) (C)10 (D) (8)设,,,.记为平行四边形()0,0A ()4,0B ()4,4C t +()(),4D t t R ∈()N t ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数的值域为()N t(A ) (B ) {}9,10,11{}9,10,12(C ) (D ) {}9,11,12{}10,11,12第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2011年北京四中自主招生考试数学试卷一、选择题(共6小题,每小题5分,满分30分)1.(5分)已知<cosA<sin80°,则锐角A的取值范围是()A.60°<A<80°B.30°<A<80°C.10°<A<60°D.10°<A<30°2.(5分)实数b满|b|<3,并且有实数a,a<b恒成立,a的取值范围是()A.小于或等于3的实数B.小于3的实数C.小于或等于﹣3的实数D.小于﹣3的实数3.(5分)x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1B.或﹣1C.D.﹣或1 4.(5分)代数式的最小值为()A.12B.13C.14D.115.(5分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1至6六个数.连续掷两次,掷得面向上的点数之和是3的倍数的概率为()A.B.C.D.6.(5分)1×2+2×3+3×4+…+99×100=()A.223300B.333300C.443300D.433300二、填空题(共6小题,每小题5分,满分30分)7.(5分)多项式6x3﹣11x2+x+4可分解为.8.(5分)已知点P(x,y)位于第二象限,并且y≤2x+6,x、y为整数,则点P 的个数是.9.(5分)已知⊙O的半径OA=1,弦AB、AC的长分别是、,则∠BAC的度数是.10.(5分)方程(2007x)2﹣2006×2008x﹣1=0的较大根为a,方程x2+2006x ﹣2007=0的较小根为b,则a﹣b=.11.(5分)已知x=,则x3+12x的算术平方根是.12.(5分)如图,Rt△ABC中,∠BCA=90°,∠BAC=30°,AB=6.△ABC以点B 为中心逆时针旋转,使点C旋转至AB边延长线上的C′处,那么AC边转过的图形(图中阴影部分)的面积是.三、解答题(共5小题,满分60分)13.(12分)现将一个表面涂满红色的正方体的每条棱十等分,此正方体分割成若干个小正方体.在这些小正方体中,求:(1)两面涂有红色的小正方体的个数;(2)任取一个小正方体,各面均无色的小正方体的概率;(3)若将原正方体每条棱n等分,只有一面涂有红色的小正方体的个数.14.(12分)已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,求:代数式x4+x3y+x2y2+xy3+y4的值.15.(12分)在直角△ABC中,∠C=90°,直角边BC与直角坐标系中的x轴重合,其内切圆的圆心坐标为P(0,1),若抛物线y=kx2+2kx+1的顶点为A.求:(1)求抛物线的对称轴、顶点坐标和开口方向;(2)用k表示B点的坐标;(3)当k取何值时,∠ABC=60°?16.(12分)如图,OA和OB是⊙O的半径,并且OA⊥OB.P是OA上的任意一点,BP的延长线交⊙O于点Q,点R在OA的延长线上,且RP=RQ.(1)求证:RQ是⊙O的切线;(2)求证:OB2=PB•PQ+OP2;(3)当RA≤OA时,试确定∠B的取值范围.17.(12分)平面上有n个点(n≥3,n为自然数),其中任何三点不在同一直线上.证明:一定存在三点,以这三点作为顶点的三角形中至少有一个内角不大于.2011年北京四中自主招生考试数学试卷参考答案一、选择题(共6小题,每小题5分,满分30分)1.D;2.C;3.A;4.B;5.C;6.B;二、填空题(共6小题,每小题5分,满分30分)7.(x﹣1)(3x﹣4)(2x+1);8.6;9.15°或75°;10.2008;11.2;12.9π;三、解答题(共5小题,满分60分)13.;14.;15.;16.;17.;。
2011年普通高等学校招生全国统一考试数学(文)(北京卷) 本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、 选择题共8小题,每小题5分,共40分。
在每小题列出四个选项中,选出符合题目要求的一项。
(1) 已知全集U=R ,集合{}21P x x =∣≤,那么U P =ð(A)(,1-∞-) (B)(1,+∞) (C)(-1,1) (D)()()11-∞,-,+∞(2)复数212i i-=+ (A)i (B )i - (C)4355i -- (D)4355i -+ (3)如果1122log log 0x y <<,那么(A )1y x << (B)1x y << (C)1x y << (D)1y x <<(4)若p 是真命题,q 是假命题,则(A )p q ∧是真命题 (B)p q ∨是假命题题 (C)p ⌝是真命题 (D)q ⌝是真命(5)某四棱锥的三视图如图所示,该四棱锥的表面积是 (A)32(B)16+(C)48(D)16+(6)执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为(A)2(B)3(C)4(D)5(7)某车间分批生产某种产品,每批的生产准备费用为800元。
若每批生产x 件,则平均仓储时间为8x 天,且每件产品每天的仓储费用为1元。
为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品(A )60件 (B)80件 (C )100件 (D )120件(8)已知点()()0,2,2,0A B 。
若点C 在函数2y x =的图象上,则使得ABC 的面积为2的点C 的个数为(A )4 (B)3 (C)2 (D)1第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
(9)在ABC 中,若15,,sin 43b B A π=∠==,则a = . (10)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b = .(11)已知向量),(01),(a b c k ==-=2a b -与c ,共线,则k = .(12)在等比数列{}n a 中,若141,4,2a a ==则公比q = ; 12n a a a ++⋯+= .数 若关于x 的方程()f x k = 有两个不同的实(13)已知函根,则实数k 的取值范围是 . (14)设(0,0),(4,0),(4,3),(,3)(A B C t D t t +∈R )。
2011年“北约”13校联考自主招生数学试题2012年北约自主招生数学试题1、求x 的取值范围使得12)(-+++=x x x x f 是增函数;2、求1210272611=+-+++-+x x x x 的实数根的个数;3、已知0)2)(2(22=+-+-n x x m x x 的4个根组成首项为41的等差数列,求n m -;4、如果锐角ABC ∆的外接圆的圆心为O ,求O 到三角形三边的距离之比;5、已知点)0,2(),0,2(B A -,若点C 是圆0222=+-y x x 上的动点,求ABC ∆面积的最小值。
6、在2012,,2,1Λ中取一组数,使得任意两数之和不能被其差整除,最多能取多少个数?7、求使得a x x x x =-3sin sin 2sin 4sin 在),0[π有唯一解的a ; 8、求证:若圆内接五边形的每个角都相等,则它为正五边形;9、求证:对于任意的正整数n ,n )21(+必可表示成1-+s s 的形式,其中+∈N s2012年自主招生北约联考数学试题解答2013年北约自主招生数学试题解析12312为两根的有理系数多项式的次数最小是多少?解析:显然,多项式23()(2)(1)2f x x x ⎡⎤=---⎣⎦2和312-于是知,2和312为两根的有理系数多项式的次数的最小可能值不大于5. 若存在一个次数不超过4的有理系数多项式432()g x ax bx cx dx e =++++,其两根分别为和1,,,,a b c d e不全为0,则:420(42)(2020a c eg a c e b db d++=⎧=++++=⇒⎨+=⎩(1(7)(232(630g a b c d e a b c d a b c=-+----+++++702320a b c d ea b c d+---=⎧⇒⎨+++=⎩即方程组:420(1)20(2)70(3)2320(4)630(5)a c eb da b c d ea b c da b c++=⎧⎪+=⎪⎪+---=⎨⎪+++=⎪++=⎪⎩,有非0有理数解.由(1)+(3)得:110a b c d++-=(6)由(6)+(2)得:1130a b c++=(7)由(6)+(4)得:13430a b c++=(8)由(7)-(5)得:0a=,代入(7)、(8)得:0b c==,代入(1)、(2)知:0d e==.于是知0a b c d e=====,与,,,,a b c d e不全为0矛盾.所以不存在一个次数不超过4的有理系数多项式()g x和1-和1为两根的有理系数多项式的次数最小为5.2.在66⨯的表中停放3辆完全相同的红色车和3辆完全相同的黑色车,每一行每一列只有一辆车,每辆车占一格,共有几种停放方法?解析:先从6行中选取3行停放红色车,有36C种选择.最上面一行的红色车位置有6种选择;最上面一行的红色车位置选定后,中间一行的红色车位置有5种选择;上面两行的红色车位置选定后,最下面一行的红色车位置有4种选择。
2014年北京大学自主招生数学试题1. 圆心角为3π的扇形面积为6π,求它围成圆锥的表面积. 2. 将10个人分成3组,一组4人,两组每组3人,共有几种分法. 3. 2()2()(),(1)1,(4)733a b f a f b f f f ++===,求()2014f . 4.2()lg(2)f x x ax a =-+的值域为R ,求a 的取值范围.5. 已知1x y +=-,且,x y 都为负实数,求1xy xy+的取值范围. 6. 22()arctan14x f x C x +=+-在11,44⎛⎫- ⎪⎝⎭上为奇函数,求C 的值. 一、求证:tan3Q ∉二、已知实系数二次函数()f x 与()g x ,()()f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根.三、1213,a a a 是等差数列,{}113i j k M a a a i j k =++≤<<≤,问:7160,,23是否同在M 中,并证明你的结论.四、()01,2,,i x i n >=,且11n i i x ==∏,求证1)1)nn i i x =≥∏.答案1.π7; 2.2100; 3.4027)2024(12)(=⇒-=f x x f ; 4.1 00≥≤⇒≥∆a or a ;5.⎪⎭⎫⎢⎣⎡+∞,417;6.2arctan 0)0(-=⇒=C f 一、求证:Q ∉︒3tan解:若Q aab Q a ∈-=︒=⇒∈=︒2126tan 3tan ,Q ab b a c ∈-+=︒=⇒19tan Q bc cb d ∈-+=︒=⇒115tan 52518tan 41518sin 2-=︒⇒-=︒ 于是Q d d ∈-=⇒=-=︒233215tan ,从而矛盾。
二.实系数二次函数)(),(x g x f ,)()(x g x f =和0)()(3=+x g x f 有两重根,)(x f 有两相异根,求证:)(x g 无实数根。
自主招生数学试题及答案一、选择题(每题5分,共30分)1. 下列哪个选项不是正整数?A. 0B. 1C. 2D. 3答案:A2. 如果函数\( f(x) = x^2 - 4x + 3 \),那么\( f(2) \)的值是多少?A. -1B. 1C. 3D. 5答案:A3. 圆的面积公式是?A. \( \pi r^2 \)B. \( 2\pi r \)C. \( \pi d \)D. \( \pi r \)答案:A4. 已知\( \sin(\alpha) = \frac{3}{5} \),且\( \alpha \)在第一象限,求\( \cos(\alpha) \)的值。
A. \( \frac{4}{5} \)B. \( \frac{1}{5} \)C. \( -\frac{4}{5} \)D. \( -\frac{1}{5} \)答案:A5. 以下哪个数是无理数?A. \( \sqrt{2} \)B. 1.5C. 0.333...D. 1答案:A6. 一个等差数列的首项是3,公差是2,第10项是多少?A. 23B. 21C. 19D. 17答案:B二、填空题(每题3分,共15分)1. 一个直角三角形的两条直角边分别为3和4,斜边的长度是______。
答案:52. 函数\( g(x) = 2x - 1 \)的反函数是______。
答案:\( g^{-1}(x) = \frac{x + 1}{2} \)3. 一个数的平方根是4,这个数是______。
答案:164. 已知\( \tan(\theta) = 3 \),求\( \sin(\theta) \)的值(假设\( \theta \)在第一象限)。
答案:\( \frac{3\sqrt{10}}{10} \)5. 一个等比数列的首项是2,公比是3,第5项是多少?答案:162三、解答题(每题25分,共50分)1. 解不等式:\( |x - 5| < 4 \)。
2011年北约自主招生数学试题1、已知平行四边形两边长分别是3和5,一条对角线是6.求另一条对角线的长度.2、求过抛物线22221,523y x x y x x =--=-++两交点的直线方程.3、等差数列1237,,13, 3..n a a a a n S ⋅⋅⋅=-=满足这个数列的前项和为数列12,⋅⋅⋅S S 中哪一项最小?并求出这个最小值.4、在2,60.ABC a b c C ∆+≥∠≤中,如果证明5、是否存在四个正实数,它们两两乘积分别是2,3,5,6,10,16.6、设12C C 和是平面上两个不重合的固定圆周.设C 是该平面上的一个动圆,它与12C C 和均相 切.问:C 的圆心轨迹是何种曲线?证明你的结论.7、求12120111.x x x -+-+⋅⋅⋅+-的最小值2【参考答案】1、解答:设平行四边形为ABCD ,且6,3,5===AC BC AB ,易得:51cos -=∠ABC ,所以151cos =∠BAC ,24,321515322592==⨯⨯⨯-+=BD BD . 2、解答:设两条抛物线额交点为),(),,(2211y x B y x A ,联立两条抛物线的方程⎩⎨⎧++-=--=32512222x x y x x y ,消去2x 得:167+-=x y ,B A ,两点的坐标均满足这个方程,所以直线AB 的方程为0176=-+y x .3、解答:方法一:因为公差4437=-=a a d ,所以03,01,21761>=<-=-=a a a ,所以6S 最小,最小值666-=S ; 方法二:8234232322222-⎪⎭⎫ ⎝⎛-=-=n n n S n ,当6=n 时,n S 的最小值为666-=S . 4、解答:方法一、在ABC ∆中,由余弦定理得: 21848233222cos 22222222=≥-+=⎪⎭⎫ ⎝⎛+-+≥-+=ab ab ab ab b a ab b a b a ab c b a C ,因为函数x y cos =在),0(π上单调递减,所以3π≤C . 方法二、依题意得:2cos 2sin 42cos 2sin 2sin 2sin sin B A B A B A B A C B A ++≥-+⇔≥+, 212cos ≤+B A ,因为函数x y cos =在),0(π上单调递减,所以33232πππ≤⇒≥+⇒≥+C B A B A . 5、解答:假设存在满足题意的四个正实数d c b a ,,,,且假定d c b a <<<<0,依题意得:16,10,3,2====cd bd ac ab ,由前两个式子得32=c b ,由后两个式子得85=c b ,矛盾,所以不存在满足题意的四个数.6、解答:设⊙1C 的半径为1r ,⊙2C 的半径为2r ,⊙C 的半径为r ,且假定21r r ≥.(1)当21r r =时,①若⊙1C 与⊙2C 外离,当⊙C 与⊙1C 、⊙2C 均外切或均内切时,点C 的轨迹是21C C 的中垂线;当⊙C 与⊙1C 、⊙2C 一个外切一个内切时,点C 的轨迹是以21,C C 为焦点,实轴长为21r r +的双曲线; ②若⊙1C 与⊙2C 外切,当⊙C 与⊙1C 、⊙2C 均外切或均内切时,点C 的轨迹是21C C 的中垂线(除去21C C 的中点);当⊙C 与⊙1C 、⊙2C 一个外切一个内切时,点C 的轨迹是直线21C C (除去21C C 的中点); ③若⊙1C 与⊙2C 相交,此时⊙C 必与⊙1C 、⊙2C 均外切或均内切,点C 的轨迹是两圆公共弦在圆外部分的两条射线.(2)当21r r >时,①若⊙1C 与⊙2C 外离,当⊙C 与⊙1C 、⊙2C 均外切或均内切时,点C 的轨迹是以21,C C 为焦点,实轴长为21r r -的双曲线;当⊙C 与⊙1C 、⊙2C 一个外切一个内切时,点C 的轨迹是以21,C C 为焦点,实轴长为21r r +的双曲线;②若⊙1C 与⊙2C 外切,当⊙C 与⊙1C 、⊙2C 均外切或均内切时,点C 的轨迹是以21,C C 为焦点,实轴长为21r r -的双曲线(除去⊙1C 与⊙2C 的切点);当⊙C 与⊙1C 、⊙2C 一个外切一个内切时,点C 的轨迹是直线21C C (除去点21,C C 及⊙1C 与⊙2C 的切点这三个点);③若⊙1C 与⊙2C 相交,当⊙C 与⊙1C 、⊙2C 均外切或均内切时,点C 的轨迹是以21,C C 为焦点,实轴长为21r r -的双曲线(除去⊙1C 与⊙2C 的两个交点);当⊙C 与⊙1C 、⊙2C 一个外切一个内切时,点C 的轨迹是以21,C C 为焦点,长轴长为21r r +的椭圆(除去⊙1C 与⊙2C 的两个交点);④若⊙1C 与⊙2C 内切,当⊙C 与⊙1C 、⊙2C 均外切或均内切时,点C 的轨迹是直线21C C (除去⊙1C 与⊙2C 的切点);当⊙C 与⊙1C 、⊙2C 一个外切一个内切时,点C 的轨迹是以21,C C 为焦点,长轴长为21r r +的椭圆(除去⊙1C 与⊙2C 的两个切点);⑤若⊙1C 内含⊙2C ,且不同心,当⊙C 与⊙1C 内切、与⊙2C 外切时,点C 的轨迹是以21,C C 为焦点,长轴长为21r r +的椭圆;当⊙C 与⊙1C 、⊙2C 均内切时,点C 的轨迹是以21,C C 为焦点,长轴长为21r r -的椭圆;⑥若⊙1C 内含⊙2C ,且同心,当⊙C 与⊙1C 内切、与⊙2C 外切时,点C 的轨迹是以1C 为圆心,半径为221r r +的圆;当⊙C 与⊙1C 、⊙2C 均内切时,点C 的轨迹是以1C 为圆心,半径为221r r -的圆. 7、解答:首先设12n a a a ≤≤≤,12()||||||n f x x a x a x a =-+-++-.由绝对值的最高理论知, n 为奇数时,当12n x a +=时,()f x 有最小值;n 为偶数时,当122,n n x a a +⎡⎤∈⎢⎥⎣⎦任何值时,()f x 有最小值. 于是分解之,20111111111()|1|||||||||||||||2233320112011f x x x x x x x x x =-+-+-+-+-+-++-++-个, 共有: 201220111+2+2011==20230662⨯个断点(包括多重). 设123456111,,,23a a a a a a ======202306612011a =. 因为202306610115332=. 现在求1011533a 和1011534a 的值.设10115331a t =,则121011533t +++≥, 1211011533t +++-<.可得1422t =.且1011533101153411422a a ==,故11422x =时,()f x 的值最小.111111491()112114221423120111832.142214221422142214231422711f =-+-⨯++-⨯+⨯-++⨯-=。
绝密★使用完毕前2011年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。
考试时间长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合P={x ︱x 2≤1},M={a }.若P ∪M=P,则a 的取值范围是(A )(-∞, -1] (B )[1, +∞) (C )[-1,1] (D )(-∞,-1] ∪[1,+∞)(2)复数212i i-=+ (A )i (B )-i (C )4355i -- (D )4355i -+ (3)在极坐标系中,圆ρ=-2sin θ的圆心的极坐标系是 (A) (1,)2π (B) (1,)2π- (C) (1,0) (D)(1,π)(4)执行如图所示的程序框图,输出的s 值为(A )-3(B )-12(C )13(D )2(5)如图,AD ,AE ,BC 分别与圆O 切于点D ,E ,F ,延长AF 与圆O 交于另一点G 。
给出下列三个结论:○1AD+AE=AB+BC+CA ;○2AF ·AG=AD ·AE③△AFB ~△ADG其中正确结论的序号是(A )①② (B )②③(C )①③ (D )①②③ (6)根据统计,一名工作组装第4件某产品所用的时间(单位:分钟)为(A ,C 为常数)。
已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是(A )75,25 (B )75,16 (C )60,25 (D )60,16(7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是(A) 8 (B) 62 (C)10 (D) 82(8)设()0,0A ,()4,0B ,()4,4C t +,()(),4D t t R ∈.记()N t 为平行四边形ABCD 内部(不含边界)的整点的个数,其中整点是指横、纵坐标都是整数的点,则函数()N t 的值域为(A ){}9,10,11 (B ){}9,10,12(C ){}9,11,12 (D ){}10,11,12第二部分 (非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2011年普通高等学校招生全国统一考试数学(文)(卷) 本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、 选择题共8小题,每小题5分,共40分。
在每小题列出四个选项中,选出符合题目要求的一项。
(1) 已知全集U=R ,集合{}21P x x =∣≤,那么U P =(A)(,1-∞-) (B)(1,+∞) (C)(-1,1) (D)()()11-∞,-,+∞ (2)复数212i i-=+ (A)i (B )i - (C)4355i -- (D)4355i -+ (3)如果1122log log 0x y <<,那么(A )1y x << (B)1x y << (C)1x y << (D)1y x <<(4)若p 是真命题,q 是假命题,则(A )p q ∧是真命题 (B)p q ∨是假命题题 (C)p ⌝是真命题 (D)q ⌝是真命(5)某四棱锥的三视图如图所示,该四棱锥的表面积是 (A)32(B)16+162(C)48(D)16322+(6)执行如图所示的程序框图,若输入A 的值为2,则输出的P 值为(A)2(B)3(C)4(D)5(7)某车间分批生产某种产品,每批的生产准备费用为800元。
若每批生产x 件,则平均仓储时间为8x 天,且每件产品每天的仓储费用为1元。
为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品(A )60件 (B)80件 (C )100件 (D )120件(8)已知点()()0,2,2,0A B 。
若点C 在函数2y x =的图象上,则使得ABC 的面积为2的点C 的个数为(A )4 (B)3 (C)2 (D)1第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
(9)在ABC 中,若15,,sin 43b B A π=∠==,则a =. (10)已知双曲线2221(0)y x b b-=>的一条渐近线的方程为2y x =,则b =. (11)已知向量(3,1),(01),(,3)a b c k ==-=。