北师大版数学七年级下册 第二章 对顶角、余角和补角导学案
- 格式:docx
- 大小:45.55 KB
- 文档页数:4
北京版数学七年级下册《余角、补角》教学设计一. 教材分析北京版数学七年级下册《余角、补角》是学生在掌握了角的分类、角的度量等基础知识后,进一步研究角的性质和应用的重要内容。
本节课通过引入余角和补角的概念,使学生了解它们之间的关系,能够运用余角和补角解决实际问题,为后续学习更高级的数学知识打下基础。
二. 学情分析学生在七年级上册已经学习了角的分类和角的度量,对角的概念有了初步的认识。
但部分学生对角的概念理解不够深入,对角的计算和应用有一定的困难。
此外,学生的空间想象力有待提高,需要通过大量的实例和练习来培养。
三. 教学目标1.知识与技能:学生能够理解余角和补角的概念,掌握求一个角的余角和补角的方法,能够运用余角和补角解决实际问题。
2.过程与方法:通过观察、操作、交流等活动,学生能够培养空间想象力,提高解决实际问题的能力。
3.情感态度与价值观:学生能够积极参与课堂活动,克服困难,增强对数学的兴趣和信心。
四. 教学重难点1.重点:学生能够理解余角和补角的概念,掌握求一个角的余角和补角的方法。
2.难点:学生能够运用余角和补角解决实际问题,提高空间想象力。
五. 教学方法1.情境教学法:通过生活实例和图形模型,引发学生的兴趣,引导学生主动参与课堂活动。
2.合作学习法:学生进行小组讨论和交流,培养学生团队合作精神和解决问题的能力。
3.引导发现法:教师引导学生发现余角和补角的概念和性质,培养学生独立思考的能力。
六. 教学准备1.教具:准备三角板、直尺、圆规等几何工具。
2.教学素材:收集相关的生活实例和练习题。
3.教学课件:制作余角和补角的教学课件。
七. 教学过程1.导入(5分钟)利用生活实例引入余角和补角的概念。
例如,展示一副梯子,梯子的倾斜角度与地面形成的角度是余角;再如,展示一个直角三角形,其直角与另外两个角形成的是补角。
引导学生观察和思考,引出本节课的主题。
2.呈现(10分钟)教师通过几何模型和图形,引导学生发现余角和补角的性质。
《余角和补角》导学案一、学习目标1、理解余角和补角的概念。
2、掌握余角和补角的性质,并能运用其解决简单的几何问题。
3、培养观察、分析和推理能力,体会数学在实际生活中的应用。
二、学习重点1、余角和补角的概念。
2、余角和补角的性质。
三、学习难点余角和补角性质的应用。
四、知识回顾1、角的度量单位:度、分、秒。
2、直角的度数为 90°。
五、新课导入在生活中,我们常常会遇到一些与角的数量关系有关的问题。
比如,在一幅三角板中,有两个角的度数之和等于 90°,而在一些图形中,两个角的度数之和等于180°。
那么,这些角之间有着怎样的特殊关系呢?今天我们就来学习余角和补角。
六、余角的概念如果两个角的和等于 90°(直角),就说这两个角互为余角,简称互余。
其中一个角是另一个角的余角。
例如,若∠1 +∠2 = 90°,则∠1 与∠2 互为余角,∠1 是∠2 的余角,∠2 也是∠1 的余角。
练习 1:已知∠A = 20°,则∠A 的余角为多少度?解:因为互为余角的两个角的和为 90°,所以∠A 的余角= 90° 20°= 70°七、补角的概念如果两个角的和等于 180°(平角),就说这两个角互为补角,简称互补。
其中一个角是另一个角的补角。
例如,若∠3 +∠4 = 180°,则∠3 与∠4 互为补角,∠3 是∠4 的补角,∠4 也是∠3 的补角。
练习 2:已知∠B = 110°,则∠B 的补角为多少度?解:因为互为补角的两个角的和为 180°,所以∠B 的补角= 180°110°= 70°八、余角和补角的性质1、同角(或等角)的余角相等。
2、同角(或等角)的补角相等。
证明性质 1:已知∠1 +∠2 = 90°,∠1 +∠3 = 90°则∠2 = 90°∠1,∠3 = 90°∠1所以∠2 =∠3证明性质 2:已知∠4 +∠5 = 180°,∠4 +∠6 = 180°则∠5 = 180°∠4,∠6 = 180°∠4所以∠5 =∠6练习 3:已知∠7 与∠8 互余,∠8 与∠9 互余,求证∠7 =∠9证明:因为∠7 与∠8 互余,所以∠7 +∠8 = 90°因为∠8 与∠9 互余,所以∠8 +∠9 = 90°所以∠7 = 90°∠8,∠9 = 90°∠8所以∠7 =∠9练习 4:已知∠10 与∠11 互补,∠11 与∠12 互补,求证∠10 =∠12证明:因为∠10 与∠11 互补,所以∠10 +∠11 = 180°因为∠11 与∠12 互补,所以∠11 +∠12 = 180°所以∠10 = 180°∠11,∠12 = 180°∠11所以∠10 =∠12九、余角和补角的应用1、在几何图形中,通过寻找余角和补角来求解角的度数。
对顶角、余角和补角-北师大版七年级数学下册教案一、教学目标1.掌握对顶角、余角和补角的定义及性质。
2.能够灵活运用对顶角、余角和补角的性质进行简单的计算。
二、教学内容1.对顶角、余角和补角的概念2.对顶角、余角和补角的性质3.对顶角、余角和补角的应用三、教学重点和难点1.教学重点:掌握对顶角、余角和补角的概念及性质。
2.教学难点:灵活运用对顶角、余角和补角的性质进行计算。
四、教学方法1.归纳法2.探究法3.演示法4.讨论法五、教学过程1. 导入新知识通过展示两条平行线及其上的两个等角的情形,引出对顶角的概念,引导学生进行探究活动,通过师生互动来总结出对顶角的定义及性质。
2. 讲解对顶角的概念和性质通过对对顶角的定义及性质进行讲解,加深学生对对顶角的认识。
3. 练习对顶角现场出示几个图形,让学生手绘出其中的对顶角,并说明理由。
通过练习,提高学生对对顶角的掌握。
4. 讲解余角和补角的概念和性质讲解余角和补角的定义及性质,并通过实际例子说明,加深学生对余角和补角的理解。
5. 练习余角和补角让学生手绘出具有余角和补角的图形,并通过练习,提高学生对余角和补角的掌握,进而灵活运用其性质进行计算。
6. 总结和归纳通过回顾概念及性质,总结并归纳对顶角、余角和补角的定义及性质,并对其应用进行总结。
六、教学评价1.课堂笔记和作业评分。
2.能否熟练运用对顶角、余角和补角的性质进行计算。
3.课堂参与度评分。
七、教学反思1.应注意让学生自主探究知识,培养其探究能力,学生才能更好地掌握知识点。
2.教师应注重教学过程中的实际案例及练习,让学生通过练习巩固所学内容,进而提高其理解和运用能力。
北师大版义务教育课程标准实验教科书七年级下册2.1.1两直线的位置关系第1课时教学设计一、教材分析1、地位作用:本节课研究的相交线是平面内两条直线的两种位置关系中的其中一种情形,学生已经学习了直线、射线、线段和角的有关知识,因此,本节课是在学生已有知识和经验的基础上,来进一步研究平面内两条直线相交的情形。
在本节课中首先探究了两直线相交所成的角的位置和大小关系,给出了邻补角和对顶角的概念,得出了“对顶角相等”的结论;为接下来研究两条直线被第三条直线所截的情形,即同位角、内错角、同旁内角等概念的学习作了最基本的准备。
同时是后续学习垂直的基础。
2、目标和目标解析:1.理解邻补角和对顶角的概念;2.掌握“对顶角相等”的性质;3.理解对顶角相等的说理过程;4.经历质疑,猜想,归纳等数学活动,培养学生的观察,转化,说理能力和数学语言规范表达能力;5.通过师友互助、小组讨论,培养合作精神,让学生在探索问题的过程中,体验解决问题的方法和乐趣,增强学习兴趣。
3、教学重、难点教学重点:邻补角、对顶角的概念,对顶角的性质与应用。
教学难点:对顶角相等的性质的探索。
突破难点的方法:通过相关旧知的复习,按照猜想、推理的思维过程进行突破。
二、教学准备:多媒体课件、导学案、剪刀,纸。
三、教学过程教学内容师生活动设计意图一、创设情景,引入新知问题:在我们的生活的世界中,蕴涵着大量的相交线和平行线,大家对它们也不陌生,(播放图片)请找出图片中的相交线、平行线。
由此引入本节的主要内容。
(板书)课题学生观察图片,获得感性认识.让学生知道,相交线、平行线的概念是从实物中抽象出来的,通过学生熟悉的事物,激发学生的学习兴趣。
二、小组合作,探究新知1. 观察剪刀剪布的过程,引入两条相交直线所成的角问题1:张开地剪刀给人以什么形象?(出示一把张开的剪刀),张开的剪刀可看作两条相交直线。
(教师可以同时在黑板上画出几何图形)在用剪刀剪布的过程中,用力握紧把手引发了剪刀张角的变化,表演剪布过程,让学生仔细观察,提出问题问题2:两个把手之间的的角发生了什么变化?剪刀刀刃张开的口又怎么变化?握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大.教师:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角及其特征.2.认识邻补角和对顶角,探索它们性质(1)角的位置关系探究画直线AB、CD相交于点O问题:1 、两条相交直线.形成的小于平角的角有几个?2、两两相配共组成几对角?3、各对角存在怎样的位置关系?按位置关系对他们怎样进行分类?4、各对角的度数有什么关系?学生观察、思考、回答问题学生观察、思考、回答,得出结论学生思考并在小组内交流,全班交流.由实际问题引导学生初步感知相交线形成的角及特点,同时明确本节课要学习的内容用现实生活中的例子引出两线相交所成角的问题,自然而贴切,同时在这个过程中,让学生对两线相交所成角的关系有了初步的认识,这就为研究对顶角相等作了铺垫三.细心观察,归纳定义1、探究邻补角的定义问题:(1)∠1与∠2有怎样的位置关系?(2)∠1与∠2的顶点有什么特点?(3)∠1与∠2的边所在的位置有什么特点?邻补角定义:∠1和∠2有一条公共边OA,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。
第01讲_两条直线的位置关系知识图谱两条直线的位置关系(北师版)知识精讲位置关系相交若两条直线只有一个公共点,我们称这两条直线为相交线平行在同一平面内,不相交的两条直线为平行线概念如果两个角有公共顶点,并且它们的两边互为反向延长线,则这两个角叫做对顶角.两条直线相交成四个角,其中不相邻的两个角叫对顶角.特征两个角有公共顶点,其两边互为反向延长线.性质对顶角相等.余角如果两个角的和等于90 ,就说这两个角互为余角.同角或等角的余角相等.补角如果两个角的和等于180°,就说这两个角互为补角.同角或等角的补角相等.四.易错点1.只有两条直线相交时才能产生对顶角,对顶角是成对出现的.2.余角和补角的概念区分.3.注意导角运算常用的两个基本思路:同角或等角的余角相等,同角或等角的补角相等.三点剖析一.考点:1.对顶角;2.余角和补角.二.重难点:角度综合计算;余角和补角的性质应用.三.易错点:1.只有两条直线相交时才能产生对顶角,对顶角是成对出现的.2.余角和补角的概念区分.对顶角例题1、.如图,∠1和∠2是对顶角的是()A.B.C.D.【答案】B【解析】A、不是对顶角,故本选项错误;B、是对顶角,故本选项正确;C、不是对顶角,故本选项错误;D、不是对顶角,故本选项错误.例题2、下列图形中,∠1与∠2是对顶角的是()A. B. C. D.【答案】C【解析】∠1与∠2是对顶角的是C。
例题3、如图,下列各组角中,互为对顶角的是()A.∠1和∠2B.∠1和∠3C.∠2和∠4D.∠2和∠5【答案】A【解析】互为对顶角的是:∠1和∠2.例题4、如图,直线AB、CD、EF相交于点O,已知20∠,求EOG∠的∠=︒,OG平分COFDOB∠=︒,52AOE度数.【答案】126︒【解析】利用对顶角和角平分线的性质可以求得12052541262EOG AOE AOC COF∠=∠+∠+∠=︒+︒+︒=︒随练1、(2013初一下期末西城区)下图是一种测量角的仪器,它依据的原理是___________________【答案】对顶角相等【解析】该题考察的是对顶角相等.测量角的仪器依据的原理是:对顶角相等.随练2、如图,3条直线a、b、c相交于一点O,图中对顶角共有()对?A.3B.4C.5D.6【答案】D【解析】暂无解析随练3、如图所示,直线AB、CD相交于点O,且∠AOD+∠BOC=100°,则∠AOC是()A.150°B.130°C.100°D.90°【答案】B【解析】∵∠AOD与∠BOC是对顶角,∴∠AOD=∠BOC,又已知∠AOD+∠BOC=100°,∴∠AOD=50°.∵∠AOD与∠AOC互为邻补角,GOFEDCBA∴∠AOC =180°-∠AOD =180°-50°=130°.余角和补角例题1、 如果一个角的补角是120°则这个角的余角的度数是( ) A.30° B.60° C.90° D.120° 【答案】 A【解析】 ∵该角的补角为120°, ∴该角的度数=180°-120°=60°, ∴该角余角的度数=90°-60°=30°.例题2、 将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是( ) A.B.C.D.【答案】 C【解析】 A 、∠α与∠β不互余,故本选项错误; B 、∠α与∠β不互余,故本选项错误; C 、∠α与∠β互余,故本选项正确;D 、∠α与∠β不互余,∠α和∠β互补,故本选项错误;例题3、 如图,90AOD ∠=︒,90COE ∠=︒,图中与∠AOC 互补的角有( )A.1个B.2个C.3个D.4个【答案】 B【解析】 根据题意可得:①∵180AOC BOC ∠+∠=︒,∴∠BOC 与∠AOC 互补.②90EOD DOC BOC DOC ∠+∠=∠+∠=︒,∴EOD BOC ∠=∠,∴180AOC EOD ∠+∠=︒,∴EOD ∠与AOC ∠互补.故图中与AOC ∠互补的角有2个.例题4、 如图,直线AB 、CD 相交于点O ,OE ⊥AB 于点O ,OF 平分∠AOE ,∠1=15°30′,则下列结论中不正确的是( )A.∠AOD 与∠1互为补角B.∠1的余角等于74°30′C.∠2=45°D.∠DOF =135° 【答案】 D【解析】 A 、∠AOD 与∠1互为补角,说法正确; B 、∠1的余角:90°-15°30′=74°30′,说法正确; C 、∵OE ⊥AB , ∴∠AOE =90°, ∵OF 平分∠AOE ,∴∠2=45°,说法正确;D 、∠DOF =180°-45°-15°30′=119°30′,原题说法错误;OE DCB A随练1、 一个角的余角是这个角的补角的13,则这个角的度数是( )A.30°B.45°C.60°D.70° 【答案】 B【解析】 设这个角的度数为x ,则它的余角为90°-x ,补角为180°-x ,依题意得:(190180)3x x ︒-=︒-,解得x =45°.随练2、 ∠AOB 的大小可由量角器测得(如图所示),则180°-∠AOB 的大小为( )A.60°B.120°C.40°D.140° 【答案】 B【解析】 暂无解析随练3、 若一个角比它的补角大36°48',则这个角为________°________'. 【答案】 1.108 2.24【解析】 暂无解析随练4、 已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A.相等B.互余C.互补D.互为对顶角【答案】 B【解析】 图中,∠2=∠COE (对顶角相等), 又∵AB ⊥CD ,∴∠1+∠COE=90°, ∴∠1+∠2=90°, ∴两角互余.垂线知识精讲一.垂线相关定义垂直与垂线定义 当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足. 垂线的性质1.同一平面内过一点有且只有一条直线与已知直线垂直;2.连接直线外一点与直线上各点的线段中,垂线段最短.简称:垂线段最短. 垂线的画法 1.过直线上一点A 画已知直线l 的垂线2.过直线外一点B 画已知直线l 的垂线.点到直线的距离直线外一点A 到这条直线l 的垂线段的长度,线段AB 的长叫做点A 到直线l 的距离.二.易错点:1.垂线与垂线段的区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度; 2.画一条线段或射线的垂线,就是画它们所在直线的垂线;3.过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上;4.必须强调在同一平面内,过一点有且只有一条直线与已知直线垂直,空间里经过一点与已知直线垂直的直线有无数条.三点剖析一.考点:垂直,垂线段,角度的计算. 二.重难点:角度的计算. 三.易错点:1.垂线与垂线段的区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量长度; 2.画一条线段或射线的垂线,就是画它们所在直线的垂线;3.过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上.垂直例题1、 过点P 向线段AB 所在直线引垂线,正确的是( ).A.B.C.D.【答案】 C【解析】 根据垂直的定义可知C 是正确的.例题2、 如图,已知点O 在直线AB 上,CO ⊥DO 于点O ,若∠1=145°,则∠3的度数为( )lAlBl BAPPPA B PA.35°B.45°C.55°D.65°【答案】 C【解析】 先根据邻补角关系求出∠2=35°,再由垂线得出∠COD=90°,最后由互余关系求出∠3=90°﹣∠2. 解:∵∠1=145°,∴∠2=180°﹣145°=35°, ∵CO ⊥DO , ∴∠COD=90°,∴∠3=90°﹣∠2=90°﹣35°=55°;例题3、 如图,已知AC ⊥BC ,CD ⊥AB ,AC=3,BC=4,则点B 到直线AC 的距离等于 ;点C 到直线AB 的垂线段是线段 .【答案】 4,CD .【解析】 根据垂线段、点到直线距离的定义可知,点B 到直线AC 的距离等于BC 的长度,即为4. 点C 到直线AB 的垂线段是线段CD . 故填4,CD .随练1、 过点P 作线段或射线所在直线的垂线【答案】 见解析【解析】随练2、 如图,点C 到直线AB 的距离是指哪条线段长( )A.CBB.CDC.CAD.DE【答案】 BABPPABPA BPA B【解析】由图可得,CD⊥AB,所以,点C到直线AB的距离是线段CD的长垂线段例题1、若A、B、C是直线l上的三点,P是直线l外一点,且PA=6cm,PB=5cm,PC=4cm,则点P到直线l的距离()A.等于4cmB.大于4cm而小于5cmC.不大于4cmD.小于4cm【答案】C【解析】∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线l的距离≤PC,即点P到直线l的距离不大于4.故选C.例题2、如图,AB⊥AC,AD⊥BC,垂足分别为A,D,则图中能表示点到直线距离的线段共有()A.2条B.3条C.4条D.5条【答案】D【解析】如图所示:线段AB是点B到AC的距离,线段CA是点C到AB的距离,线段AD是点A到BC的距离,线段BD是点B到AD的距离,线段CD是点C到AD的距离,故图中能表示点到直线距离的线段共有5条.例题3、如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是()A.3B.4C.5.5D.10【答案】A【解析】如图:过B作BN⊥AC于N,BM⊥AD于M,∵将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,∴∠C′AB=∠CAB,∴BN=BM,∵△ABC的面积等于6,边AC=3,∴162AC BN⨯⨯=,∴BN=4,∴BM=4,即点B到AD的最短距离是4,∴BP的长不小于4,即只有选项A的3不正确,随练1、 点P 为直线l 外一点,点A 、B 、C 在直线l 上,若6cm PA =;7cm PB =;8cm PC =,则点P 到直线l 的距离是( ) A.6cm B.小于6cmC.不大于6cmD.8cm【答案】 C【解析】 该题考查的是点到直线的距离.直线外一点到直线的距离是该点与直线上任一点间的长度的最小值.故点P 到直线l 的距离不大于6cm .故选C . 随练2、 如图所示,点P 到直线l 的距离是( )A.线段PA 的长度B.线段PB 的长度C.线段PC 的长度D.线段PD 的长度 【答案】 B【解析】 由题意,得点P 到直线l 的距离是线段PB 的长度,随练3、 已知△ABC 中,BC =6,AC =3,CP ⊥AB ,垂足为P ,则CP 的长可能是( ) A.2 B.4 C.5 D.7 【答案】 A【解析】 如图,根据垂线段最短可知:PC≤3, ∴CP 的长可能是2.角度计算例题1、 如图,OA OB ⊥于点O ,若52BOC ∠=︒,则__________AOC ∠=.【答案】 38︒【解析】 该题考查的是角度的计算. ∵OA OB ⊥, ∴90AOB ∠=︒, ∵52BOC ∠=︒,∴905238AOC AOB BOC ∠=∠-∠=︒-︒=︒.CBO A例题2、如图直线AB,CD相交于点O,EO⊥AB垂足为O,(1)与∠1互为补角的角是________;(2)若∠AOC:∠2=3:2,求∠1的度数.【答案】(1)∠EOD(2)18°【解析】(1)与∠1互为补角的角是:∠EOD;(2)∵∠AOC︰∠2=3︰2,∴设∠AOC=3x,则∠2=2x,故3x+2x=180°,解得:x=36°,则∠2=72°,∵EO⊥AB垂足为O,∴∠AOE=90°,∴∠1的度数为:18°.例题3、如图1,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向,已知射线OB的方向是南偏东m°,射线OC的方向为北偏东n°,且m°的角与n°的角互余.(1)①若m=60,则射线OC的方向是__.(直接填空)①请直接写出图中所有与①BOE互余的角及与①BOE互补的角.(2)如图2,若射线OA是①BON的平分线,①若m=70,则①AOC=__.(直接填空)①若m为任意角度,求①AOC的度数.(结果用含m的式子表示)【答案】(1)①北偏东30°①与①BOE互余的角有①BOS,①COE,与①BOE互补的角有①BOW,①COS(2)①35°①①AOC=12 m°【解析】(1)①n=90°﹣60°=30°,则射线OC的方向是:北偏东30°,故答案是:北偏东30°;①与①BOE互余的角有①BOS,①COE,与①BOE互补的角有①BOW,①COS.(2)①①BON=180°﹣70°=110°,①OA是①BON的平分线,①①AON=12①BON=55°,又①①CON=90°﹣70°=20°,①①AOC=①AON﹣①CON=55°﹣20°=35°.故答案是:35°;①①①BOS+①BON=180°,①①BOS=180°﹣①BON=180°﹣m°.①OA 是①BON 的平分线, ①①AON=12①BON=12(180°﹣m°)=90°﹣12m°. ①①BOS+①CON=m°+n°=90°,①①CON=90°﹣m°,①①AOC=①AON ﹣①CON=90°﹣12m°﹣(90°﹣m°)=90°﹣12m°﹣90°+m°=12m°. 随练1、 如图,直线AB 、CD 相交于点O ,OE ⊥AB ,O 为垂足,如果35EOD ∠=︒,则COB ∠=__________.【答案】 125°【解析】 该题考查的是垂直性质.∵OE AB ⊥,∴90EOB ∠=︒,又∵35EOD ∠=︒,∴903555DOB ∠=︒-︒=︒,∵COB ∠与DOB ∠互补,∴18055125COB ∠=︒-︒=︒.随练2、 如图,已知直线AB 与CD 相交于点O ,OA 平分∠COE ,若∠DOE =70°,则∠BOD =________.【答案】 55°【解析】 由邻补角的定义,得∠COE =180-∠DOE =110°∠∠COE =110°且OA 平分∠COE ,∠∠COA =∠AOE =55°,又∠∠COA 与∠BOD 是对顶角,∠∠BOD =∠COA =55°.随练3、 如图,直线l 1∥l 2,∠α=∠β,∠1=35º,则∠2=________º.【答案】 145【解析】 暂无解析拓展D OEBAC1、 如图,直线AB 与CD 相交于点O ,若∠1+∠2=80°,则∠3等于( )A.100°B.120°C.140°D.160°【答案】 C【解析】 由对顶角相等,得∠1=∠2,又∠1+∠2=80°,得∠1=40°.由邻补角的定义,得∠3=180°﹣∠1=180°﹣40°=140°,故选:C .2、 一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则∠BDC =________.【答案】 75°【解析】 ∵∠CEA =60°,∠BAE =45°,∴∠ADE =180°-∠CEA -∠BAE =75°,∴∠BDC =∠ADE =75°.3、 一个角的补角是它的余角的4倍,则这个角等于________度.【答案】 60【解析】 设这个角为x ,则它的余角为90°-x ,补角为180°-x ,根据题意得,180°-x =4(90°-x ),解得x =60°.4、 如图,已知90BOC ∠=︒,90DOE ∠=︒,则图中互余的角共有__________对.【答案】 4【解析】 因为OC AB ⊥,OE OD ⊥,所以90COA COB DOE ∠=∠=∠=︒,即90EOA EOC COD DOB DOC COE ∠+∠=∠+∠=∠+∠=︒,所以EOA COD ∠=∠,所以90EOA BOD ∠+∠=︒,所以共有4对互余的角.5、 如图,点A ,O ,B 在同一直线上,射线OD 和射线OE 分别平分∠AOC 和∠BOC .(1)求∠DOE 的度数;(2)写出图中所有互为余角的角.【答案】 (1)90°(2)∠COD 和∠COE ;∠AOD 和∠BOE ;∠AOD 和∠COE ;∠COD 和∠BOE【解析】 (1)∵点A ,O ,B 在同一条直线上,∴∠AOC +∠BOC =180°,A OB CDE∵射线OD和射线OE分别平分∠AOC和∠BOC,∴12COD AOC∠=∠,12COE BOC∠=∠∴1()902COD COE AOC BOC∠+∠=∠+∠=︒,∴∠DOE=90°;(2)互为余角的角有:∠COD和∠COE,∠AOD和∠BOE,∠AOD和∠COE,∠COD和∠BOE.6、如图,下列语句中,描述错误的是()A.直线AB与直线OP相交于点OB.点P在直线AB上C.∠AOP与∠BOP互为补角D.点O在直线AB上【答案】B【解析】直线AB与直线OP相交于点O,描述正确,A错误;点P不在直线AB上,描述错误,B正确;∠AOP与∠BOP互为补角描述正确,C错误;点O在直线AB上,描述正确,D错误.7、如图,将一副三角尺按不同的位置摆放,下列方式中∠α与∠β互余的是()A.图①B.图②C.图③D.图④【答案】A【解析】图①,∠α+∠β=180°﹣90°,互余;图②,根据同角的余角相等,∠α=∠β;图③,根据等角的补角相等∠α=∠β;图④,∠α+∠β=180°,互补.8、按要求作图:(1)作A到BC所在直线的垂线段AH,垂足为H.(2)过点A画直线MN,使MN∥BC.【答案】(1)(2)【解析】暂无解析9、如图,从位置P到直线公路MN共有四条小道,若用相同的速度行走,能最快到达公路MN的小道是()A.PAB.PBC.PCD.PD【答案】B【解析】根据垂线段最短得,能最快到达公路MN的小道是PB,故选B.10、如图,直线AB,CD分别与直线AC相交于点A,C,与直线BD相交于点B,D.若∠1=∠2,∠3=75°,求∠4的度数.【答案】75°【解析】暂无解析11、如图,将三角形ABC沿DE折叠,使点A落在BC上的点F处,且DE∥BC,若∠B=70º,则∠BDF=________º.【答案】40º【解析】暂无解析12、如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.20°D.25°【答案】D【解析】暂无解析。
北师大版七年级数学下册第二章第一节余角与补角教学设计江西省吉安市神岗山学校刘丹“余角与补角”的教学设计教学任务分析教学内容解析本节课是北师大版七年级数学下册第二章的第一课时,主要研究互为余角、互为补角、对顶角的概念,掌握它们的性质及其应用.它是在学生学习了简单几何知识基础上学习的,对发展学生的空间观念是一个渗透,是后续学习空间与图形领域的基础,在教材中,起着承上启下的作用,同时,在日常生活中的应用也非常广泛,可以帮助我们解决很多实际问题.这一课为学生提供了生动有趣的问题情境,提供了观察、操作、推理、交流等丰富的数学活动,提出了与现实生活中联系密切的问题,以引起学生的好奇与思考,是激发学生认识兴趣和求知欲的有效办法和手段. 创设问题情境以激起学生的求知欲,把学生引入一种与问题有关的情境的过程,使学生经历探究—深思—发现—解决问题的过程,把要解决的问题有意识地、巧妙地寓于各种各样符合学生实际的知识基础之中,给他们造成一种悬念,从而使学生的注意、记忆、思维凝聚在一起,以达到智力活动的最佳状态. 例如:打台球时,选择适当的方向用白球击打红球是否直接入袋与角有着密切的关系,学生实际操作剪子剪东西时角的变化等,让学生获得直观的体验. 鼓励学生用多种方式探索图形的性质,用自己的语言描述,发展学生有条理地思考能力和表达能力.教学重点理解余角、补角的概念、性质.让学生亲身经历概念、性质获得的过程.教学难点运用所学知识解决实际问题.教学目标设置知识技能①在具体的活动中,了解互为余角、互为补角、对顶角的概念,掌握它们的性质.②能用所学的知识进行简单的推理.③通过概念性质的形成,培养学生的实验、观察、分析、概括能力. 数学思考①从丰富的生活情景中经历概念、性质产生的过程,体会数学与现实生活的密切联系.②通过观察、实验、操作等数学活动过程,使学生掌握从事科学研究的方法.问题解决能从具体事物中抽象出几何图形,并用几何图形知识解释一些现实现象.情感态度①通过性质的发现与运用,向学生渗透知识来源与生活并运用于生活的辨证唯物主义观点.②通过分工合作实验,培养学生的团队合作意识,品尝与同伴合作交流的乐趣.学生学情分析学生在学习了简单几何知识基础上学习的,对发展学生的空间观念是一个渗透,是后续学习空间与图形领域的基础,在教材中,起着承上启下的作用,同时,在日常生活中的应用也非常广泛,可以帮助我们解决很多实际问题.学生之间的基础知识、综合素质有差异:有的学生学习品质好,在学习过程中有好奇心、有探索意识;有的学生学习依赖性强,自己不主动获取知识。
2.1两条直线的位置关系第1课时对顶角、补角和余角1.理解并掌握对顶角的概念及性质,会用对顶角的性质解决一些实际问题;2.理解并掌握补角和余角的概念及性质,会运用其解决一些实际问题.(重点,难点)一、情境导入如图,假设把剪刀看成是两条相交的直线构成的,那么形成的角中小于平角的角有几个,你能发现它们之间的联系吗?二、合作探究探究点一:对顶角及其性质【类型一】对顶角的概念以以下图形中,∠1与∠2是对顶角的是()解析:选项A中的两个角的顶点没有公共;选项B、D中的两个角的两边没有在互为反向延长线的两条直线上,只有选项C中的两个角符合对顶角的定义.应选C.方法总结:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角.【类型二】直接运用对顶角的性质求角度如图,直线AB、CD,EF相交于点O,∠1=40°,∠BOC=110°,求∠2的度数.解析:结合图形,由∠1和∠BOC求得∠BOF的度数,根据“对顶角相等〞可得∠2的度数.解:因为∠1=40°,∠BOC=110°(),所以∠BOF=∠BOC-∠1=110°-40°=70°.因为∠BOF=∠2(对顶角相等),所以∠2=70°(等量代换).方法总结:两条相交直线构成对顶角,这时应注意“对顶角相等〞这一隐含的结论.在图形中正确找到对顶角,利用角的和差及对顶角的性质找到角的等量关系,然后结合条件进行转化.探究点二:补角和余角【类型一】 利用补角和余角计算求值 ∠A 与∠B 互余,且∠A 的度数比∠B 度数的3倍还多30°,求∠B 的度数.解析:根据∠A 与∠B 互余,得出∠A +∠B =90°,再由∠A 的度数比∠B 度数的3倍还多30°,从而得到∠A =3∠B +30°,再把两个算式联立即可求出∠2的值.解:∵∠A 与∠B 互余,∴∠A +∠B =90°.又∵∠A 的度数比∠B 度数的3倍还多30°,∴设∠B =x ,∴∠A =3∠B +30°=3x +30°,∴3x +30°+x =90°,解得x =15°,故∠B 的度数为15°.方法总结:此题把角的关系结合方程问题一起解决,即把相等关系的问题转化为方程问题,利用方程来解决.【类型二】 补角、余角和角平分线的综合计算如图,∠AOB 在∠AOC 内部,∠BOC =90°,OM 、ON 分别是∠AOB ,∠AOC 的平分线,∠AOB 与∠COM 互补,求∠BON 的度数.解析:根据补角的性质,可得∠AOB +∠COM =180°.根据角的和差,可得∠AOB +∠BOM =90°.根据角平分线的性质,可得∠BOM =12∠AOB .根据解方程,可得∠AOB 的度数.根据角的和差,可得答案.解:∵∠AOB 与∠COM 互补,∴∠AOB +∠COM =180°,即∠AOB +∠BOM +∠COB =180°.∵∠COB =90°,∴∠AOB +∠BOM =90°.∵OM 是∠AOB 的平分线,∴∠BOM =12∠AOB ,即∠AOB +12∠AOB =90°,解得∠AOB =60°,∴∠AOC =∠BOC +∠AOB =90°+60°=150°.∵ON 平分∠AOC 得∠AON =12∠AOC =12×150°=75°.由角的和差,∴∠BON =∠AON -∠AOB =75°-60°=15°.方法总结:此题考查了余角与补角及角平分线的相关知识,利用了补角的性质,角的和差,角平分线的性质进行计算,解决问题一定要结合图形认真分析,做到数形结合.【类型三】 补角和余角的性质如图,将一副直角三角尺的直角顶点C 叠放在一起.(1)如图①,假设CE 是∠ACD 的角平分线,那么CD 是∠ECB 的角平分线吗?并简述理由;(2)如图②,假设∠ECD =α,CD 在∠BCE 的内部,请你猜测∠ACE 与∠DCB 是否相等?并简述理由;(3)在(2)的条件下,请问∠ECD 与∠ACB 的和是多少?并简述理由.解析:(1)首先根据直角三角板的特点得到∠ACD =90°,∠ECB =90°.再根据角平分线的定义计算出∠ECD 和∠DCB 的度数即可;(2)∠ACE 与∠DCB 相等,根据“等角的余角相等〞即可得到答案;(3)根据角的和差关系进行等量代换即可.解:(1)CD是∠ECB的角平分线.理由如下:∵∠ACD=90°,CE是∠ACD的角平分线,∴∠ECD=45°.∵∠ECB=90°,∴∠DCB=90°-45°=45°,∴∠ECD=∠DCB,∴CD是∠ECB的角平分线;(2)∠ACE=∠DCB.理由如下:∵∠ACD=90°,∠BCE=90°,∠ECD=α,∴∠ACE =90°-α,∠DCB=90°-α,∴∠ACE=∠DCB;(3)∠ECD+∠ACB=180°.理由如下:∠ECD+∠ACB=∠ECD+∠ACE+∠ECB=∠ACD+∠ECB=90°+90°=180°.方法总结:此题主要查考了角的计算,关键是根据图形分清角之间的和差关系.三、板书设计1.对顶角相等;2.同角或等角的补角相等,同角或等角的余角相等.本节课学习了对顶角及其性质.教学中可让学生自己画这些角,结合图形说出对顶角的特征.对顶角的识别是易错点,可以结合例题进行练习,让学生在学习中不断纠错,不断进步第2课时百分率和配套问题教学目标1.学会运用二元一次方程组解决百分率和配套问题;2.进一步经历和体验方程组解决实际问题的过程。
对顶角、余角和补角导学案
导
学习目标
1.理解相交线与平行线的概念。
2.认识对顶角、余角,补角、并掌握其性质;(重点)
3.能较熟练的运用对顶角、补角、余角的性质,进行角的运算并解决一些实际问题.(难点)
预习检测
1.在同一平面内,两条直线的位置关系有 和 两种。
2.若两条直线只有一个公共点,我们称这两条直线为 。
3.在同一平面内,不相交的两条直线叫做 。
4.对顶角的定义:有 顶点,且两边互为反向延长线的两个角叫做 。
对顶角的性质:对顶角 。
5. 如果两个角的和是90º,那么这两个角互为_________.如果两个角的和是______,那么这两个角互为补角.
性质:同角或等角的余角 ,同角或等角的的补角 。
预习思考:
1.任何角都有余角吗?
2.“相等的角是对顶角”这句话对吗?
3.对顶角、余角、补角都与角的数量和位置有关吗?
测评练习
课堂小测 一 对顶角的定义与性质
1. 下列图形中∠1与∠2是对顶角的是( )
2.你能正确认识对顶角的性质吗?下面是四个同学的观点,其中正确的是( )
A.有公共顶点的角是对顶角
B.相等的角是对顶角
C.对顶角必相等
D.不是对顶角的角不相等
图1 1 1 1
1 2
2
2 2
3.如图是一把剪刀,其中∠1=40°,则∠2=,其理由是 .
4..如图所示,直线AB、CD相交于点O,已知∠AOD+∠AOD=320,则∠BOC= 。
5.如图所示,直线AB和CD相交所成的四个角中,∠1的对顶角是。
课堂小测二余角和补角
1.下列说法正确的是().
A.一个锐角的余角是一个锐角
B.任何一个角都有余角
C.若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余
D.一个角的补角一定大于这个角
2.如果α与β互为余角,那么( )
A.α+β=180°
B.α-β=180°
C.α-β=90°
D.α+β=90°
3..如图,∠1+∠2=( )
A.60°
B.90°
C.110°
D.180°
4.下面角的图示中,可能与34°互补的是( )
5. 32º的余角为_______,137º的补角为_______.
6.若∠1=∠2,且∠1与∠2互余,则∠1=∠2=________.
7.若∠A+∠B=180°,∠B+∠C=180°,则∠A______∠C,理由是_________________;
8. 如果一个角的补角是150°,那么这个角的余角是.
3.如图,已知直线AB、CD相交于点O,∠COE=90°.
(1)若∠AOC=36°,求∠BOE的度数;
(2)若∠BOD∶∠BOC=1∶5,求∠AOE的度数.。