反比例函数的应用
- 格式:doc
- 大小:40.50 KB
- 文档页数:4
反比例函数在实际生活中的四种运用一、在电学中的运用在物理学中,有很多量之间的变化是反比例函数的关系,因此,我们可以借助于反比例函数的图象和性质解决一些物理学中的问题,这也称为跨学科应用。
例1 在某一电路中,保持电压不变,电流I(安培)和电阻R(欧姆)成反比例,当电阻R =5欧姆时,电流I =2安培.(1)求I 与R 之间的函数关系式;(2)当电流I =0.5时,求电阻R 的值.(1)解:设I =R U ∵R=5,I =2,于是 IR U =2×5=10,所以U =10,∴I=R10. (2)当I =0.5时,R =I U =5.010=20(欧姆). 点评:反比例函数与现实生活联系非常紧密,特别是为讨论物理中的一些量之间的关系打下了良好的基础。
用数学模型的解释物理量之间的关系浅显易懂,同时不仅要注意跨学科间的综合,而本学科知识间的整合也尤为重要,例如方程、不等式、函数之间的不可分割的关系.二、在光学中运用例2 近视眼镜的度数y (度)与焦距x (m )成反比例,已知400•度近视眼镜镜片的焦距为0.25m .(1)试求眼镜度数y 与镜片焦距x 之间的函数关系式;(2)求1 000度近视眼镜镜片的焦距.分析:把实际问题转化为求反比例函数的解析式的问题.解:(1)设y=k x ,把x=0.25,y=400代入,得400=0.25k , 所以,k=400×0.25=100,即所求的函数关系式为y=100x. (2)当y=1000时,1000=100x ,解得=0.1m . 点评:生活中处处有数学。
用反比例函数去研究两个物理量之间的关系是在物理学中最常见的,因此同学们要学好物理,首先要打好数学基础,才能促进你对物理知识的理解和探索。
三、在排水方面的运用例3 如图所示是某一蓄水池每小时的排水量V (m 3/h )与排完水池中的水所用的时间t (h )之间的函数关系图象.(1)请你根据图象提供的信息求出此蓄水池的蓄水量;(2)写出此函数的解析式;(3)若要6h 排完水池中的水,那么每小时的排水量应该是多少?(4)如果每小时排水量是5 000m 3,那么水池中的水将要多少小时排完? 分析:当蓄水总量一定时,每小时的排水量与排水所用时间成反比例. 解:(1)因为当蓄水总量一定时,每小时的排水量与排水所用时间成反比例3 •所以根据图象提供的信息可知此蓄水池的蓄水量为:4 000×12=48 000(m 3).(2)因为此函数为反比例函数,所以解析式为:V=48000t; (3)若要6h 排完水池中的水,那么每小时的排水量为:V=480006=8000(m 3); (4)如果每小时排水量是5 000m 3,那么要排完水池中的水所需时间为:t=480006=8000(m 3) 点评:学会把实际问题转化为数学问题,充分体现数学知识来源于实际生活又服务于实际生活这一原理。
反比例函数的应用反比例函数是数学中的一种特殊函数形式,也称为倒数函数。
它的形式可以表示为y=k/x,其中k是常数。
在实际生活中,反比例函数有着广泛的应用,本文将探讨几个常见的反比例函数应用场景。
1. 面积与边长的关系在几何学中,矩形的面积与其两条边长之间存在着反比例关系。
假设一个矩形的长为L,宽为W,那么它的面积S可以表示为S=L*W。
由于长度和宽度是矩形两个独立的参数,它们之间存在反比例关系。
当一个参数增加时,另一个参数相应地减小,以保持面积不变。
这种反比例关系可以应用于很多实际问题中,比如房间的面积与家具的数量,农田的面积与种植作物的产量等。
通过理解面积与边长之间的反比例关系,我们可以在实际问题中做出合理的决策。
2. 时间和速度的关系另一个常见的反比例函数应用是时间和速度之间的关系。
在物理学中,速度可以定义为物体在单位时间内所移动的距离。
假设一个物体在时间t内移动的距离为d,则它的速度v可以表示为v=d/t。
根据这个公式,我们可以看到时间和速度之间呈现出反比例关系。
这个关系在实际生活中有很多应用。
比如旅行中的车辆速度与到达目的地所需时间之间的关系,运输货物的速度与到达目的地所需的时间之间的关系等。
这种反比例关系帮助我们计算和预测在不同速度下所需的时间。
3. 电阻与电流的关系在电学中,电阻和电流之间存在着反比例关系。
根据欧姆定律,电流I通过一个电阻R时,产生的电压V可以表示为V=I*R。
由于电阻是电流通过的障碍物,当电阻增加时,电流减小,反之亦然。
这种反比例关系在电路设计和计算中起着重要的作用。
我们可以根据电阻和电流之间的关系来选择合适的电阻值,以控制电路中的电流大小。
此外,这种关系还能帮助我们解决一些实际电路中的问题,比如计算电路中的功率、阻值等。
总结:反比例函数在各个领域中都有广泛的应用。
通过理解反比例关系,我们能够分析和解决实际问题,做出合理的决策。
本文介绍了三个常见的反比例函数应用,包括面积与边长的关系、时间和速度的关系,以及电阻与电流的关系。
反比例函数在数学、物理学科的应用1. 反比例函数的概念和定义反比例函数是指函数y=k/x,其中k为非零常数,x≠0。
反比例函数在数学中是一种简单而重要的函数类型,具有许多特殊的性质和应用。
反比例函数在实际生活中也有广泛的应用,尤其在物理学中。
2. 物理学中的反比例函数应用在物理学中,许多反比例函数是基本的物理定律。
例如,牛顿第二定律F=ma,其中F为力,m为物体的质量,a为物体的加速度。
牛顿第二定律可以变形为a=F/m,即加速度和力成反比例关系。
当力增大时,加速度减小;当质量增大时,加速度减小;当质量减小时,加速度增大。
这种反比例关系在物理学中是非常常见的。
3. 实例:牛顿万有引力定律除了牛顿第二定律,牛顿万有引力定律也是一种经典的反比例关系。
牛顿万有引力定律是指任意两个物体之间的引力,与它们之间的距离的平方成反比例关系,即F=Gm1m2/d^2,其中G为万有引力常数,m1和m2分别为两个物体的质量,d为它们之间的距离。
这个定律告诉我们,当两个物体之间的距离变小时,引力会变大;当它们之间的距离变大时,引力会变小。
这种反比例关系在宇宙中的天体运动和星系的形成中起着非常重要的作用。
4. 电学中的反比例函数反比例函数在电学中也有广泛的应用。
例如,欧姆定律V=IR中,电阻R和电流I成反比例关系。
当电阻增大时,电流减小;当电阻减小时,电流增大。
这种关系在电路设计和电子工程中是非常重要的。
5. 小结反比例函数是一种在数学和实际应用中都非常常见的函数类型。
它具有许多重要的性质和应用,例如物理学中的牛顿第二定律和万有引力定律,电学中的欧姆定律等等。
在学习和应用反比例函数时,我们需要注意它们的特殊性质和应用场景,以便更好地理解和应用。
反比例函数的实际例子
1. 你知道吗,汽车行驶的速度和时间就像是反比例函数一样!比如说,你要去一个地方,路程是固定的吧,如果速度超快,那到达的时间不就很短嘛!反之,要是慢悠悠地开,那花费的时间可就长啦!这多像反比例函数啊,速度和时间此消彼长。
2. 想想看啊,你做一项工作,工作效率和完成时间不也是反比例函数的关系嘛!如果你效率超高,那完成工作不就用时很短嘛,要是磨磨蹭蹭,那得花多少时间呀!这不是明摆着的吗!
3. 哎呀呀,打篮球的时候,投篮的准确率和出手次数也有点反比例函数的味道呢!你要是只求快,疯狂投篮,那准确率可能就下去了呀。
但要是好好瞄准,少投几次,说不定准确率就大大提高了呢!大家想想是不是这么回事呀!
4. 大家有没有发现,给花浇水的量和花存活的时长也类似反比例函数哦!水浇太多,可能花就被淹坏了,可水浇太少,花又会干死,这不是很神奇嘛?
5. 嘿,你们说学习时间和学习效果是不是也是反比例函数呀!一直不停地学,可能效率反而低了,适当地休息调整,那学习效果说不定蹭蹭往上涨呢,这可真有意思!
6. 平时用电的时候,电器功率和用电时间也像反比例函数呢!功率大的电器,用的时间长那电费可就吓人了,如果功率小一点,合理安排使用时间,电费不就少很多嘛!这难道不是很明显嘛!
我觉得反比例函数在生活中无处不在,只要我们细心观察就能发现很多有趣的例子,它真的很神奇呀!。
反比例函数实际应用反比例函数是初中数学中一个非常重要的概念,在实际应用中也有着广泛的应用。
本文将从多个角度探讨反比例函数的实际应用。
一、比例尺比例尺是地图上一个重要的概念。
比例尺是表示地图上距离与实际距离之比的关系。
比例尺越大,表示地图上的距离与实际距离之比越小。
比例尺与实际距离的关系是反比例函数关系。
实际应用时,比例尺可以用来计算地图上两个点之间的真实距离,也可以用来计算地球上两个点之间的真实距离。
二、电阻电阻是电路中一个非常重要的概念。
电阻的大小和材料、长度和横截面积等因素有关。
电阻和电流的关系是反比例函数关系。
实际应用时,可以利用电阻来控制电路中的电流大小,从而达到控制电路的目的。
三、比例面积比例面积是建筑工程中一个非常重要的概念。
比例面积是指实际面积与图纸上的面积之比。
比例面积与实际面积的关系是反比例函数关系。
实际应用时,可以利用比例面积来计算建筑物的实际面积,从而控制建筑物的规模。
四、人口密度人口密度是一个地方人口数量与面积之比的关系。
人口密度与面积的关系是反比例函数关系。
实际应用时,可以利用人口密度来评估一个地方的人口密度状况,从而制定相应的人口政策。
五、天文学天文学中,反比例函数的应用非常广泛。
例如天体的距离与亮度之间的关系是反比例函数关系,利用这个关系可以测量天体的距离。
还有天体的质量与轨道周期之间的关系也是反比例函数关系,利用这个关系可以估算天体的质量。
总之,反比例函数在现实生活中有着广泛的应用。
熟练掌握反比例函数的概念和应用,对于提高我们的生活和工作水平具有非常重要的意义。
反比例函数实际应用的七种情况1.电阻与电流之间的关系:根据欧姆定律,电阻与电流成反比例关系,即电阻越大,通过电阻的电流越小。
这个关系在电路设计和计算中非常有用,让我们可以根据所需的电流值来选择合适的电阻。
2.速度与旅行时间之间的关系:在常规的运动中,速度与旅行时间成反比例关系。
例如,如果行驶的速度减小,那么到达目的地所需要的时间将会增加。
这个关系在交通规划中非常重要,可以帮助我们预测旅行时间和选择最佳路线。
3.固定工作量与完成时间的关系:在工作中,如果完成一项任务所需的工作量固定,那么完成任务所需的时间将与工作量成反比例关系。
这个关系可以帮助我们计划工作时间和分配资源,确保在规定时间内完成工作。
4.人均资金和受益人数之间的关系:在社会福利领域,人均资金和受益人数成反比例关系。
例如,如果一些项目的预算不变,那么资金按比例减少时,受益人的数量将会增加。
这个关系可以帮助我们合理分配资源,确保尽可能多的人从社会福利项目中受益。
5.产品价格与需求之间的关系:根据供需理论,产品价格与需求成反比例关系。
如果产品价格上升,需求将减少;反之,如果产品价格下降,需求将增加。
这个关系可以帮助企业制定合理的定价策略和预测市场需求,以最大程度地获得利润。
6.光的强度与距离之间的关系:根据光传播定律,光的强度与距离成反比例关系。
如果距离光源越远,光的强度将越弱。
这个关系在光学中非常重要,可以帮助我们计算光的传播距离和设计照明方案。
7.音量与距离之间的关系:在声学中,音量与距离也成反比例关系。
如果距离声源越远,声音的音量将越低。
这个关系在音响设计和音频工程中非常有用,可以帮助我们调整音乐会场的音效和音量控制系统。
以上是反比例函数实际应用的七种情况,这些情况涉及到不同领域的应用,从物理学到经济学,再到工程学和音响学等。
对于学习和应用反比例函数的人来说,了解这些实际案例可以帮助他们更好地理解和运用反比例函数。
反比例函数生活中的例子
反比例函数是一种数学函数,其中一个变量的值增加时,另一个变量的值会减少,反之亦然。
在生活中,我们可以找到许多反比例函数的例子。
1. 速度和旅行时间。
当我们以较高的速度旅行时,旅行时间会减少;而以较低的速度旅行时,旅行时间会增加。
2. 人口密度和居住空间。
当人口密度增加时,每个人的居住空间会减少;而当人口密度减少时,每个人的居住空间会增加。
3. 投资和回报。
当我们投资的金额增加时,我们可以获得更高的回报率;而当我们投资的金额减少时,我们可以获得更低的回报率。
4. 燃油消耗和速度。
当我们以较高的速度行驶时,车辆的燃油消耗会增加;而当我们以较低的速度行驶时,车辆的燃油消耗会减少。
5. 水龙头的流量和水压。
当水龙头的水压增加时,水流的流量会减少;而当水龙头的水压减少时,水流的流量会增加。
这些例子说明了反比例函数的应用,对我们理解和应用数学知识有很大的帮助。
- 1 -。
反比例函数的应用反比例函数是一类常见的数学函数,其应用十分广泛。
本文将探讨反比例函数在实际问题中的具体应用,并通过例子进行说明。
一、水池问题水池问题是反比例函数的典型应用之一。
假设一个水池的容量为V,初始时刻水池的水量为Q1,经过一段时间后,水池的水量变为Q2。
那么水池中的水量与时间的关系可以用反比例函数表示。
具体而言,水池中的水量与时间的关系可以表示为:Q = k/V,其中,Q表示水池中的水量,k是一个常数。
由于水的流入和流出是平衡的,因此可以得到:Q1 × t1 = Q2 × t2,其中t1和t2分别表示时间段1和时间段2。
例如,一口深度为4米的水池初始时刻水量为5000升,经过5天后水量变为8000升。
那么可以通过反比例函数求解水池的容量。
根据反比例函数的定义,可以得到:5000 × t1 = 8000 × 5,进一步化简计算,得到t1 = 8。
因此,水池的容量V = k/5000 = 8/5 = 1.6升/天。
二、物体的速度问题反比例函数在物体的速度问题中也有广泛的应用。
例如,一个物体以固定的速度v行驶,在行驶的过程中被施加了一个恒定的阻力F。
那么物体的加速度a与速度v之间的关系可以表示为:a = F/mv,其中m为物体的质量。
通过反比例函数的应用,可以求解物体的质量m。
假设物体的质量为m1,速度为v1,加速度为a1,当物体的质量变为m2时,速度变为v2,加速度变为a2。
根据反比例函数的定义,可以得到:a1 = F/(m1 ×v1),a2 = F/(m2 × v2)。
进一步化简计算,可以得到:m2/m1 = v2/v1 × a1/a2。
因此,可以通过反比例函数求解物体的质量m。
三、光的强度问题光的强度问题也是反比例函数的常见应用。
光的强度I与距离r之间的关系可以用反比例函数表示:I = k/r²,其中k为常数。
根据反比例函数知识点归纳,给出10个例子:根据反比例函数知识点归纳,给出10个例子反比例函数是一种特殊的函数形式,其特点是当自变量增大时,因变量会相应地减小;反之,当自变量减小时,因变量则会增大。
下面列举了10个反比例函数的例子:1. 电阻和电流的关系:当电流增大时,电阻减小;当电流减小时,电阻增大。
这能够用反比例函数来描述。
2. 速度和时间的关系:在恒定的距离下,当时间增加时,速度减小;当时间减少时,速度增加。
这也可以用反比例函数来表示。
3. 燃料效率和车速的关系:在同一辆车中,当车速增加时,燃料效率减小;当车速减小时,燃料效率增加。
4. 打孔机打孔时间和打孔数量的关系:对于一台打孔机来说,当打孔时间增加时,每分钟打孔的数量减少;当打孔时间减少时,每分钟打孔的数量增加。
5. 饺子和蒸锅水量的关系:当蒸锅中的水量增加时,每批饺子蒸熟所需的时间减少;当水量减少时,蒸饺所需的时间增加。
6. 光照强度和物体亮度的关系:在同一条件下,当光照强度增加时,物体的亮度减小;当光照强度减小时,物体的亮度增加。
7. 音乐音量和听到的声音大小的关系:当音乐音量增大时,听到的声音大小减小;当音乐音量减小时,听到的声音大小增加。
8. 网球击球速度和击球力度的关系:在相同的击球动作下,当击球力度增大时,网球的击球速度减小;当击球力度减小时,网球的击球速度增加。
9. 泵抽水时间和抽水深度的关系:当泵抽水时间增加时,抽水深度减小;当泵抽水时间减少时,抽水深度增加。
10. 车辆行驶速度和制动距离的关系:当车辆行驶速度增加时,制动距离增加;当车辆行驶速度减小时,制动距离减小。
以上是10个常见的反比例函数的例子。
反比例函数在实际生活中有着广泛的应用,能够帮助我们理解自然界中的各种规律和现象。
《反比例函数的应用》说课稿李晓梅2006.4一.说教材《反比例函数的应用》是苏科版八年级下册第九章第三节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。
这一节的内容符合新课程理念,课程要面向生活世界和社会实践。
反比例函数的知识在生产和实际生活中经常用到,掌握这些知识对学生参加实践活动,解决日常生活中的实际问题具有实用意义。
通过反比例函数的应用使学生明确函数、方程、不等式是解决实际问题的三种重要的数学模型,它们之间有着密切联系,并在一定的条件下可以互相转化。
在教学过程中,还渗透着建模思想、函数思想、数形结合思想,这些思想也为后面学习二次函数的应用奠定了基础。
二.说目标“反比例函数的应用”是反比例函数及其图象中的一个重要的内容,它是前面几节课的综合应用。
由于函数知识在日常生活中有重要的实用意义,根据教学大纲的明确规定并结合素质教育要求,通过本节课的教学达到以下目标:1、知识目标使学生了解反比例函数是日常生活和生产实际中应用十分广泛的数学模型,使学生掌握生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。
2、能力目标①使学生能模仿“利用函数解决实际问题的基本步骤”来解决简单的实际问题;初步养成自己提出或构建数学模型的能力;提高综合运用函数、方程、不等式知识解决实际问题的能力。
②引例通过开放性的问题,作业中通过编题培养学生的发散思维能力。
3、情感目标①通过本节知识的学习,使学生明确,应用反比例函数的知识可以解决生活中的许多问题,从而进一步培养学生热爱数学,进而努力学好数学的情感。
②使学生树立事物是普遍联系的辩证唯物观。
③引例中让学生具有一方有难八方支援的献爱心精神。
三.说教学重难点我认为本节课的教学重点是把一类实际问题归结为反比例函数问题来解决,这是因为:1.反比例函数是日常生活和生产实践中应用十分广泛的数学模型,它真正体现了数学知识来源于生活又应用于生活的重要意义。
2.“利用反比例函数解决实际问题的基本步骤”是通过对例题的解题过程进行归纳总结而得到的结论。
它遵循了从“具体到抽象再到具体”的认知规律,蕴含了从“特殊到一般再到特殊”的推理方法。
对今后学习数学有着重要的指导意义。
我认为本节课的教学难点是从实际问题中抽象出数学问题,建立数学模型,注意在实际问题中函数自变量的取值范围,用数学知识去解决实际问题。
在突破难点时,我注意:1.使学生熟练掌握反比例函数的图象和性质,教学生学会“数形结合”的研究方法,它直观、形象、好理解。
2.密切联系实际问题,注意观察生活。
四.说教学方法(一) 教法分析根据课程标准,当学生面对实际问题时,能主动尝试着,从数学的角度运用所学的知识和方法寻求解决问题的策略。
对于例1,由于学生初次接触反比例函数的应用,我采用的是教师引导法,降低难度.其余,我都采用的教学方法是问题教学法,让一个个有阶梯的问题充满课堂教学,时时启发学生的思维,这种教学方法符合以下教育规律:1、遵循由浅入深,由特殊到一般再到特殊,体现掌握知识与发展智力相统一的规律。
2、创设问题情境,教师不断启发引导学生思考,由易到难,化繁为简,体现教师的主导作用与学生主体作用相结合的规律。
(二)学法分析这种教学方法实际上也教给学生一种学习方法,使得学生学会观察生活,注意生活中的实际问题,学会自己探求知识;培养学生善于观察思考的习惯,鼓励学生将所学知识应用到生活中去。
学会寻找、发现,学会归纳总结,逐步掌握主动获取知识的本领。
(三)教学手段采用多媒体教学,通过直观演示图象,更好地教会学生“数形结合”的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
五.说教学过程的设计(一)创设情景,提出问题“问题是数学的心脏”(P.R.Halmos语),是数学知识、能力发展的生长点和思维的动力。
在课堂教学的开始,我创设了这样一个情景:去年下半年,励才中学初一(2)班黄晶晶同学的爸爸诊断为肝癌,家中又突发一场大火,真是祸不单行,一下急需的10万元款从何而来,关键时刻,群众积极响应镇政府的号召,一方有难八方支援,结果,捐款总额比预期的还要理想。
如果你是镇政府领导,你除了积极做好思想动员工作之外,能不能运用反比例函数的知识对即将发动群众献爱心进行策划呢?为了很好的解决这一问题,我们共同来学习以下两道题目:设计意图:由学生身边的事出发,激起学生的爱心,为积极筹划这个活动,带着对数学的求知欲,进入例题的学习。
(二)范例设计学习例1:小明家离学校1500m,某天小明上学时,发现时间不多了,就加快了行车速度,①小明行车平均速度(υ)与所用时间(t)有怎样的函数关系?②如果所剩时间为15分钟,那么小明的平均速度至少达到多少才能按时到校?③为了安全起见,小明的平均速度最快达到90m/min,他至少要留多长时间,才能安全到校?④画出函数的图象。
例1中,出现了一个常量,两个变量;我们看,平均速度(υ)随所用时间(t)的变化而怎样变化?是否为反比例函数关系?若是可用反比例函数的有关知识去解决问题.②、③两问实际上就是函数的特殊情形,一是已知自变量,求函数值;一是已知函数值,求自变量.从这两问,再引导学生探求自变量的取值范围. ④问中,指导学生画图,分析问题(多媒体展示函数图象).设计意图:这道题是课本例1的改编,更换背景的目的是为了更贴近学生的生活,以更好地激发学生的求知欲.后面的例2也是在课本例2的基础上添加了一个背景,目的也是如此.由于学生初次接触反比例函数的应用问题,我选择教师引导法.引导学生联系反比例函数图象及性质建立反比例函数模型,渗透函数思想,数形结合思想.在画图象前,已引导学生探究自变量的取值范围,这样就化解了教学难点.学习例2:小华同学的爸爸在某自来水公司上班,现该公司计划新建一个容积为4×104m3的长方体蓄水池,小华爸爸把这一问题带回来与小华一起探讨:①蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?②如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?③由于绿化以及辅助用地的需要,经过实地测量, 蓄水池的长和宽最多只能分别设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?这是个几何体积问题的应用题,我通过设置以下问题,引导学生观察思考,逐步分析,最后通过建立函数这种数学模型解决问题.问题(1):这是一个几何体积问题,问题中包含有哪些量? 哪些是常量?哪些是变量?问题(2):在容积不变的情形下, 蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?为什么?写出关系式.问题(3): 函数关系式中自变量的取值范围如何确定?从而决定函数值的取值范围又是怎样?问题(4):能否画出函数的图象? (指导学生画图,分析问题,多媒体展示函数图象.)问题(5):题中②、③两问能否利用图象来解?如何解?问题(6):题中②、③两问除了利用图象来解之外,是不是也可以利用方程解或不等式解?设计意图:对例2采用了设计问题系列,启发学生思考,联系旧知识建立函数模型,解决了自变量的取值范围从而确定了函数值的取值范围,渗透了函数的思想,让学生初步了解函数模型的建立方法。
最后渗透一题多解方法,培养学生思维的灵活性,渗透“函数——方程——不等式”思想和“数形结合”的研究方法,引导学生学会解题后的再思考,将知识系统化。
(三)反馈练习“学数学而不练,犹如入宝山而空返”(华罗庚语),为了让学生更好地学会反比例函数知识的应用,我设计了例2的后续问题,让学生练习。
使课堂教学能前后连贯。
例2中的新建蓄水池工程需要运送的土石方总量为4×104m3,某运输公司承担了该项工程运送土石方的任务。
①运输公司平均每天的工程量υ(m3/天)与完成运送任务所需要的时间t(天)之间有怎样的函数关系?②运输公司共派出20辆卡车,每辆卡车每天运土石方100 m3,则需要多少天才能完成该任务?可以通过此类题反馈本节所学,检查学生是否掌握了“数形结合”的研究方法,及时加强对数据和信息的处理能力。
(四)回到引例,前后呼应①现在大家能否利用我们刚掌握的知识来策划发动群众献爱心呢?②如果每人平均捐款100元,那么需要发动多少人捐献。
根据实际生活水平,每人平均捐款只能达到50元,那么至少要发动多少人捐献?发动人数与每人平均捐款数成怎样的函数关系?当每人平均捐款数一定时,捐款总额与发动的人数成怎样的函数关系?设计意图:让学生回到课堂之初的问题中,解决问题,使整个课堂教学浑然一体,体验学习数学的乐趣。
(五)收获教师启发学生思考回答下列问题,再由教师补充归纳本节所学知识内容。
(1)通过本节反比例函数的应用的学习,我们掌握了生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。
(2)初步学会了数学建模的方法.(3)树立了事物是普遍联系的辩证唯物观。
(六)作业布置根据新课程理念,人人学有价值的数学,不同的人在数学上有不同的发展.我的作业布置分必做题和选做题两部分,其中选做题是一道自编题,我的目的是既巩固所学知识,又复习了旧知,同时还能让学生体验一下做老师的愉悦.(4)必做题:①看课本例1、例2.②做课本习题9.3(5)选做题:4月6日,姜堰溱湖湿地公园游人如织,来自世界各地的游人蜂拥而至,“小数学”利用早上上学前的时间,来到公园门口,他发现……。
请你利用我们学过的知识,编两题,要求分别能利用正比例函数和反比例函数解决问题。
(七)板书设计反比例函数的应用数学思想引例××例1 ××例2 ××及本节新知××××××××××××收获学生板演××××结束语:教学过程是一个不断生成的过程,在教学过程中,我将根据学生实际情况,不断调整我的教学内容,以使学生在课堂上的思维永远处于一种亢奋状态。
说课对我来说是新事物,今后我将进一步说好课,并希望各位专家领导对本节课提出宝贵意见。
谢谢各位!。