中考数学二轮专题复习 运动型专题
- 格式:doc
- 大小:1.17 MB
- 文档页数:18
【中考数学二轮核心考点讲解】第12讲运动路径长度问题想要对运动路径长度问题掌握得信手拈来,那么建议你对以下知识点进行提前学习会更好:1.《隐圆模型》2.《共顶点模型》-也可称“手拉手模型”3.《主从联动模型》-也可称“瓜豆原理模型”4.《旋转问题》—本系列的第二讲中所阐述的旋转相似模型此外,还需要明白的动点类型还有:5.线段垂直平分线——到线段两端点距离相等的动点一定在这条线段的垂直平分线上6.角平分线——到角两边距离相等的动点一定在这个角的角平分线上7.三角形中位线——动点到某条线的距离恒等于某平行线段的一半8.平行线分线段成比例——动点到某条线的距离与某平行线段成比例9.两平行线的性质——平行线间的距离,处处相等一、路径为圆弧型解题策略:①作出隐圆,找到圆心②作出半径,求出定长解题关键:通过《隐圆模型》中五种确定隐圆的基本条件作出隐圆,即可轻易得出结论. 二、路径为直线型解题策略:①利用平行定距法或者角度固定法确定动点运动路径为直线型②确定动点的起点与终点,计算出路径长度即可解题关键:解题过程中常常出现中位线,平行线分线段成比例,相似证动角恒等于顶角等知识点三、路径为往返型解题策略:①通常为《主从联动模型》的衍生版②确定动点的起点与终点,感知运动过程中的变化③找出动点运动的最远点解题关键:解题过程中常常出现相似转线段长、《主从联动模型》中的滑动模型等【例题1】如图,等腰Rt△AOB中,∠AOB=90°,OA=,⊙O与AB相切,分别交OA、OB于N、M,以PB为直角边作等腰Rt△BPQ,点P在弧MN上由点M运动到点N,则点Q运动的路径长为()A.B.C.D.【分析】解题标签:《共顶点模型》中的旋转相似、《隐圆模型》中的动点定长模型、《主从联动模型》【解析】如图,连接OP,AQ,设⊙O与AB相切于C,连接OC,则OC⊥AB,∵OA=OB,∠AOB=90°,OB=,∴AB=2,OP=OC=AB=,∵△ABO和△QBP均为等腰直角三角形,∴=,∠ABO=∠QBP=45°,∴=,∠ABQ=∠OBP,∴△ABQ∽△OBP,∴∠BAQ=∠BOP,=,即=,∴AQ=,又∵点P在弧MN上由点M运动到点N,∴0°≤∠BOP≤90°,∴0°≤∠BAQ≤90°,∴点Q的运动轨迹为以A为圆心,AQ长为半径,圆心角为90°的扇形的圆弧,∴点Q运动的路径长为=,故选:D.[本题用《主从联动模型》来接替会更快得到结果]【例题2】已知⊙O,AB是直径,AB=4,弦CD⊥AB且过OB的中点,P是劣弧BC上一动点,DF垂直AP于F,则P从C运动到B的过程中,F运动的路径长度()A.πB.C.πD.2【分析】解题标签:“定边对直角”确定隐圆模型【解析】作DQ⊥AC于Q,如图,当P点在C点时,F点与Q重合;当P点在B点时,F点与E点重合,∵∠AFD=90°,∴点F在以AD为直径的圆上,∴点F运动的路径为,∵弦CD⊥AB且过OB的中点,∴OE=OD,CE=DE=,AC=AC=2,∴∠DOE=60°,∴∠DAC=60°,∴△ACD为等边三角形,∴MQ和ME为中位线,∴MQ=,∠QME=60°,∴F运动的路径长度==.故选:A.【例题3】如图,⊙O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC的最大面积是.【分析】解题标签:“定边对定角”确定隐圆模型【解析】连结OA、OB,作△ABC的外接圆D,如图1,∵OA=OB=1,AB=1,∴△OAB为等边三角形,∴∠AOB=60°,∴∠APB=∠AOB=30°,∵AC⊥AP,∴∠C=60°,∵AB=1,要使△ABC的最大面积,则点C到AB的距离最大,∵∠ACB=60°,点C在⊙D上,∴∠ADB=120°,如图2,当点C优弧AB的中点时,点C到AB的距离最大,此时△ABC为等边三角形,且面积为AB2=,∴△ABC的最大面积为.故答案为:.【例题4】如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP 交BC于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A. B. C. 1 D. 2【分析】解题标签:“线段垂直平分线”产生“平行定距型”【解析】连接OC,作PE⊥AB于E,MH⊥AB于H,QF⊥AB于F,如图,∵△ACB为到等腰直角三角形,∴AC=BC= AB= ,∠A=∠B=45°,∵O为AB的中点,∴OC⊥AB,OC平分∠ACB,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ,在Rt△AOP和△COQ中,∴Rt△AOP≌△COQ,∴AP=CQ,易得△APE和△BFQ都为等腰直角三角形,∴PE=22AP=22CQ,QF=22BQ,∴PE+QF=22(CQ+BQ)=22BC=2×22=1,∵M点为PQ的中点,∴MH为梯形PEFQ的中位线,∴MH=12(PE+QF)=12,即点M到AB的距离为12,而CO=1,∴点M的运动路线为△ABC的中位线,∴当点P从点A运动到点C时,点M所经过的路线长=12AB=1,故答案为:C.[或连接OM,CM,点M运动路径为线段OC中垂线]【例题5】已知:如图1,平面直角坐标系中,点A的坐标是(0,6),点B在x轴上,且∠BAO=30°,点D是线段OA上的一点,以BD为边向下作等边△BDE.(1)如图2,当∠ODB=45°时,求证:OE平分∠BED.(2)如图3,当点E落在y轴上时,求出点E的坐标.(3)利用图1探究并说理:点D在y轴上从点A向点O滑动的过程中,点E也会在一条直线上滑动;并直接写出点E运动路径的长度.【分析】解题标签:“共顶点模型”、“全等或相似转固定角度法确定动点的直线运动”【解析】(1)∵∠ODB=45°,∠AOB=90°,∴∠OBD=∠ODB=45°,∴OD=OB,∵△BDE是等边三角形,∴DE=BE,在△DOE和△BOE中,,∴△DOE≌△BOE(SSS),∴∠DEO=∠BEO,即OE平分∠BED;(2)∵△BOE是等边三角形,∴∠EDB=60°,∵OB⊥DE,设OD=x,则OE=x,∵∠BAO=30°,∠AOB=90°,∴∠DBO=∠ABD=∠BAO=30°,∴BD=2OD=2x,AD=BD=2x,∵OA=AD+OD=3x=6,解得,x=2,∴E(0,﹣2);(3)如图1,在x轴上取点C,使BC=BA,连接CE,∵∠ABD+∠OBD=∠CBE+∠OBD=60°,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴∠BCE=∠BAO=30°,∴当D在OA上滑动时,点E总在与x轴夹角为30°的直线CE上滑动,如图可知,点E运动路径的长度为6.【例题6】如图,Rt△ABC中,BC=4,AC=8,Rt△ABC的斜边在x轴的正半轴上,点A与原点重合,随着顶点A由O点出发沿y轴的正半轴方向滑动,点B也沿着x轴向点O滑动,直到与点O重合时运动结束.在这个运动过程中,点C运动的路径长是8﹣12.【分析】解题标签:“运动路径为来回型”【解析】①当A从O到现在的点A处时,如图2,此时C′A⊥y轴,点C运动的路径长是CC′的长,∴AC′=OC=8,∵AC′∥OB,∴∠AC′O=∠COB,∴cos∠AC′O=cos∠COB==,∴=,∴OC′=4,∴CC′=4﹣8;②当A再继续向上移动,直到点B与O重合时,如图3,此时点C运动的路径是从C′到C,长是CC′,CC′=OC′﹣BC=4﹣4,综上所述,点C运动的路径长是:4﹣8+4﹣4=8﹣12;故答案为:8﹣12.【例题7】如图1,已知抛物线y=x2+bx+c经过原点O,它的对称轴是直线x=2,动点P从抛物线的顶点A 出发,在对称轴上以每秒1个单位的速度向上运动,设动点P运动的时间为t杪,连结OP并延长交抛物线于点B,连结OA,AB.(1)求抛物线的函数解析式;(2)当△AOB为直角三角形时,求t的值;(3)如图2,⊙M为△AOB的外接圆,在点P的运动过程中,点M也随之运动变化,请你探究:在1≤t≤5时,求点M经过的路径长度.【分析】解题标签:“运动路径为来回型”【解析】(1)∵抛物线y=x2+bx+c经过原点O,且对称轴是直线x=2,∴c=0,﹣=2,则b=﹣4、c=0,∴抛物线解析式为y=x2﹣4x;(2)设点B(a,a2﹣4a),∵y=x2﹣4x=(x﹣2)2﹣4,∴点A(2,﹣4),则OA2=22+42=20、OB2=a2+(a2﹣4a)2、AB2=(a﹣2)2+(a2﹣4a+4)2,①若OB2=OA2+AB2,则a2+(a2﹣4a)2=20+(a﹣2)2+(a2﹣4a+4)2,解得a=2(舍)或a=,∴B(,﹣),则直线OB解析式为y=﹣x,当x=2时,y=﹣3,即P(2,﹣3),∴t=(﹣3+4)÷1=1;②若AB2=OA2+OB2,则(a﹣2)2+(a2﹣4a+4)2=20+a2+(a2﹣4a)2,解得a=0(舍)或a=,∴B(,),则直线OB解析式为y=x,当x=2时,y=1,即P(2,1),∴t=[1﹣(﹣4)]÷1=5;③若OA2=AB2+OB2,则20=(a﹣2)2+(a2﹣4a+4)2+a2+(a2﹣4a)2,整理,得:a3﹣8a2+21a﹣18=0,a3﹣3a2﹣5a2+15a+6a﹣18=0,a2(a﹣3)﹣5a(a﹣3)+6(a﹣3)=0,(a﹣3)(a2﹣5a+6)=0,(a﹣3)2(a﹣2)=0,则a=3或a=2(舍),∴B(3,﹣3),∴直线OB解析式为y=﹣x,当x=2时,y=﹣2,即P(2,﹣2),∴t=[﹣2﹣(﹣4)]÷1=2;综上,当△AOB为直角三角形时,t的值为1或2或5.(3)∵⊙M为△AOB的外接圆,∴点M在线段OA的中垂线上,∴当1≤t≤5时,点M的运动路径是在线段OA中垂线上的一条线段,当t=1时,如图1,由(2)知∠OAB=90°,∴此时Rt△OAB的外接圆圆心M是OB的中点,∵B(,﹣),∴M(,﹣);当t=5时,如图2,由(2)知,∠AOB=90°,∴此时Rt△OAB的外接圆圆心M是AB的中点,∵B(,)、A(2,﹣4),∴M(,﹣);当t=2时,如图3,由(2)知,∠OBA=90°,∴此时Rt△OAB的外接圆圆心M是OA的中点,∵A(2,﹣4),∴M(1,﹣2);则点M经过的路径长度为=.【例题8】如图,OM⊥ON,A、B分别为射线OM、ON上两个动点,且OA+OB=5,P为AB的中点.当B由点O向右移动时,点P移动的路径长为()A.2B.2C.D.5【分析】解题标签:“利用解析法计算几何路径长”【解析】建立如图坐标系.设OB=t,则OA=5﹣t,∴B(t,0),A(0,5﹣t),∵AP=PB,∴P(,),令x=,y=,消去t得到,y=﹣x+(0≤x≤),∴点P的运动轨迹是线段HK,H(0,),K(,0),∴点P的运动路径的长为=,故选:C.【例题9】如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0),在整个运动过程中,求出线段PQ中点M所经过的路径长.【分析】解题标签:“利用解析法计算几何路径长”【解析】如图2,以C为原点,以AC所在的直线为x轴,建立平面直角坐标系.依题意,可知0≤t≤4,当t=0时,点M1的坐标为(3,0),当t=4时点M2的坐标为(1,4).设直线M1M2的解析式为y=kx+b,∴,解得,∴直线M1M2的解析式为y=-2x+6.∵点Q(0,2t),P(6-t,0)∴在运动过程中,线段PQ中点M3的坐标(,t).把x= 代入y=-2x+6得y=-2×+6=t,∴点M3在直线M1M2上.过点M2作M2N⊥x轴于点N,则M2N=4,M1N=2.∴M1M2=2∴线段PQ中点M所经过的路径长为2 单位长度.【例题10】(1)如图1,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作等边△BDE,当点D由点A运动到点C时,求点E运动的路径长;(2)如图2,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作以E为直角顶点的等腰Rt△BDE,当点D由点A运动到点C时,求点E运动的路径长;(3)如图3,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作以D为直角顶点的等腰Rt△BDE,当点D由点A运动到点C时,求点E运动的路径长;(4)如图4,已知AB=2,点D是等腰Rt△ABC斜边AC上一动点,以BD为一边向右下方作以D为直顶点的等腰△BDE,且∠BDE=120°,当点D由点A运动到点C时,求点E运动的路径长;【分析】解题标签:“主从联动模型”【解析】22;2;4;26【例题11】如图,已知扇形AOB中,OA=3,∠AOB=120°,C是在上的动点.以BC为边作正方形BCDE,当点C从点A移动至点B时,点D经过的路径长是________.【分析】解题标签:“定边对定角”确定隐圆模型、主从联动模型【解析】如图所示,易得点D的运动轨迹的长为=2 π.1.如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P沿半圆从点A运动至点B时,点M运动的路径长是.【解析】如图,连接OP,OC,取OC的中点K,连接MK.∵AC=BC=,∠ACB=90°,∴AB==2,∴OP=AB=1,∵CM=MP,CK=OK,∴MK=OP=,∴当点P沿半圆从点A运动至点B时,点M运动的路径是以K为圆心,长为半径的半圆,∴点M运动的路径长=•2•π•=,故答案为.2.已知线段AB=8,C、D是AB上两点,且AC=2,BD=4,P是线段CD上一动点,在AB同侧分别作等腰三角形APE和等腰三角形PBF,M为线段EF的中点,若∠AEP=∠BFP,则当点P由点C移动到点D时,点M移动的路径长度为4﹣3.【解析】如图,分别延长AE、BF交于点H.∵△APE和△PBF都是等腰三角形,且∠AEP=∠BFP∵∠A=∠FPB,∴AH∥PF,同理,BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵M为EF的中点,∴M为PH中点,即在P的运动过程中,M始终为PH的中点,所以M的运行轨迹为三角形HCD的中位线QN.∵CD=AB﹣AC﹣BD=8﹣6,∴QN=CD=4﹣3,即M的移动路径长为4﹣3.故答案是:4﹣3.3.已知线段AB=10,P是线段AB上一动点,在AB同侧分别作等边三角形APE和等边三角形PBF,G为线段EF的中点,点P由点A移动到点B时,G点移动的路径长度为5.【解析】如图,分别延长AE、BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EP A=60°,∴BH∥PE,∴四边形EPFH为平行四边形,∴EF与HP互相平分.∵G为EF的中点,∴G正好为PH中点,即在P的运动过程中,G始终为PH的中点,所以G的运行轨迹为△HAB的中位线MN.∴MN=AB=5,即G的移动路径长为5.故答案为:54.如图,AB为⊙O的直径,AB=3,弧AC的度数是60°,P为弧BC上一动点,延长AP到点Q,使AP•AQ=AB2.若点P由B运动到C,则点Q运动的路径长为3.【解析】连接BQ,如图,∵AB为⊙O的直径,∴∠APB=90°,∵AP•AQ=AB2.即=,而∠BAP=∠QAB,∴△ABP∽△AQB,∴∠ABQ=∠APB=90°,∴BQ为⊙O的切线,点Q运动的路径长为切线长,∵弧AC的度数是60°,∴∠AOC=60°,∴∠OAC=60°,当点P在C点时,∠BAQ=60°,∴BQ=AB=3,即点P由B运动到C,则点Q运动的路径长为3.故答案为3.5.如图,矩形ABCD中,AB=4,AD=6,点E在边AD上,且AE:ED=1:2.动点P 从点A出发,沿AB 运动到点B停止.过点E作EF⊥PE交射线BC于点F.设点M是线段EF的中点,则在点P运动的整个过程中,点M的运动路径长为________.【答案】4【解析】如图所示:过点M作GH⊥AD.∵AD∥CB,GH⊥AD,∴GH⊥BC.在△EGM和△FHM中,∴△EGM≌△FHM.∴MG=MH.∴点M的轨迹是一条平行于BC的线段当点P与A重合时,BF1=AE=2,当点P与点B重合时,∠F2+∠EBF1=90∘,∠BEF1+∠EBF1=90∘,∴∠F2=∠EBF1.∵∠EF1B=∠EF1F2,∴△EF1B∽△∠EF1F2.∴,即∴F1F2=8,∵M1M2是△EF1F2的中位线,∴M1M2= F1F2=4.故答案为:4.6.等边三角形ABC的边长为2,在AC,BC边上各有一个动点E,F,满足AE=CF,连接AF,BE相交于点P.(1)∠APB的度数;(2)当E从点A运动到点C时,试求点P经过的路径长;(3)连结CP,直接写出CP长度的最小值.【解析】(1)∵△ABC为等边三角形,∴AB=AC,∠C=∠CAB=60°,又∵AE=CF,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴AF=BE,∠ABE=∠CAF.又∵∠APE=∠BPF=∠ABP+∠BAP,∴∠APE=∠BAP+∠CAF=60°.∴∠APB=180°﹣∠APE=120°.(2)如图1,∵AE=CF,∴点P的路径是一段弧,由题目不难看出当E为AC的中点的时候,点P经过弧AB的中点,此时△ABP 为等腰三角形,且∠ABP=∠BAP=30°,∴∠AOB=120°,又∵AB=2,∴OA=2,点P的路径是l===;(3)如图2,∵AE=CF,∴点P的路径是一段弧,∴当点E运动到AC的中点时,CP长度的最小,即点P为△ABC的中心,过B作BE′⊥AC于E′,∴PC=BE′,∵△ABC是等边三角形,∴BE′=BC=3,∴PC=2.∴CP长度的最小值是2.方法二:由图1可知,CP最小值等于CO减OA,OA就是那圆弧的半径,可得PC的最小值为2.7.如图,AB为半圆O的直径,AB=2,C,D为半圆上两个动点(D在C右侧),且满足∠COD=60°,连结AD,BC相交于点P若点C从A出发按顺时针方向运动,当点D与B重合时运动停止,则点P所经过的路径长为________.【答案】【解析】解:点C从点A运动到点D与点B从何时,AD与BC的相点P运动的轨迹是一条弧,C,D两点运动到恰好是半圆的三等分点时,AD与BC的相点P是弧的最高点,作AP,BP的中垂线,两线交于点E,点E是弧APB的圆心;由题意知:AD=BD,∠PAB=∠PBA=30°,连接AE,DE,根据圆的对称性得出A、O、E三点在同一直线上,易证△ADE是一个等边三角形,∠AED=60°,在Rt△ADO中,∠DOA=90°,∠PAB=30°,AO=1,故AD=,∴AE=AD=,弧APB的长度==。
专题六运动问题几何运动中的函数问题例1 (2021 ,唐山路北区二模,导学号5892921)把Rt△ABC和Rt△DEF按如图①摆放(点C与点E重合),点B,C(E),F在同一条直线上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如图②,△DEF从图①的位置出发,以1cm/s的速度沿CB向△ABC匀速移动.在△DEF移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA匀速移动,当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动,DE与AC相交于点Q,连接PQ,设移动时间为t s(0<t<4.5).例1题图解答以下问题:( 1)当t为何值时,点A在线段PQ的垂直平分线上?( 2)连接PE,设四边形2APEC的面积为ycm,求y与t之间的函数关系式.是否存在某一时刻t,使面积y最小?假设存在,请求出y的最小值;假设不存在,请说明理由;( 3)是否存在某一时刻t,使P,Q,F三点在同一条直线上?假设存在,请求出此时t的值;假设不存在,请说明理由.【思路分析】(1)因为点在线段的垂直平分线上,所以,用含的式子表示PQAP AQ1出这两条线段的长解方程即可得解. (2)过点P作PM⊥BC,将四边形APEC的面积表示为 S△ABCS△BPE即可求解.(3)由相似三角形的性质即可求解.解:(1)∵点A在线段PQ的垂直平分线上,∴AP=AQ.∵∠DEF=45°,∠ACB=90°,DEF+∠ACB+∠EQC=180°,∴∠EQC=45°.∴∠DEF=∠EQC.∴CE=CQ.由题意,知CE=t,BP=2t.∴CQ=t.∴AQ=8-t.在Rt△ABC中,由勾股定理,得 AB=10.∴AP=10-2t.10-2t=8-t.解得t=2.∴当t=2时,点A在线段PQ的垂直平分线上.如答图①,过点P作PM⊥BE,交BE于点M.∴∠BMP=90°.在Rt△ABC和Rt△PBM中,sin8PM8∴=.∴PM=t.1 02t5∵BC=6,CE=t,∴BE=6-t.y=S△ABC-S△BPE1 12BC·AC-2BE·PM1 1 8=2×6×8-2×(6-t)×5t4224=5t-5t+24AC PM B=AB=PB,=4(t-3)2+84.5 5∵a=4,∴抛物线开口向上.584∴当t=3时,y最小=5.842∴存在一个t值,且当t=3时,四边形APEC的面积最小,最小面积为5cm.(3)存在某一时刻t,使P,Q,F三点在同一条直线上.如答图②,过点P作PN⊥AC,交AC于点N.∴∠ANP=∠ACB=∠PNQ=90°.∵∠PAN=∠BAC,∴△PAN∽△BAC.PN AP AN∴==.BC AB AC2P N 10-2t A N∴=10=.6868∴PN=6-t,AN=8-t.85 59∵NQ=AQ-AN,103∴NQ=8-t-8-5t=5t.∵∠ACB=90°,B,C,E,F四点在同一条直线上,∴∠QCF=90°.∴∠QCF=∠PNQ.∵∠FQC=∠PQN,∴△QCF∽△QNP.PN NQ∴=.6FC CQ736-5t5t9-t=t.解得t=1.∴存在一个t值,且当t=1时,P,Q,F三点在同一条直线上.例1答图针对训练1(2021 ,黄冈,导学号5892921)如图,在平面直角坐标系xOy中,菱形OABC 的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长度的速度做匀速运动,点N从点A出发沿边AB→BC→CO以每秒2个单位长度的速度做匀速运动,过点作直线垂直于轴并交折线于点,交对M MP OCB P角线OB于点Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.当t=2时,求线段PQ的长;求t为何值时,点P与点N重合;(3 )设△的面积为,求之间的函数关系式及的取值范围.APN S3训练1题图【思路分析】(1)解直角三角形求出PM,QM即可解决问题.(2)根据点P,N的路程之和等于24,构建方程即可解决问题.(3)分四种情况考虑问题即可.解:(1)当t=2时,OM=2.在Rt△OPM中,易知∠POM=60°,∴PM=OM·tan60°=23.1在Rt△OMQ中,∠QOM=2∠POM=30°,2 3∴QM=OM·tan30°=3.∴PQ=PM-QM =22343 3-3=3.当t≤4时,点P在OC上,点N在AB上,∴点P,N在边BC上相遇,t>4.由题意,得8+(t-4)+2t=8×3.201解得t=3.23①当0<t<4时,S=2×8×2×2t=43t.20②当4≤t<3时,1S=[8-(t-4)-(2t-8)]×432=-6 3t+40 3.20③当3<t<8时,1S=2[(t-4)+(2t-8)-8]×4363t-403.④当8≤t≤12时,如答图,S=S菱形ABCO-S△AON-S△ABP-S△PNC41113=323-2(24-2t)×43-2[8-(t-4)]×43-2(t-4)×2(2t-16) 3=-2t+123t-563.43〔0<<4〕,t263t+4034≤t<3,综上所述,S=2<t<8,63t-4033-3t2+123t-563〔8≤t≤12〕.2训练1答图针对训练2(导学号 5892921)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4,动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点P作PD⊥AC于点D(点P不与点A,B重合),作∠DPQ=60°,边PQ交射线DC于点Q.设点P的运动时间为ts.用含t的代数式表示线段DC的长;当点Q与点C重合时,求t的值;(3)设△PDQ与△ABC重叠局部图形的面积为S,求S与t之间的函数关系式.5训练2题图【思路分析】(1) 先求出AC的长,用三角函数求出AD的长,进而可得出结论.(2)利用AD+DQ=AC,即可得出结论.(3)分两种情况,利用三角形的面积公式和面积差即可得出结论.解:(1)在Rt△ABC中,∠A=30°,AB=4,∴AC=2 3.∵PD⊥AC,∴∠ADP=∠CDP=90°.在Rt△ADP中,AP=2t,3∴DP=t,AD=AP·cos A=2t·2=3t.∴=-=23-3(0<<2).DCACAD在Rt△PDQ中,∵∠DPQ=60°,∴∠PQD=30°=∠A.∴PA=PQ.∵PD⊥AC,∴AD=DQ.∵点Q与点C重合,∴AD+DQ=AC.2×3t=23.t=1.△PDQ1132(3)当0<t≤1时,S=S=2DQ·DP=2×3t·t=2t.当1<t<2时,如答图,6训练2答图CQ =AQ -AC =2AD -AC =2 3t -23=2 3(t -1).在Rt△ECQ 中,∠CQE =30°,3∴CE =CQ ·tan∠CQE =23(t -1)×3=2(t -1).∴S =S △PDQ-S △ECQ1 1t -1)×2(t -1)=×3t ·t -×23(22=-323t 2+4 3t -23.23t 2〔0<t ≤1〕, ∴S =3322t +43t -23〔1<t <2〕.几何图形运动形成的路径问题7直线型问题例2(2021 ,邯郸模拟,导学号5892921)如图,在菱形ABCD中,AB=6,∠ABC=120°.动点P从点B出发,沿BC→CD边以每秒1个单位长度的速度运动,到点D时停止,连接AP,点Q与点B关于AP所在直线对称,连接 AQ,PQ.设运动时间为 ts.例2题图菱形ABCD的对角线AC的长为63;当点Q恰在AC上时,求t的值;当CP=3时,求△APQ的周长;直接写出在整个运动过程中,点Q运动的路径长.【思路分析】(1)连接BD交AC于点O,依据在菱形ABCD中,AB=6,∠ABC=120°,求出的长,即可得到菱形对角线的长.(2)依据点与点关于所在直线对称,AO ABCD AC AP可得△AQP≌△ABP,进而得出PQ=PB,AQ=AB=6,∠AQP=∠ABC=120°,进而可知∠CPQ=90°,CQ=2PQ=2PB=2t,即可得到t的值.(3)当CP=3时,有两种情况:①P是BC的中点;②P是CD的中点.分别依据△APQ的周长=△ABP的周长=AB+BP+AP,进行计算即可.(4)点Q运动的路径为以点A为圆心,6为半径,圆心角为120°的弧,进而得到点Q运动的路径120π·6=4π.长为180解:(1)63(3)如答图①.(4)∵在菱形ABCD中,∠ABC=120°,(5)∴∠BCD=60°.(6)∵AC是菱形ABCD的对角线,(7)∴∠ACB=30°.(8)∵点Q与点B关于AP所在直线对称,(9)∴△AQP≌△ABP.(10)∴PQ=PB,AQ=AB=6,∠AQP=∠ABC=120°.(11)∴∠CPQ=∠AQP-∠ACB=90°.(12)在Rt△CPQ中,∠ACB=30°,(13)∴CQ=2PQ=2PB=2t,即6 3-6=2t.(14)解得t=3 3-3.当CP=3时,有两种情况.8①当是的中点时,如答图②,过点作⊥,交的廷长线于点.BC AEBC CB在Rt△ABE中,∠ABE=60°,13∴BE=2AB=3,AE =2AB=33.在Rt△中,=33,=3+3=6,AEP AE EP222∴AP=AE+PE=〔33〕+6=37.∴△APQ的周长=△ABP的周长=AB+BP+AP=6+3+3 7=9+3 7.②当P是CD的中点时,如答图③,连接 BD,那么△BCD是等边三角形.∴∠BPC=90°.在Rt△BPC中,BP=CP·tan C=33.易证∠ABP=90°,由勾股定理可得 AP=3 7.∴△APQ的周长=△ABP的周长=AB+BP+AP=6+3 3+3 7.综上所述,当CP=3时,△APQ的周长为9+3 7或6+3 3+3 7. 由题意,得点Q的运动路径为以点A为圆心,6为半径,圆心角为120°的弧.∴点Q运动的路径长为120π×6=4π.180例2答图针对训练3(2021,石家庄长安区模拟,导学号5892921)如图,正方形ABCD的边长为6,点P从点B出发沿边BC→CD以每秒2个单位长度的D匀速运BP为边作速度向点动,以等边三角形,使点在正方形内或边上,当点恰好在边上时,点停止运动.设运BPQ ABCD AD动时间为ts.(1)当t=2时,点Q到BC的距离为23;(2)如图①,当点P在BC边上运动时,求CQ的最小值及此时t的值;(3)如图②,当点Q在AD边上时,求出t的值;直接写出点Q运动路线的长.9训练3题图【思路分析】(1) 先求出BP=4,∠PBQ=60°,进而可得出结论.(2)先判断出CQ⊥BQ时,CQ最小,再用含30°角的直角三角形的性质即可得出结论.(3)先判定Rt△BAQ≌Rt△BCP,再由勾股定理建立方程即可得出结论.(4)判断出点 Q的运动路线长等于点P的运动路线长即可得出结论.解:(1)2 3当点P在BC边上运动时,有∠QBC=60°.根据垂线段最短,当CQ⊥BQ时,CQ最小.如答图.在Rt△BCQ中,∠QBC=60°,∴∠BCQ=30°.1∴BQ=2BC=3.∴BP=BQ=3.3∴CQ=BQ·tan∠QBC=3 3,t=.2训练3答图当点Q在AD边上时,CP=2t-6.∵BA=BC,BQ=BP,∠A=∠C=90°,10Rt△BAQ ≌Rt△BCP(HL). AQ =CP =2t -6. ∴DQ =DP =12-2t.∵BP =PQ ,在Rt△PDQ 和Rt△BCP 中,由勾股定理可得∴2(12-2t)2=62+(2t -6)2. 222222DQ +DP =QP ,BC +CP =BP ,解得t1=9+3 3(不合题意,舍去 ),t2=9-3 3.t =9-33.∵△PBQ 是等边三角形, ∴点Q 运动路线的长等于点P 运动路线的长.由(3)知,t =9-33.∴点Q 运动路线的长为2(9-33)=18-63.针对训练4(2021,河北,导学号5892921)平面内,如图,在?ABCD 中,AB =10,AD =15,4PB ,将PB 绕点P 逆时针旋转90°得到线段PQ.tanA =,P 为AD 边上任意一点,连接3当∠DPQ =10°时,求∠APB 的度数;当tan∠ABP ∶tan A =3∶2时,求点Q 与点B 间的距离;(结果保存根号)(3)假设点Q 恰好落在?ABCD 的边所在的直线上,直接写出 PB 旋转到PQ 所扫过的面积.训练4题图【思路分析】(1)按点Q,B与PD的位置关系讨论确定∠APB的度数.(2)过点P作PH⊥AB于点H,连接BQ,由三角函数值的比确定AH,BH,PH的长,再由勾股定理计算出QB的长.(3)根据题意分类讨论点Q所在位置并画出满足题意的图形进而计算出扇形面积.解:(1)当点与点异侧时,PD由∠DPQ=10°,∠BPQ=90°,得∠BPD=80°.∴∠=180°-∠=100°. APBB PD当点Q与点B在PD同侧时,如答图①,∠APB=180°-∠BPQ-∠DPQ=80°.综上所述,当∠=10°时,∠的度数为80°或100°.DPQ APB11训练4答图如答图②,过点P 作PH ⊥AB 于点H ,连接BQ. PHPH∵tan∠ABP ∶tan A =∶=3∶2,HBAH∴AH ∶HB =3∶2. ∵AB =10, ∴AH =6,HB =4.在Rt△PHA 中,PH =AH ·tan A =8.2 2 22=45. ∴PQ =PB =PH +HB =8+4 ∴在Rt△PQB 中,QB =2PB =410.(3)16π或20π或32π.与圆有关的问题例3(2021,石家庄裕华区一模,导学号5892921)如图①,图②,在⊙O 中,OA =1,AB3,将弦AB 与弧AB 所围成的弓形(包括边界的阴影局部)绕点B 顺时针旋转α(0°≤α≤360°),点A 的对应点是 A ′. 1(2) 点O 到线段AB 的距离是〔〕,∠AOB =__120°__,点O 落在阴影局部(包括边界)2(3)时,α的取值范围是__30°≤α≤60°__;(4) 如图③,线段A ′B 与弧ACB 的交点是D.当∠A ′BA =90°时,说明点D 在AO 的延长(5)线上;当直线A ′B 与⊙O 相切时,求α的值并求此时点A ′运动路径的长度.12例3题图【思路分析】(1)前两空利用垂径定理和特殊角的三角函数值解答.第三空,当A′B与OB重叠时,α取最小值.当弧A′B绕点B顺时针旋转到过圆心O时得到α的最大值.(2)连接AD,利用圆周角定理进行证明.(3)利用切线的性质求得α的值,并利用弧长公式求得点A′运动路径的长度.1解:(1)2120°30°≤α≤60°(2)如答图,连接AD.例3答图∵∠A′BA=90°,∴AD为直径.∴AD过圆心O.∴点D在AO的延长线上.(3)当A′B与⊙O相切时,∠OBA′=90°,此时∠ABA′=90°+30°=120°或∠ABA′=90°-30°=60°.∴α=120°或300°.120π· 3 2 3π=3当α=120°时,点A′运动路径的18长度为013π·5π300.当α=300°时,点A′运动路径的长度为180=针对训练 5(2021,石家庄长安区模拟,导学号 5892921)在扇形AOB 中,圆心角∠AOB120°,半径OA =OB =8.如图①,过点O 作OE ⊥OB ,交弧AB 于点E ,再过点E 作EF ⊥OA 于点F ,那么FO 的长是 43,∠FEO =60°;如图②,设P 为弧AB 上的动点,过点P 作PM ⊥OA 于点M ,PN ⊥OB 于点N ,点M ,N 分别在半径OA ,OB 上,连接MN.①求点P 运动的路径长; ②MN 的长度是否是定值?在(2)中的条件下,假设点D 是△PMN 的外心,直接写出点D 运动的路径长.训练5题图【思路分析】(1) 先求出∠AOE ,即可得出结论.(2)①当点 M 与点O 重合时,∠PMB =30°.当点N 与点O 重合时,∠PNA =30°.进而可求出点P 运动路径所对的圆心角是 120°-30°-30°=60°,最后用弧长公式即可得出结论.②先判断出P,M,O,N四点均在同一个圆上,进而可得出结论.(3)先判断出△PMN的外接圆的圆心的运动轨迹,最后根据弧长公式即可得出结论.解:(1)4 3 60°①点P在弧AB上运动,其路径也是一段弧.由题意,可知当点M与点O重合时,∠PMB=30°;当点N与点O重合时,∠PNA=30°.∴点P运动路径所对的圆心角是120°-30°-30°=60°.∴点P运动的路径长为60π·88π180=3.②如答图,连接PO,取PO的中点H,连接MH,NH. ∵在Rt△PMO和Rt△PNO中,H是斜边PO的中点,1∴MH=NH=PH=OH=2PO=4.∴根据圆的定义,可知 P,M,O,N四点均在同一个圆,即⊙H上.∵∠MON=120°,∠PMO=∠PNO=90°,∴∠MPN=60°.∴∠MHN=2∠MPN=120°.过点H作HK⊥MN,垂足为K.141由垂径定理,得MK=KN=2MN,∠MHK=60°.∵在Rt△HMK中,MH=4,∴MK=2 3.∴MN=2MK=4 3.∴MN的长度是定值.4π(3)点D运动的路径长为.3训练5答图图形的滚动问题几何图形在直线上运动例4(2021,资阳模拟,导学号5892921)如图,△为等边三角形,且点的坐标ABC A分别是(-2,0),(-1,0).将△ABC沿x轴正方向翻滚,翻滚120°为一次变换.如果这样连续经过2021次变换后,等边三角形的顶点的坐标为__(2_016,0)__.ABC15例4【解析】由意,得C1(0,0),C2(0,0),C33,3,C4(3,0),C5(3,0),C69,3,⋯.3 222次一循,2021÷3=672⋯⋯2,672×3=2021,∴2021次后,等三角形ABC的点C的坐(2021,0).6(学号5892921)如,在扇形皮AOB中,OA=20,∠AOB=36°,OB在直上.将此扇形沿按方向旋(旋程中无滑),当第一次落在上,OA停止旋,点O所的路(C)6A.20π B.22πC.24π D.20π+105-10【解析】点O所的路90π·2036π·2090π·20+180=24π. 1801807(学号5892921)如,一个4cm、3cm的矩形木板在桌面上做无滑的翻(方向),木板点位置的化→1→2,其中第二次翻被桌面上一A A A小木住,使木板与桌面成30°的角,点A到点A2位置走的路径(B)16训练7题图.7πB.23π2cm cm6 4π5π.3cmD.2cm【解析】∵矩形长为4cm,宽为3cm,∴其对角线长为5cm.第一次是以点B为旋转中心,5cm为半径旋转90π·55π90°,此次点A走过的路径长是(cm).第二次是以点C为18060π·44π旋转中心,4cm为半径旋转60°,此次走过的路径长是(cm).∴点A走过的路18035π4π23π径长是+3=6(c m).针对训练8(导学号5892921)如图,在平面直角坐标系中,一半径为2的圆的圆心的初始位置在(0,2),此时圆上一点P的位置在(0,0),圆在x轴上以每秒π的速度沿x轴正方3向滚动,8s后点P到x轴的距离为__3__.训练8题图【解析】如答图,设圆心为点O′,作O′A⊥x轴于点A,PD⊥x轴于点D,O′F⊥PD17于点.弧的心角8πnπ·2=240.∴∠′=120°.°.由意,得.解得AP n180POA3∵∠O′AD=∠FDA=∠O′FD=90°,∴四形O′ADF是矩形.∴DF=O′A=2,∠FO′A190°.∴∠FO′P=30°.在Rt△O′PF中,PF=2O′P=1,∴PD=PF+DF=1+2=3.∴点P到x的距离3.8答9(2021,唐山三模,学号5892921)如,直l平面直角坐系的原点O,且与x正方向的角是30°,点A的坐是(0,1),点B在直l上,且AB∥x,点B的坐是(3,将△ABO点B旋到△A1BO1的位置,使点A的,1)点A落在直l上,再将△ABO点A旋到△ABO的位置,使点O的点111121O2落在直l上,次旋下去⋯⋯点A63的横坐是〔2+2〕.9【解析】∵点A的坐是(0,1),∠BOx=30°,AB∥x,∴AB=3,AO=1.∴点B的坐(3,1).由意,得点A1的横坐3333+3,点A2的横坐+,点A3的横22218533+33,点A的横坐标为93,点A的横坐标为93坐标为3+,点A的横坐标为2+42+2. 456几何图形在折线上运动例5(导学号5892921)如图,等边三角形和正方形的边长都是a,在图形所在的平面内,将△以点为中心沿逆时针方向旋转,使AP与重合,如此继续分别以点,,PAD ABB C中心将三角形进行旋转,使点P回到原来位置为止,那么点P从开始到结束所经过路径的长为(C)例5题图7πB.13πC.19πD.25aa a2468【解析】如答图,点P所经过的路径是半径为a,圆心角分别为210°,210°和150°210π·a×2+150π·a19πa.的三段圆弧.故总长度为180180=6例5答图针对训练10( 导学号5892921)将半径为2cm的圆形纸板沿着挖空的局部方格纸板(小方格的边长为2cm)的内侧滚动一周,回到开始位置后,圆心经过的路线的长度约为(B)19训练10题图A.36cm B C D.40cm【解析】如答图,圆心经过的路线为8条线段以及2条圆弧.因为小方格的边长为2cm,所以圆心经过的路线的长度为2×(5+1+1+2+4+1+2+2)+2×902=36+2π≈42.28(cm).180训练10答图20。
A CQ图9—1图9—2AB C QP初中数学动点复习(例题和答案)例1.如图9—1,在△ABC 中,∠B =90°, AB =6cm ,BC =3cm .点P 从点A 开始沿AB 边向点B 以1 cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,几秒钟后P 、Q 间的距离等于42cm?(1995年山东省中考试题)分析:本题如果设t 秒钟后,P 、Q 间的距离等于42cm ,那么PB 、QB 都能用t 来表示,根据勾股定理,可以列出关于t 的方程求解.解:设t 秒钟后,P 、Q 间的距离等于42cm . 则PB =(6-t )cm ,QB =2t cm .根据勾股定理,得(6-t )2+(2t )2=(42)2.解这个方程,得t 1=52,t 2=2.因为点Q 从点B 开始沿BC 边移动到点C 以只需要1.5秒,所以只取t =52.答:52秒钟后,P 、Q 间的距离等于42cm .说明:本题抓住变化中图形的特殊位置关系:PQ =42cm ,直接利用勾股定理,建立方程模型解决问题.例2.如图9—2,在△ABC 中,∠C =90°, BC =8 cm ,sin B =53,点P 从点B 开始沿BC 向点C 以2 cm/s 的速度移动,点Q 从点C 开始沿CA 边向点A 以1cm/s 的速度移动,如果P 、Q 分别从B 、C 同时出发,第几秒时PQ ∥AB ?(1997年陕西省咸阳市中考试题)分析:如图9—2,假设运动开始后t 秒时,PQ ∥AB 根据这时图形的特殊位置,利用平行线分线段成比例定理求解.解: 设P 、Q 分别从B 、C 同时出发,运动开始后t 秒时,PQ ∥AB . 则ACAQ BC BP =. ∵sin B =53,∴cos B =54,tg B =43.∴AC =BC ·tg B =8·43=6. ∴BP =2t ,AQ =AC -QC =6-t .∴6682tt -=.图9—3A 图9—4BQ P 解得 t =2.4(s ).∴P 、Q 分别从B 、C 同时出发,运动开始后2.4 s 时,PQ ∥AB .说明:本题抓住变化中图形的特殊位置PQ ∥AB ,利用平行线分线段成比例定理求解. 例3.如图9—3,已知:在矩形ABCD 中,AB =6cm ,BC =12cm ,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发.设S 表示面积,x 表示移动时间(x >0).(1)几秒后△PBQ 的面积等于8cm 2;(2)写出S △DPQ 与x 的函数关系式; (3)求出S △DPQ 最小值和S △DPQ 最大值,并说明理由.(1998年湖北省襄樊市中考试题)分析:点P 、Q 在运动过程中,x 在变,S △DPQ 也在变,而S △DPQ 与x 之间可以根据条件列出方程或函数关系式求解.解:(1)根据题意,得21·2x ·(6-x )=8. 即 x 2-6x +8=0. 解得 x 1=2,x 2=4.所以2秒或4秒后△PBQ 的面积等于8cm 2. (2)S △DPQ =S 四边形ABCD -S △APD -S △PBQ -S △DCQ=12·6-21·x ·12-21·6·(12-2x )-21·(6-x )·2x = x 2-6x +36.(3)S △DPQ = x 2-6x +36=(x -3)2+27.∴S △DPQ 的最小值是27,S △DPQ 的最大值是36.∵当|x -3|最小时,S △DPQ 有最小值;当| x -3|最大时,S △DPQ 有最大值, 又∵0<x ≤6,∴当x =3时,S △DPQ 有最小值;当x =6时,S △DPQ 有最大值.说明:本题第(1)小题是利用方程模型求解,它是P 、Q 运动过程中,△PBQ 处于特殊位置;而第(2)、(3)小题是利用函数模型求解.另外,在几何图形中求函数关系式,问题具有一定的实际意义,因此对函数关系式中自变量的取值范围必须认真考虑,一般需有约束条件.例4.如图9—4,在△ABC 中,AB =8 cm ,BC =16 cm ,点P 从点A 开始沿AB 边向点B 以2cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以4 cm/s 的速度移动,如果P 、Q 分别从A 、B 同时出发,经几秒钟△PBQ 与△ABC 相似?(1998年江苏省宿迁市中考试题)分析:在P 、Q 分别从A 、B 同时出发运动的过程中,可能有两种状态出现:(1)BC BQ AB PB =;(2)AB BQ BC PB =. 因此,这两种情况都要考虑.解:设P 、Q 分别从A 、B 同时出发后,经 x s ,△PBQ 与△ABC 相似. 则AP =2x ,BQ =4x ,PB =8-2x .(1)如果BC BQ AB PB =,那么可得164828xx =-. 解得 x =2.(2)如果AB BQ BC PB =,那么可得841628xx =-. 解得 x =54. 所以经过2 s 钟或54s 钟,△PBQ 与△ABC 都相似.说明:本题是一道需要讨论的质点运动型中考题,即在P 、Q 分别从A 、B 同时出发运动的过程中,有两种情况使△PBQ 与△ABC 相似.例5.如图9—5,在矩形ABCD 中,AB =12cm ,BC =6cm ,点P 沿AB 边从点A 开始向点B 以2cm/ s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm/s 的速度移动,如果P 、Q 同时出发,用t (s )表示移动的时间(0≤t ≤6),那么(1)当t 为何值时,△QAP 为等腰直角三角形?(2)求四边形QAPC 的面积;提出一个与计算结果有关的结论; (3)当t 为何值时,以点Q 、A 、P 为顶点的三角形与△ABC 相似?(2002年河北省中考试题)分析:(1)只要把QA 、AP 用含t 的代数式表示,利用QA =AP 求解;(2)可以分别求出△QAC 和△APC 的面积;(3)同例4一样,要分两种情况求解.解:(1)对于任何时刻t ,AP =2t ,DQ =t ,QA =6-t . 当QA =AP 时,△QAP 为等腰直角三角形. 即6-t =2t .解得t =2(秒).所以当t =2秒时,△QAP 为等腰直角三角形.(2)在△QAC 中,QA =6-t ,QA 边上的高DC =12,∴S △QAC =21QA •DC =21(6-t )•12=36-6t . ∵在△APC 中,AP =2t ,BC =6,A CB QD P 图9—5A 图9—6BCD A 图9—7 B C D F E∴S △APC =21AP •BC =21•2t •6=6t . ∴S 四边形QAPC =S △QAC +S △APC =36-6t +6t =36(cm 2).由计算结果发现:在P 、Q 两点的移动过程中,四边形QAPC 的面积始终保持不变.(也可以提出:P 、Q 两点到对角线AC 的距离之和保持不变)(3)根据题意,可分为两种情况来求解:当BCAP ABQA =时,△QAP ∽△ABC .∴62126tt =-. 解得t =1.2(s ).∴当t =1.2 s 时,△QAP ∽△ABC .当AB AP BCQA =时,△PAQ ∽△ABC .∴122126t t =-.解得t =3(秒).∴当t =3 s 时,△PAQ ∽△ABC .例6.如图9—6,正方形ABCD 中,有一直径为BC 的半圆,BC =2cm .现有两点E 、F ,分别从点B 、点A 同时出发,沿线段BA 以1cm/s 的速度向点A 运动,点F 沿折线A —D —C 以2cm/s 的速度向点C 运动.设点E 离开点的B 时间为t (s ).(1)当t 为何值时,线段EF 和BC 平行?(2)设1<t <2,当t 为何值时,EF 与半圆相切?(3)当1≤t <2时,设EF 与AC 相交于点P ,问点E 、F 运动时,点P 的位置是否发生变化?若发生变化,请说明理由;若不发生变化,请给予证明,并求AP :PC 的值.(2001年南昌市中考试题)分析:(1)当EF ∥BC 时,四边形BCFE 是矩形;(2)线段EF 与半圆相切时,EF = BE+CF ,可以过点F 作KF ∥BC 交AB 于K ,构造直角三角形求解;(3)可以利用正方形ABCD 中的不变关系AB ∥DC ,通过△AEP ∽△CFP 求解.解:(1)如图9—7,设E 、F 出发后运动了t s 时,有EF 和BC 平行. 则BE = t ,CF =4-2t . ∴t =4-2t .解得t =34.∴当t =34 s 时,线段EF 和BC 平行.(2)设E 、F 出发后运动了t 秒时,EF 与半圆相切. 过点F 作KF ∥BC 交AB 于K .如图9—8.则A 图9—8BCD FE K A 图9—9 BC D F E P BE = t ,CF =4-2t ,EK = t -(4-2t )=3t -4,EF = BE+ CF = t +(4-2t )=4-t . 又∵EF 2= EK 2+FK 2, ∴(4-2t )2=(3t -4)2+22. 解得t =222±.∵1<t <2,∴t =222+. ∴当t =34 s 时,线段EF 与半圆相切.(3)答:当1≤t <2时,点P 的位置不会发生变化. 证明:1≤t <2时,设E 、F 出发后运动了t s 时,EF 位置如图9—9所示,则BE = t ,AE =2-t , CF =4-2t .∴FCAE =21242=--tt .又∵AB ∥DC ,∴△AEP ∽△CFP . ∴21==FCAE PCAP .即点P 的位置与t 的取值无关.∴1≤t <2时,点P 的位置不会发生变化,且AP :PC 的值是21. 练习1.解:(1)运动开始后第x s 钟时,△PBQ 的面积等于8cm 2.根据题意,得21·2x ·(6-x )=8.即 x 2-6x +8=0. 解得 x 1=2,x 2=4.所以2 s 或4 s 后△PBQ 的面积等于8cm 2. (2)运动开始后第t s 钟时,S =S 矩形ABCD -S △PBQ=12·6-21·(6-t )·2t = t 2-6x +72. (3)S =t 2-6x +72=( t -3 )2+63.))所以当t =3时,S 最小,S 的最小值是63 cm 2.2.解:当t =1 s 时,OE =1,AP =3. ∴OP =28-3=25. ∵OA =OB ,EF ∥OA , ∴EF =EB =28-1=27. ∴S 梯形OPFE =2)(OE EF OP +=21)2725(⨯+=26.S =228328t t -+-=-2 t 2+28 t=-2(t -7)2+98.所以当t =7 s 时,梯形OPFE 的面积最大,最大面积是98. (2)相似.证明:分别过F 1 、F 2作F 1H 1⊥AP 2,F 2 H 2⊥AP 2,垂足分别为H 1、H 2. ∵∠OAB =45°,∴AH 1=F 1H 1=t 1,AH 2=F 2H 2=t 2. ∴AF 1=2t 1,AF 2=2t 2. ∴2121t t AF AF =. 又∵AP 1=3t 1,AP 2=3t 2,∴21212133t t t t AP AP ==. ∴2121AF AF AP AP =. ∵∠OAB =∠OAB ,∴△AF 1P 1∽△AF 2P 2.3.解:(1)当点Q 在OC 上时,坐标为(x 58,x 56),当点Q 在CB 上时,坐标为(2 x -1,3).(2)①点Q 所经过的路程为16-x ,速度为xx-16. ②当Q 在OC 上时,作QM ⊥OA ,垂足为M .则QM =53(16-x ).) ) ∴S △OPQ =21·53(16-x )·x 103 x (16-x ). 令103x (16-x )=18. 解得x 1=10,x 2=6.∵当x 1=10时,16-x =6,这时点Q 不在OC 上,故舍去.∴当Q 在OC 上时,PQ 不可能同时把梯形OABC 的面积也分成相等的两部分. 点Q 在CB 上时,CQ =16-x -5=11-x . ∴S 梯形OPQC =21·(11-x +x )·3=233. ∵233≠18, ∴点Q 在CB 上时,PQ 不可能同时把梯形OABC 的面积也分成相等的两部分.。
胡不归求最小值内容导航方法点拨从前,有一个小伙子在外地当学徒,当他得知在家乡的年老父亲病危的消息后,便立即启程日夜赶路。
由于思念心切,他选择了全是沙砾地带的直线路径A--B (如图所示:A 是出发地,B 是目的地,AC 是一条驿道,而驿道靠目的地的一侧全是沙砾地带),当他赶到父亲眼前时,老人已去世了,邻舍告诉小伙子时告诉说,老人在弥留之际还不断喃喃地叨念:胡不归?胡不归?一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BC V V +的值最小.121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =,即求BC +kAC 的最小值.构造射线AD 使得sin ∠DAN =k ,CH /AC =k ,CH =kAC .将问题转化为求BC +CH 最小值,过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC 最小.在求形如“PA +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“PA +kPB ”型问题转化为“PA +PC ”型.胡不归模型问题解题步骤如下:1、将所求线段和改写为“PA+a b PB”的形式(a b <1,若ab >1,提取系数,转化为小于1的形式解决)。
2、在PB 的一侧,PA 的异侧,构造一个角度α,使得sinα=a b 3、最后利用两点之间线段最短及垂线段最短解题例题演练题组1:PA+k•PB例1.如图①,已知抛物线y =﹣x 2+x +2与x 轴交于A 、B 两点,与y 轴交于C 点,抛物线的顶点为Q,连接BC.(1)求直线BC的解析式;(2)点P是直线BC上方抛物线上的一点,过点P作PD⊥BC于点D,在直线BC上有一动点M,当线段PD最大时,求PM+MB最小值;【解答】解:(1)令y=0,﹣x2+x+2=0,解得x=﹣1和4,∴A(﹣1,0),B(4,0),令x=0,y=2,∴C(0,2),设直线BC的解析式为y=kx+b,则有,解得,∴直线BC的解析式为y=﹣x+2.(2)如图1中,作PM∥y轴交BC于M.∵∠DPM是定值,∴当PM的值最大时,PD的值最大,设P(m,﹣m2+m+2),则M(m,﹣m+2),∴PM=﹣m2+2m=﹣(m﹣2)2+2,∵﹣<0,∴m=2时,PM的值有最大值,即PD的值最大,此时P(2,3).在y轴上取一点G,使得sin∠GBC=,作GK⊥BC于K,∵sin∠GBK==,设GK=k,BG=3k,则BK=2k,∵∠GCK=∠BCO,∠GKC=∠BOC=90°,∴△CKG∽△COB,∴==,∴==,∴CK=k,CG=k,∵CK+BK=BC,∴k+2k=2,∴k=,∴OG=OC﹣CG=,∴G(0,),∴直线BG的解析式为y=﹣x+,∵PM+BM=PM+ME,∴当P.M,E共线,且PE⊥BG时,PM+PE的值最小,∵PE⊥BG,∴直线PE的解析式为y=y=x﹣2,由,解得,∴E(,),∴PE==,∴PM+BM的最小值为.练1.1如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D,B(﹣3,0),A(0,)(1)求抛物线解析式及D点坐标;(2)如图1,P为线段OB上(不与O、B重舍)一动点,过点P作y轴的平行线交线段AB于点M,交抛物线于点N,点N作NK⊥BA交BA于点K,当△MNK与△MPB的面积相等时,在X轴上找一动点Q,使得CQ+QN最小时,求点Q的坐标及CQ+QN最小值;【解答】解:(1)把B(﹣3,0),A(0,)的坐标代入y=﹣x2+bx+c,得到,解得,∴二次函数的解析式为y=﹣x2﹣x+,顶点D的坐标为(﹣1,).(2)如图1中,设P(m,0)则N(m,=﹣m2﹣m+).∵A(0,),B(﹣3,0),∴直线AB的解析式为y=x+,AB用PN的交点M(m,m+),∵∠NMK=∠BMP,∠NKM=∠MPB=90°,∴△NMK∽△BMN,∵△MNK与△MPB的面积相等,∴△NMK≌△BMN,∴MN=BM,在Rt△ABO中,tan∠ABO==,∴∠ABO=30°,∴BM=2PM=MN,∴﹣m2﹣m+﹣m﹣=2(m+),解得m=﹣2或﹣3(舍弃),∴N(﹣2,),在y轴上取一点F,使得∠OCF=30°,作QH⊥CF于H,∵QH=CQ,∴NQ+CQ=NQ+QH,根据垂线段最短可知,当N、Q、H共线,且NH⊥CF时,NQ+CQ=NQ+QH的值最小.∵直线CF的解析式为y=x﹣,直线NH的解析式为y=﹣x﹣,∴Q(﹣1,0),由,解得,∴H(﹣,﹣),∴NH==3,∴NQ+CQ=NQ+QH的最小值为3.练1.2如图,抛物线y=﹣x2+x+3与x轴交于点A,点B,与y轴交于点C,点D与点C关于x 轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求直线BD的解析式;(2)当点P在线段OB上运动时,直线l交BD于点M,当△DQB面积最大时,在x轴上找一点E,使QE+EB的值最小,求E的坐标和最小值.【解答】解:(1)当y=0时,x2+x+3=0,解得x1=6,x2=﹣1,∴A(﹣1,0)、B(6,0),当x=0时,y=3,则C(0,3).∵点D与点C关于x轴对称,∴点D为(0,﹣3).设直线BD的解析式为y=kx+b,将D(0,﹣3)和B(6,0)分别代入得,解得:k=,b=﹣3.∴直线BD的解析式为y=x﹣3.(2)设点P的坐标为(m,0),则点Q(m,m2+m+3),M(m,m﹣3).△QBD的面积=QM•OB=×6×(m2+m+3﹣m+3)=﹣(m﹣2)2+24,∴当m=2时,△QBD的面积有最大值,此时Q(2,6).如图1所示:过点E作EF⊥BD,垂足为F.在Rt△OBD中,OB=6,OD=3,则BD=3,∴tan∠EBF=tan∠OBD==.∴EF=BE.∴QE+EB=QE+EF.∴当点Q、E、F在一条直线上时,QE+EB有最小值.过点Q作QF′⊥BC,垂足为F′,QF′交OB与点E′.设QF′的解析式为y=﹣2x+b,将点Q的坐标代入得:﹣4+b=6,解得b=10,∴QF′的解析式为y=﹣2x+10.由,解得x=,∴F(,﹣)当y=0时,﹣2x+10=0,解得x=5,∴点E′的坐标为(5,0).即点E的坐标为(5,0)时QE+EB有最小值.∴QE+EB的最小值=QF==.练1.3如图1,在平面直角坐标系中,抛物线y=﹣x2+x+与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D.(1)求直线BC的解析式;(2)如图2,点P为直线BC上方抛物线上一点,连接PB、PC.当△PBC的面积最大时,在线段BC上找一点E(不与B、C重合),使PE+BE的值最小,求点P的坐标和PE+BE的最小值;【解答】解:(1)当x=0时,y=﹣x2+x+=,∴点C的坐标为(0,);当y=0时,有﹣x2+x+=0,解得:x1=﹣1,x2=3,∴点B的坐标为(3,0).设直线BC的解析式为y=kx+b(k≠0),将B(3,0)、C(0,)代入y=kx+b,得:,解得:,∴直线BC的解析式为y=﹣x+.(2)如图2中,过点P作PM⊥x轴于点M,交直线BC于点F.EN⊥x轴设P(a,﹣a2+a+),则F(a,﹣a+)∴PF=﹣a2+a=×PF×3=﹣a2+a∴S△PBC最大∴当,a=时,S△PBC∴P(,)∵直线BC的解析式为y=﹣x+.∴∠CBO=30°,EN⊥x轴∴EN=BE∴PE+BE=PE+EN∴根据两点之间线段最短和垂线段最短,则当P,E,N三点共线且垂直于x轴时,PE+BE值最小.∴PE+BE=PE+EN=PN=题组2:PA+QB+k•PQ例2.如图1,抛物线与y轴交于点C,与x轴交于点A、B(点A在点B左边),O为坐标原点.点D是直线BC上方抛物线上的一个动点,过点D作DE∥x轴交直线BC于点E.点P为∠CAB角平分线上的一动点,过点P作PQ⊥BC于点H,交x轴于点Q;点F是直线BC上的一个动点.(1)当线段DE的长度最大时,求DF+FQ+PQ的最小值.【解答】解:(1)如图1,当x=0时,y=3.当y=0时,.∴∴AC⊥BC,且∠ABC=30°,AC=,且设D(a,),则E()∴DE=a﹣∴当a=﹣时,DE最大.此时D()∵AP平分∠CAB,∴∠PAB=∠CAB=30°,∵PQ⊥BC,∴∠PQB=60°,∴∠P=∠PQB﹣∠PAB=60°﹣30°=30°=∠PAB,∵PQ⊥BC,∴∠PQB=60°,∴AQ=PQ,∴=,将射线AB绕A顺时针旋转30°得到直线AM,过点D作AM的垂线于点M,交x轴于点Q′,则.当Q运动到Q′时,有=DM,过D作DN⊥x轴于点N,可得△AQ′M与△DQ′N相似,DN=D y=,AN=∴Q′N=,DQ′=,AQ′=AN﹣Q′N=∴Q′M=,∴DM=DQ′+Q′M==DM=.练2.1如图1,抛物线y=﹣x2+x+2与x轴相交于A,B两点(点A在点B的右侧),与y轴交于点C,点D是抛物线的顶点,连接AD、BD.(1)求△ABD的面积;(2)如图2,连接AC、BC,若点P是直线AC上方抛物线上一动点,过P作PE∥BC交AC于点E,作PQ∥y轴交AC于点Q,当△PQE周长最大时,将△PQE沿着直线AC平移,记移动中的△PQE为△P′Q′E′,连接CP′,求△PQE的周长的最大值及CP′+P′E′+AE′的最小值;【解答】解(1)对于抛物线y=﹣x2+x+2,令y=0,得到x=6或﹣2,∴A(6,0),B(﹣2,0),∵y=﹣x2+x+2=﹣(x﹣2)2+,∴D(2,).=×8×=.∴S△ABD(2)∵A(6,0),C(0,2),∴直线AC的解析式为y=﹣x+2,设P(m,﹣m2+m+2),则Q(m,﹣m+2),∴PQ=﹣m2+m+2﹣m+2=﹣(m﹣3)2+,∵△PEQ∽△AOC,∴==,∴PQ的值最大时,△PEQ的周长最大,∵m=3时,PQ有最大值,此时:==,∴PE=,QE=,∴△PQE周长的最大值=++=.此时P(3,),E(,).在Rt△BOC中,tan∠BCO==,∴∠BCO=30°,同法可得:∠ACO=60°,∴∠ACB=90°,如图2中,作P′M⊥BC于M,E′H⊥AB于H,MH′⊥AB于H′,连接ME′、CP′.∵四边形MCE′P′是矩形,∴CP′=ME′,∵E′H=AE′,∴CP′+P′E′+AE′=ME′+E′H+P′E′,∴当M,E′,H共线时,CP′+P′E′+AE′的值最小,最小值=MH+P′E′,易知M(,),∴CP′+P′E′+AE′的最小值=+=.练2.2在平面直角坐标系中,抛物线y=x2﹣x﹣2交x轴于A、B两点,交y轴于点C,点C 关于抛物线对称轴对称的点为D.(1)求点D的坐标及直线BD的解析式;(2)如图1,连接CD、AD、BD,点E为线段CD上一动点.过E作EF∥BD交线段AD于F 点,当△CEF的面积最大时,在x轴上找一点P,在y轴上找一点Q,使EQ+PQ+BP最小,并求其最小值;【解答】解:(1)对于抛物线y=x2﹣x﹣2,令x=0,则y=﹣2,令y=0,则x=2或﹣,故点A、B、C的坐标分别为:(﹣,0)、(2,0)、(0,﹣2),∴抛物线的对称轴x=(﹣)=,∵点C关于抛物线对称轴对称的点为D,∴点D(,﹣2);设直线BD的表达式为:y=kx+b,则,解得:,(2)设点E(m,﹣2),∵EF∥BD,∴直线EF表达式中的k值和直线BD表达式中的k值相同,设直线EF的表达式为:y=2x+b′,将点E的坐标代入上式并解得:b′=﹣2m﹣2,直线EF的表达式为:y=2x﹣2m﹣2②,联立①②并解得:,故点F的坐标为:(,﹣),△CEF的面积S=×CE×(y F﹣y E)=m×(﹣+2)=﹣m2+m,∵﹣<0,故S有最大值,此时m=,故点E(,﹣2);过点B作直线BH使tan∠HBO=,则sin∠HBO=,作点E关于y轴的对称点E′(﹣,﹣2),过点E′作E′H⊥BH交y轴于Q,交x轴于P,则点P、Q为所求点,此时EQ+PQ+BP最小,∵sin∠HBO=,则PH=PB sin∠HBO=PB,EQ+PQ+BP=E′Q+PQ+PH=E′H为最小,∵tan∠HBO=,故tan∠HPB=2,即直线E′H表达式中的k值为2,将点E′的坐标代入上式并解得:b″=﹣,故直线E′H的表达式为:y=2x﹣,令x=0,则y=﹣,令y=0,则x=,故点P、Q的坐标分别为:(,0)、(0,﹣),E′P==,PH=×(2)=,故EQ+PQ+BP最小值为:;练2.3如图①,抛物线y=﹣x2+x+2与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,连接BC.(1)过点A且平行于BC的直线交于y轴于点D,求AD的解析式;(2)如图②,P是直线BC上方抛物线上的一动点,在抛物线的对称轴l上有一动点M,在x轴上有一动点N,连接PM、MN,当△PAD的面积最大时,求PM+MN+BN的最小值;【解答】解:(1)针对于抛物线y=﹣x2+x+2,令y=0,则,∴x1=﹣1,x2=4,∴A(﹣1,0),B(4,0)当x=0,得y=2∴C(0,2),∴直线BC的解析式为y=﹣x+2,∵AD∥BC,∴直线AD的解析式为y=﹣x﹣;(2)由(1)知,直线AD的解析式为y=﹣x﹣,∴D(0,﹣),最大,过点P作直线l∥AD,当直线l与抛物线只有一个交点时,S△P AD设直线l的解析式为y=﹣x+b①,∵抛物线的解析式为y=﹣x2+x+2②,联立①②得,x2﹣4x+2b﹣4=0,∴△=16﹣4(2b﹣4)=0,∴b=4,∴x1=x2=2,∴P(2,3),如图1,在y轴负半轴取一点K,使=,设OK=m,则BK=5m,在Rt△BOK中,(5m)2﹣(m)2=16,∴m=或m=﹣(舍),∴BK=2,∴OK=2,∴点K(0,﹣2),则sin∠OBK==,cos∠OBK===,过点N作NT⊥BK于T,在Rt△BTN中,sin∠OBT==,∴NT=BN,作点P(2,3)关于抛物线对称轴x=的对称的P',∴P'(1,3),∴点P',M,N,T在同一条线时,PM+MN+BN最小,最小为P'T,∵B(4,0),∴直线BK的解析式为y=x﹣2,过P'作P'W⊥x轴交BK与W,∴W(1,﹣),∴P'W=3+=,∵∠BNT=∠P'NO,∴∠WP'T=∠OBK,∴cos∠WP'T=cos∠OBK=,∴P'T=P'W•cos∠WP'T=×=,即:PM+MN+BN的最小值为;。
2020年中考数学二轮专项冲刺复习——动点、最值问题、压轴题型1、(2019陕西•中考 第25题•12分)问题提出:(1)如图1,已知ABC ∆,试确定一点D ,使得以A ,B ,C ,D 为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD 中,4AB =,10BC =,若要在该矩形中作出一个面积最大的BPC ∆,且使90BPC ∠=︒,求满足条件的点P 到点A 的距离;问题解决:(3)如图3,有一座草根塔A ,按规定,要以塔A 为对称中心,建一个面积尽可能大的形状为平行四边形的草根景区BCDE .根据实际情况,要求顶点B 是定点,点B 到塔A 的距离为50米,120CBE ∠=︒,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE ?若可以,求出满足要求的平行四边形BCDE 的最大面积;若不可以,请说明理由.(塔A 的占地面积忽略不计)【考点】四边形综合题【分析】(1)利用平行四边形的判定方法画出图形即可.(2)以点O 为圆心,OB 长为半径作O e ,O e 一定于AD 相交于1P ,2P 两点,点1P ,2P 即为所求.(3)可以,如图所示,连接BD ,作BDE ∆的外接圆O e ,则点E 在优弧¶BD 上,取·BED 的中点E ',连接E B ',E D ',四边形BC DE ''即为所求.【解答】解:(1)如图记为点D 所在的位置.(2)如图,4AB =Q ,10BC =,∴取BC 的中点O ,则OB AB >.∴以点O 为圆心,OB 长为半径作O e ,O e 一定于AD 相交于1P ,2P 两点,连接1BP ,1PC ,1PO ,90BPC ∠=︒Q ,点P 不能再矩形外; BPC ∴∆的顶点1P 或2P 位置时,BPC ∆的面积最大,作1PE BC ⊥,垂足为E ,则3OE =, 1532AP BE OB OE ∴==-=-=,由对称性得28AP =.(3)可以,如图所示,连接BD ,A Q 为BCDE Y 的对称中心,50BA =,120CBE ∠=︒,100BD ∴=,60BED ∠=︒作BDE ∆的外接圆O e ,则点E 在优弧¶BD 上,取·BED 的中点E ',连接E B ',E D ',则E B E D '=',且60BE D ∠'=︒,∴△BE D '为正三角形.连接E O '并延长,经过点A 至C ',使E A AC '=',连接BC ',DC ',E A BD '⊥Q ,∴四边形E D '为菱形,且120C BE ∠''=︒,作EF BD ⊥,垂足为F ,连接EO ,则EF EO OA E O OA E A +-'+='…, 1122BDE E BD S BD EF BD E A S ∆'∴='=V g g g g …,()2221006050003E BD BCDE BC DE S S S sin m '''∴==⋅︒=V 平行四边形平行四边形…所以符合要求的BCDE Y 的最大面积为250003m .2、(2019宁夏•中考 第26题•10分)如图,在ABC ∆中,90A ∠=︒,3AB =,4AC =,点M ,Q 分别是边AB ,BC 上的动点(点M 不与A ,B 重合),且MQ BC ⊥,过点M 作BC 的平行线MN ,交AC 于点N ,连接NQ ,设BQ 为x .(1)试说明不论x 为何值时,总有QBM ABC ∆∆∽;(2)是否存在一点Q ,使得四边形BMNQ 为平行四边形,试说明理由; (3)当x 为何值时,四边形BMNQ 的面积最大,并求出最大值.【考点】相似形综合题【分析】(1)根据题意得到MQB CAB ∠=∠,根据相似三角形的判定定理证明; (2)根据对边平行且相等的四边形是平行四边形解答;(3)根据勾股定理求出BC ,根据相似三角形的性质用x 表示出QM 、BM ,根据梯形面积公式列出二次函数解析式,根据二次函数性质计算即可. 【解答】解:(1)MQ BC ⊥Q , 90MQB ∴∠=︒,MQB CAB ∴∠=∠,又QBM ABC ∠=∠, QBM ABC ∴∆∆∽;(2)当BQ MN =时,四边形BMNQ 为平行四边形, //MN BQ Q ,BQ MN =,∴四边形BMNQ 为平行四边形;(3)90A ∠=︒Q ,3AB =,4AC =,5BC ∴==, QBM ABC ∆∆Q ∽,∴QB QM BM AB AC BC ==,即345x QM BM==, 解得,43QM x =,53BM x =,//MN BC Q ,∴MN AM BC AB=,即53353x MN -=, 解得,2559MN x =-, 则四边形BMNQ 的面积21254324575(5)()2932782x x x x =⨯-+⨯=--+,∴当458x =时,四边形BMNQ 的面积最大,最大值为752.3、如图,在平面直角坐标系中,O 为原点,已知A (0,8),D (24,8),C (26,0),动点P 从点A 开始沿AD 边向点D 以1 cm/s 的速度运动;动点Q 从点C 开始沿CO 边向点O 以3 cm/s 的速度运动,若P ,Q 分别从点A ,C 同时出发,当其中一点到达端点时,另一点也随之停止运动.(1)求经过多少时间后,四边形PQCD 为平行四边形;(2)当四边形PQCD 为平行四边形时,求PQ 所在直线的函数解析式.解:(1)设t 秒后四边形PQCD 为平行四边形,∵当PD =QC 时,四边形PQCD 为平行四边形,∴24-t =3t ,解得,t =6;(2)6秒时,点P 的坐标为(6,8),点Q 的坐标为(8,0),设直线PQ 的解析式为y =kx +b ,由题意,得⎩⎪⎨⎪⎧6k +b =8,8k +b =0,解得⎩⎪⎨⎪⎧k =-4,b =32,∴直线PQ 的解析式为y =-4x +32.4、在平面直角坐标系xOy 中,抛物线y =mx 2-2mx +m +4与y 轴交于点A (0,3),抛物线的对称轴与x 轴交于点B ,直线l 1:y =kx +b 经过点B 和点C (-1,-2).(1)求直线l 1及抛物线的表达式;(2)已知点P (t,0),过点P 作垂直于x 轴的直线交抛物线于点M ,交直线l 1于点N ,若点M 和点N 中至少有一个点在x 轴下方,直接写出t 的取值范围;(3)将l 1向上平移两个单位得到直线l 2,与抛物线交于点D ,E (点D 在点E 左侧),若Q 是抛物线上位于直线l 2上方的一个动点,求△DEQ 的面积.解:(1)把A (0,3)代入y =mx 2-2mx +m +4,得到3=m +4,∴m =-1,∴抛物线的解析式为y =-x 2+2x +3,∵抛物线的对称轴为x =1,∴点B 坐标为(1,0),把B (1,0),C (-1,-2)代入y =kx +b ,得到⎩⎪⎨⎪⎧k +b =0,-k +b =-2,)解得⎩⎪⎨⎪⎧k =1,b =-1.)∴直线l 1的解析式为y =x -1;(2)如图1中,由图象可知当过P 点的直线MN 在抛物线的对称轴左侧时,点M 和点N 中至少有一个点在x 轴下方,此时t <1,当t >3时,点M 和点N 中至少有一个点在x 轴下方,综上所述,符合条件的t 的范围是t <1或t >3;(3)如图2中,∵直线l 1的解析式为y =x -1,∴直线l 1向上平移2个单位后的直线l 2的解析式为y =x +1,由⎩⎪⎨⎪⎧y =x +1,y =-x 2+2x +3,)解得⎩⎪⎨⎪⎧x =-1,y =0)或⎩⎪⎨⎪⎧x =2,y =3.)∴D (-1,0),E (2,3),作EG ⊥x 轴于G ,设点Q (m ,-m 2+2m +3),∵S △QDE =S △QDG +S △QEG -S △DEG ,∴S △QED =12×3×(-m 2+2m +3)+12×3×(2-m )-12×3×3=-32m 2+32m +3.5、如图,在矩形ABCD 中,∠BAC =30°,对角线AC ,BD 交于点O ,∠BCD 的平分线CE 分别交AB ,BD 于点E ,H ,连接OE .(1)求∠BOE 的度数;(2)若BC =1,求△BCH 的面积; (3)求S △CHO ∶S △BHE 的值.解:(1)∵四边形ABCD 是矩形,∴AB ∥CD ,AO =CO =BO =DO ,∴∠DCE =∠BEC ,∵CE 平分∠BCD ,∴∠BCE =∠DCE =45°,∴∠BCE =∠BEC =45°,∴BE =BC ,∵∠BAC =30°,AO =BO =CO ,∴∠BOC =60°,∠OBA =30°,∵∠BOC =60°,BO =CO ,∴△BOC 是等边三角形,∴BC =BO =BE ,且∠OBA =30°,∴∠BOE =75°;(2)如解图①,过点H 作FH ⊥BC 于F ,∵△BOC 是等边三角形,∴∠FBH =60°,FH ⊥BC ,∴BH =2BF ,FH =3BF ,∵∠BCE =45°,FH ⊥BC ,∴CF =FH =3BF ,∴BC =3BF +BF =1, ∴BF =3-12,∴FH =3-32,∴S △BCH =12×BC ×FH =3-34;(3)如解图②,过点C 作CN ⊥BO 于N ,∵△BOC 是等边三角形,∴∠FBH =60°,FH ⊥BC ,∴BH =2BF ,FH =3BF ,∵∠BCE =45°,FH ⊥BC ,∴CF =FH =3BF ,∴BC =3BF +BF =BO =BE ,∴OH =OB -BH =3BF -BF ,∵∠CBN =60°,CN ⊥BO ,∴CN =32BC =3+32BF ,∵S △CHO ∶S △BHE =12×OH ×CN ∶12×BE ×BF ,∴S △CHO ∶S △BHE =3-32.6、(2019乐山模拟)如图,正方形ABCD 的边长为2,点E 、F 分别是边BC ,CD 的延长线上的动点,且CE =DF ,连接AE 、BF ,交于点G ,连接DG ,则DG 的最小值为________.解:5-1在正方形ABCD 中,AB =BC ,∠ABC =∠BCD =90°,在△ABE 和△BCF 中,∵⎩⎪⎨⎪⎧AB =BC ∠ABC =∠BCD BE =CF,∴△ABE ≌△BCF (SAS),∴∠BAE =∠CBF ,∵∠CBF +∠ABF =90°,∴∠BAE +∠ABF =90°,∴∠AGB =90°,∴点G 在以AB 为直径的圆上,如解图,连接OG ,当O 、G 、D 在同一直线上时,DG 有最小值,∵在正方形ABCD 中,AD=BC =2,∴AO =1=OG ,∴OD =AD 2+AO 2=22+12=5,∴DG =5-1.7、(2019威海•中考 )如图,在正方形ABCD 中,AB =10 cm ,E 为对角线BD 上一动点,连接AE ,CE ,过E 点作EF ⊥AE ,交直线BC 于点F .E 点从B 点出发,沿着BD 方向以每秒2 cm 的速度运动,当点E 与点D 重合时,运动停止.设△BEF 的面积为y cm 2,E 点的运动时间为x 秒.(1)求证:CE =EF ;(2)求y 与x 之间关系的函数表达式,并写出自变量x 的取值范围; (3)求△BEF 面积的最大值.题图 备用图(1)证明:如解图,过点E 分别作AB 、BC 的垂线,垂足分别为点G 、H ,则四边形GBHE 为矩形. ∵四边形ABCD 是正方形, ∴AB =BC .∵BD 是对角线,∴BD 所在直线是正方形的对称轴, ∴CE =AE ,EG =EH , ∴四边形GBHE 为正方形. ∵EF ⊥AE ,∴∠AEF =∠GEH =90°.∵∠AEG +∠GEF =90°,∠FEH +∠GEF =90°, ∴∠AEG =∠FEH . ∵∠AGE =∠FHE =90°, ∴△AGE ≌△FHE (ASA), ∴AE =EF , ∴CE =EF ;解图(2)解:∵EF =EC ,EH ⊥BC , ∴FH =HC .∵△EHB 是等腰直角三角形,BE =2x , ∴EH =BH =2x ,∴HC =10-2x ,∴FH =HC =10-2x ,∴FB =10-22x , ∴y =12×(10-22x )×2x =-2x 2+52x (0≤x ≤52);(3)解:∵y =-2x 2+52x =-2(x -524)+254(0≤x ≤52),a =-2<0,∵x =524<52,∴当x =524时,y 有最大值,y 的最大值为0-(52)24×(-2)=254, 即△BEF 面积的最大值为254cm 2. 8、(2019•朝阳)如图,四边形ABCD 是正方形,连接AC ,将△ABC 绕点A 逆时针旋转α得△AEF ,连接CF ,O 为CF 的中点,连接OE ,OD .(1)如图1,当α=45°时,请直接写出OE 与OD 的关系(不用证明). (2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由.(3)当α=360°时,若AB =4,请直接写出点O 经过的路径长.解:(1)OE =OD ,OE ⊥OD ;理由如下: 由旋转的性质得:AF =AC ,∠AFE =∠ACB ,∵四边形ABCD 是正方形,∴∠ACB =∠ACD =∠FAC =45°,∴∠ACF =∠AFC =(180°﹣45°)=67.5°,∴∠DCF ═∠EFC =22.5°,∵∠FEC =90°,O 为CF 的中点,∴OE =CF =OC =OF ,同理:OD =CF ,∴∠EOC=2∠EFO=45°,∠DOF=2∠DCO=45°,∴∠DOE=180°﹣45°﹣45°=90°,∴OE⊥OD;(2)当45°<α<90°时,(1)中的结论成立,理由如下:延长EO到点M,使OM=EO,连接DM、CM、DE,如图2所示:∵O为CF的中点,∴OC=OF,在△COM和△FOE中,,∴△COM≌△FOE(SAS),∴∠MCF=∠EFC,CM=EF,∵四边形ABCD是正方形,∴AB=BC=CD,∠BAC=∠BCA=45°,∵△ABC绕点A逆时针旋转α得△AEF,∴AB=AE=EF=CD,AC=AF,∴CD=CM,∠ACF=∠AFC,∵∠ACF=∠ACD+∠FCD,∠AFC=∠AFE+∠CFE,∠ACD=∠AFE=45°,∴∠FCD=∠CFE=∠MCF,∵∠EAC+∠DAE=45°,∠FAD+∠DAE=45°,∴∠EAC=∠FAD,在△ACF中,∵∠ACF+∠AFC+∠CAF=180°,∴∠DAE+2∠FAD+∠DCM+90°=180°,∵∠FAD+∠DAE=45°,∴∠FAD+∠DCM=45°,在△ADE和△CDM中,,∴△ADE≌△CDM(SAS),∴DE=DM,∵OE=OM,∴OE⊥OD,在△COM和△COD中,,∴△COM≌△COD(SAS),∴OM=OD,∴OE=OD,∴OE=OD,OE⊥OD;(3)连接AO,如图3所示:∵AC=AF,CO=OF,∴AO⊥CF,∴∠AOC=90°,∴点O在以AC为直径的圆上运动,∵α=360°,∴点O经过的路径长等于以AC为直径的圆的周长,∵AC=AB=×4=8,∴点O经过的路径长为:πd=8π.9、(2019•湘潭)如图一,在射线DE的一侧以AD为一条边作矩形ABCD,AD=5,CD=5,点M是线段AC 上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE于点N,连接BN.(1)求∠CAD的大小;(2)问题探究:动点M在运动的过程中,①是否能使△AMN为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②∠MBN的大小是否改变?若不改变,请求出∠MBN的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.解:(1)如图一(1)中,∴∠ADC=90°,∵tan∠DAC===,∴∠DAC=30°.(2)①如图一(1)中,当AN=NM时,∵∠BAN=∠BMN=90°,BN=BN,AN=NM,∴Rt△BNA≌Rt△BNM(HL),∴BA=BM,在Rt△ABC中,∵∠ACB=∠DAC=30°,AB=CD=5,∴AC=2AB=10,∵∠BAM=60°,BA=BM,∴△ABM是等边三角形,∴AM=AB=5,∴CM=AC﹣AM=5.如图一(2)中,当AN=AM时,易证∠AMN=∠ANM=15°,∵∠BMN=90°,∴∠CMB=75°,∵∠MCB=30°,∴∠CBM=180°﹣75°﹣30°=75°,∴CM=CB=5,综上所述,满足条件的CM的值为5或5.②结论:∠MBN=30°大小不变.理由:如图一(1)中,∵∠BAN+∠BMN=180°,∴A,B,M,N四点共圆,∴∠MBN=∠MAN=30°.如图一(2)中,∵∠BMN=∠BAN=90°,∴A,N,B,M四点共圆,∴∠MBN+∠MAN=180°,∵∠DAC+∠MAN=180°,∴∠MBN=∠DAC=30°,综上所述,∠MBN=30°.(3)如图二中,∵AM=MC,∴BM=AM=CM,∴AC=2AB,∴△ABM是等边三角形,∴∠BAM=∠BMA=60°,∵∠BAN=∠BMN=90°,∴∠NAM=∠NMA=30°,∴NA=NM,∵BA=BM,∴BN垂直平分线段AM,∴FM=,∴NM==,∵∠NFM=90°,NH=HM,∴FH=MN=.10、(2019•贵阳)(1)数学理解:如图①,△ABC是等腰直角三角形,过斜边AB的中点D作正方形DECF,分别交BC,AC于点E,F,求AB,BE,AF之间的数量关系;(2)问题解决:如图②,在任意直角△ABC内,找一点D,过点D作正方形DECF,分别交BC,AC于点E,F,若AB=BE+AF,求∠ADB的度数;(3)联系拓广:如图③,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,BN的数量关系.解:数学理解:(1)AB=(AF+BE)理由如下:∵△ABC是等腰直角三角形∵四边形DECF是正方形∴DE=DF=CE=CF,∠DFC=∠DEC=90°∴∠A=∠ADF=45°∴AF=DF=CE∴AF+BE=BC=AC∴AB=(AF+BE)问题解决:(2)如图,延长AC,使FM=BE,连接DM,∵四边形DECF是正方形∴DF=DE,∠DFC=∠DEC=90°∵BE=FM,∠DFC=∠DEB=90°,DF=ED∴△DFM≌△DEB(SAS)∴DM=DB∵AB=AF+BE,AM=AF+FM,FM=BE,∴AM=AB,且DM=DB,AD=AD∴△ADM≌△ADB(SSS)∴∠DAC=∠DAB=∠CAB同理可得:∠ABD=∠CBD=∠ABC∴∠CAB+∠CBA=90°∴∠DAB+∠ABD=(∠CAB+∠CBA)=45°∴∠ADB=180°﹣(∠DAB+∠ABD)=135°联系拓广:(3)∵四边形DECF是正方形∴DE∥AC,DF∥BC∴∠CAD=∠ADM,∠CBD=∠NDB,∠MDN=∠AFD=90°∵∠DAC=∠DAB,∠ABD=∠CBD∴∠DAB=∠ADM,∠NDB=∠ABD∴AM=MD,DN=NB在Rt△DMN中,MN2=MD2+DN2,∴MN2=AM2+NB2,11、(2019•通辽)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②如图3,若△BCP为等边三角形,判断△DEP的形状,并说明理由.解析:(1)证明:∵∠BCD=90°,∠PCQ=90°,∴∠BCP=∠DCQ,在△BCP和△DCQ中,,∴△BCP≌△DCQ(SAS);(2)①如图b,∵△BCP≌△DCQ,∴∠CBF=∠EDF,又∠BFC=∠DFE,∴∠DEF=∠BCF=90°,∴BE⊥DQ;②∵△BCP为等边三角形,∴∠BCP=60°,∴∠PCD=30°,又CP=CD,∴∠CPD=∠CDP=75°,又∠BPC=60°,∠CDQ=60°,∴∠EPD=180°﹣∠CPD﹣∠CPB=180°﹣75°﹣60=45°,同理:∠EDP=45°,∴△DEP为等腰直角三角形.。
2014年苏州中考数学运动性问题专题复习(含练习和答案)太仓市浮桥中学数学组运动变化型试题,包括动点、动线、动形三种类型,近年来中考试卷中出现较多的题型。
它集点的运动、直线的运动和图形的运动于一身,蕴含一定的数学思想方法,突出了图形的运动变化,从中发现一些不变的规律,从而使问题变得有趣,激发学生学习热情。
因而备受中考命题者的青睐,现已成为各地中考试题的一大热点题型。
近三年中苏州市中考数学试题有关运动性问题的试题共有9题,2011年有27、28、29题,2012年18、28、29题,2013年有10、28、29题,都可以归结为上述三类问题。
由于图形的不断运动,制约着学生的思维,因此我们要想办法让图形的运动静止下来,然后认真观察图形,仔细分析变量之间的关系,综合运用所学的有关的基础知识及有关数学模型加以解决。
下面就苏州市近三年中考试卷中出现的这类问题进行分析研究,希望对师生们在复习迎考中有所帮助。
一、动点型问题:所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.“动点型问题”题型繁多、题意创新,考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等,是近几年中考题的热点和难点。
解题策略:解决动点问题的关键是“动中求静”.从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“旋转、平移、翻折等图形变换方法观察动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
在动点的运动过程中观察图形的变化情况,理解图形在不同位置的情况,做好计算推理的过程。
在变化中找到不变的性质(轴对称、中心对称、全等、相似等)是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
典例精讲:例1:(2011年,苏州,27题),已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.(1)如图①,当PA的长度等于时,∠PAB=60°;当PA的长度等于时,△PAD是等腰三角形;(2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.点P坐标为(a,b),试求2 S1S3-S22的最大值,并求出此时a,b的值.【考点】直径所对的圆周角是直角, 直角三角形中30°所对对的边是斜边的一半, 相似三角形的判定和性质, 等腰三角形的判定和性质, 直径垂直平分弦, 二次函数的最大值.解题的关键是画出运动过程中符合条件的静止图形(如下四张静止图形)。
2012年中考数学二轮专题复习运动型专题一.专题诠释动态几何题是指随着图形的某一元素的运动变化,导致问题的结论或者改变或者保持不变的几何题,是近年来中考数学的热点题型。
这类试题信息量在对学生获取信息和处理信息的能力要求较高;注重在图形的形状或位置的变化过程中寻求函数与方程、函数与几何、函数与解直角三角形、函数与面积的联系,有较强的综合性。
二.解题策略和解法精讲解题时要用运动和变化的眼光去观察和研究问题,把握运动、变化的全过程,并特别关注运动与变化中的不变量、不变关系或特殊关系,动中取静,静中求动。
综合运用函数、方程、分类讨论、数形结合等数学思想,展示了一种数学的创造过程。
现举例如下:三.考点精讲考点一:点的运动例1.(2011江苏盐城)如图,已知一次函数y=-x+7与正比例函数y=43x的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l∥y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.【分析】(1)联立方程y=-x+7和y=43x即可求出点A的坐标,今y=-x+7=0即可得点B的坐标。
(2)①只要把三角形的面积用t表示,求出即可。
应注意分P在OC上运动和P 在CA上运动两种情况了。
②只要把有关线段用t表示,找出AP=AQ,AP=PQ,AQ=PQ的条件时t的值即可。
应注意分别讨论P在OC上运动(此时直线l与AB相交)和P在CA上运动(此时直线l与AO相交)时AP=AQ,AP=PQ,AQ=PQ的条件。
【答案】(1)根据题意,得⎩⎪⎨⎪⎧y =-x +7y=43x ,解得 ⎩⎨⎧x =3y =4,∴A (3,4) .令y =-x +7=0,得x =7.∴B (7,0).(2)①当P 在OC 上运动时,0≤t <4. 由S △APR =S 梯形COBA -S △ACP -S △POR -S △ARB =8,得 12(3+7)×4-12×3×(4-t )- 12t(7-t )- 12t ×4=8 整理,得t 2-8t +12=0, 解之得t 1=2,t 2=6(舍) 当P 在CA 上运动,4≤t <7.由S △APR = 12×(7-t ) ×4=8,得t =3(舍)∴当t =2时,以A 、P 、R 为顶点的三角形的面积为8. ②当P 在OC 上运动时,0≤t <4. 此时直线l 交AB 于Q 。
∴AP=(4-t )2+32,AQ=2t ,PQ=7-t当AP =AQ 时, (4-t )2+32=2(4-t )2, 整理得,t 2-8t +7=0. ∴t =1, t =7(舍) 当AP=PQ 时,(4-t )2+32=(7-t )2,整理得,6t =24. ∴t =4(舍去) 当AQ=PQ 时,2(4-t )2=(7-t )2整理得,t 2-2t -17=0 ∴t =1±3 2 (舍) 当P 在CA 上运动时,4≤t <7. 此时直线l 交AO 于Q 。
过A 作AD ⊥OB 于D ,则AD =BD =4.设直线l 交AC 于E ,则QE ⊥AC ,AE =RD =t -4,AP =7-t .由cos ∠OAC= AE AQ = ACAO ,得AQ = 53(t -4).当AP=AQ 时,7-t = 53(t -4),解得t = 418.当AQ=PQ 时,AE =PE ,即AE = 12AP得t -4= 12(7-t ),解得t =5.当AP=PQ 时,过P 作PF ⊥AQ 于F AF = 12AQ = 12×53(t -4).在Rt △APF 中,由cos ∠P AF = AFAP = 35,得AF = 35AP即 12×53(t -4)= 35×(7-t ),解得t= 22643. ∴综上所述,t=1或 418或5或 22643时,△APQ 是等腰三角形.【点评】本题是一个动态图形中的面积是否变化的问题,主要考查了一次函数,二元一次方程组,勾股定理,三角函数,一元二次方程,等腰三角形。
等知识,看一个图形的面积是否变化,关键是看决定这个面积的几个量是否变化,本题题型新颖是个不可多得的好题,有利于培养学生的思维能力,但难度较大,具有明显的区分度. 考点二:线的运动例2.(2010江苏无锡)如图,已知点(0,6)A B ,经过A 、B 的直线l 以每秒1个单位的速度向下作匀速平移运动,与此同时,点P 从点B 出发,在直线l 上以每秒1个单位的速度沿直线l 向右下方向作匀速运动.设它们运动的时间为t 秒.(1)用含t 的代数式表示点P 的坐标;(2)过O 作OC ⊥AB 于C ,过C 作CD ⊥x 轴于D ,问:t 为何值时,以P 为圆心、1为半径的圆与直线OC 相切?并说明此时P 与直线CD 的位置关系.【分析】求点P 的坐标,即求点P 到x 轴与到y 轴的距离.因此需过点P 作x 轴或y 轴的垂线.然后探索运动过程中,点P 的运动情况.(2)中探索P 与直线CD 的位置关系,即探索圆的半径与圆心到直线的距离之间的关系.这样所求问题就较简单了.解:⑴作PH ⊥OB 于H ﹙如图1﹚,∵OB =6,OA =36,∴∠OAB =30°∵PB =t ,∠BPH =30°,∴BH =12t ,HP =t 23 ;∴OH =t t t 236216-=--,∴P ﹙t 23,t 236-﹚⑵当⊙P 在左侧与直线OC 相切时﹙如图2﹚,∵OB =t -6,∠BOC =30°,∴BC =1(6)2t -132t =-,∴PC 133322t t t =--=- 由3312t -=,得43t =﹙s ﹚,此时⊙P 与直线CD 相割.当⊙P 在左侧与直线OC 相切时﹙如图3﹚,PC 323)6(21-=--=t t t 由1323=-t ,得38=t ﹙s ﹚,此时⊙P 与直线CD 相割. 综上,当s t 34=或s 38时,⊙P 与直线OC 相切,⊙P 与直线CD 相割.【点评】本题是“双动”问题,动点在动直线上运动.情景简单,但思考力度较复杂.在解题时应分析“主动”与“被动”,并探索“变”中的“不变”.这道试题虽然模型简单,但具有较高的区分度,是中考中难得一见的好题.必然会对今后动点问题的命题有一定的指导、借鉴作用. 考点三:图形的运动例3.(2011四川重庆)如图,矩形ABCD 中,AB =6,BC =23,点O 是AB 的中点,点P 在AB 的延长线上,且BP =3.一动点E 从O 点出发,以每秒1个单位长度的速度沿OA 匀速动动,到达A 点后,立即以原速度沿AO 返回;另一动点F 从P 点出发,以每秒1个单位长度的速度沿射线P A 匀速动动,点E 、F 同时出发,当两点相遇时停止运动.在点E 、F 的运动过程中,以EF 为边作等边△EFG ,使△EFG 和矩形ABCD 在射线P A 的同侧,设动动的时间为t 秒(t ≥0).(1)当等边△EFG 的边FG 恰好经过点C 时,求运动时间t 的值;(2)在整个运动过程中,设等边△EFG 和矩形ABCD 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式和相应的自变量t 的取值范围;(3)设EG 与矩形ABCD 的对角线AC 的交点为H ,是否存在这样的t ,使△AOH 是等腰三角形?若存在,求出对应的t 的值;若不存在,请说明理由.【分析】(1)要使点A 在线段PQ 的垂直平分线上,则有AP = AQ .,根据这个等量关系可列出关于t 的方程,从而得解.(2)四边形APEC 的面积可转化为△ABC 的面积减去△BPE 的面积得到,而△BPE 的面积可过P 作PM BE ⊥,交BE 于M ,可证Rt △ABC ∽Rt △BPM ,得PM 关于t 的式子,从而得面积y 与t 的一个二次函数,从而可得面积的最小值。
(3)过P 作PN AC ⊥,交AC 于N ,假设存在某一时刻t ,使点P 、Q 、F 三点能在同一条直线上。
可证△P AN ∽△BAC .,从而得到t 的值,再看t 是否满足0<t <4.5来判断t 的存在性.【答案】(1)当等边△EFG 的边FG 恰好经过点C 时(如图),∠CFB =60°,BF =3-t ,在Rt △CBF 中,BC =23,∴tan ∠CFB =BC BF ,∴tan 60°=23BF ,∴BF =2,∴t =3-t =2,∴t =1.(2)当0≤t <1时,S= 2 3 t +43;当1≤t <3时,S=32 t 2+3 3 t +732;当3≤t <4时,S= -4 3 t +203;当4≤t <6时,S= 3 t2-12 3 t +363.(3)存在,理由如下:在Rt △ABC 中,tan ∠CAB =BC AB =33,∴∠CAB=30°.又∵∠HEO=60°,∴∠HAE=∠AHE=30°. ∴AE=HE=3-t 或t -3.(ⅰ)当AH=AO=3时(如图②),过点E 作EM ⊥AH 于M ,则AM=12AH=32.在Rt △AME 中,cos ∠MAE =AMAE ,即cos 30°=32AE ,∴AE=3,即3-t=3或t -3=3,t=3-3或3+3.(ⅱ)当HA=HO 时(如图③),则∠HOA=∠HAO=30°, 又∵∠HEO=60°,∴∠EHO=90°.∴EO=2HE=2AE .又∵AE +EO=3,∴AE +2AE=3. ∴AE=1.即3-t=1或t -3=1,t=2或4.(ⅲ)当OH=OA 时(如图④),则∠OHA=∠OAH=30°,∴∠HOB=60°=∠HEB .∴点E 和O 重合,∴AE=3. 即3-t=3或t -3=3,t=6(舍去)或t=0.综上所述,存在5个这样的值,使△AOH 是等腰三角形,即: t=3-3或t=3+3或t=2或t=4或t=0.【点评】本题是一个动态图形和运动质点相结合的情形中讨论某一特殊情况、图形面积最小值、三点共线的存在性问题.本题为整卷压轴题,综合程度较高,难度较大.其编排上具有起点低、坡度缓、难点分散但综合程度高的特点,全题共分三小题,各小题没有很强的承接性,较好地实现了对初中数学基础知识、基本技能和以数学思维为核心的综合能力考查。