【精品】2018年河北省保定市定州市九年级上学期期中数学试卷带解析答案
- 格式:doc
- 大小:399.50 KB
- 文档页数:24
2018-2019学年河北省保定市定州市九年级(上)期中数学试卷一、选择题(本大题共12个小题;每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.点P(5,﹣3)关于原点的对称点是()A.(5,3)B.(﹣3,5)C.(﹣5,3)D.(3,﹣5)2.方程(x+3)(x﹣2)=0的解是()A.x1=3,x2=2 B.x1=﹣3,x2=2 C.x1=3,x2=﹣2 D.x1=﹣3,x2=﹣2 3.在抛物线y=2x2﹣3x+1上的点是()A.(0,﹣1)B. C.(﹣1,5)D.(3,4)4.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)25.将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.正方形D.菱形6.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140°B.70°C.60°D.40°7.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣9.两年前生产某药品的成本是5000元,现在生产这种药品的成本是3000元,设该药品成本的年平均下降率为x,则下面所列方程中正确的是()A.5000(1﹣2x)=3000 B.3000(1+2x)=5000C.3000(1+x)2=5000 D.5000(1﹣x)2=300010.若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC的面积为()A.2+B.C.2+或2﹣D.4+2或2﹣11.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y212.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.二、填空题(本大题共6个小题;每小题3分,共18分,把答案写在题中横线上)13.把一元二次方程3x2+1=7x化为一般形式是.14.已知方程x2﹣3x+1=0的两个根是x1,x2,则:x1x2﹣x1﹣x2=.15.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=.16.如图,CD是⊙O的直径,弦AB⊥CD,若∠AOB=100°,则∠ABD=.17.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为.18.如图,两条抛物线,与分别经过点(﹣2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为.三、解答下列各题(本题有8个小题,共66分)19.(12分)用适当的方法解一元二次方程:(1)x2+3x﹣4=0(2)3x(x﹣2)=2(2﹣x)(3)(x+8)(x+1)=﹣12.20.(6分)如图所示,在平面直角坐标系中,点A、B的坐标分别为(4,2)和(3,0),将△OAB绕原点O按逆时针方向旋转90°到△OA′B′.(1)画出△OA′B′;(2)点A′的坐标为;(3)求BB′的长.21.(6分)如图AB是⊙O的直径,C是⊙O上的一点,若AC=8cm,AB=10cm,OD⊥BC于点D,求BD的长.22.(8分)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.23.(8分)用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2.(1)求出y与x的函数关系式.(2)当边长x为多少时,矩形的面积最大,最大面积是多少?24.(8分)已知二次函数y=﹣3x+4.(1)将其配方成y=a(x﹣k)2+h的形式,并写出它的图象的开口方向、顶点坐标、对称轴.(2)画出图象,指出y<0时x的取值范围.(3)当0≤x≤4时,求出y的最小值及最大值.25.(8分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC 绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由.26.(10分)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.2016-2017学年河北省保定市定州市九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.点P(5,﹣3)关于原点的对称点是()A.(5,3)B.(﹣3,5)C.(﹣5,3)D.(3,﹣5)【考点】关于原点对称的点的坐标.【分析】利用两点关于原点对称,横坐标互为相反数,纵坐标互为相反数求出即可.【解答】解:∵5的相反数是﹣5,﹣3的相反数是3,∴点P(5,﹣3)关于原点的对称点的坐标为(﹣5,3),故选:C.【点评】此题主要考查了两点关于原点对称的坐标的特点:两点关于原点对称,两点的横坐标互为相反数,纵坐标互为相反数,用到的知识点为:a的相反数为﹣a.2.方程(x+3)(x﹣2)=0的解是()A.x1=3,x2=2 B.x1=﹣3,x2=2 C.x1=3,x2=﹣2 D.x1=﹣3,x2=﹣2【考点】解一元二次方程-因式分解法.【分析】先观察再确定方法解方程.根据左边乘积为0的特点应用因式分解法.【解答】解:根据题意可知:x+3=0或x﹣2=0;即x1=﹣3,x2=2.故选B.【点评】此题较简单,只要同学们明白有理数的乘法法则即可,即两数相乘等于0,那么其中一个数必然等于0.3.在抛物线y=2x2﹣3x+1上的点是()A.(0,﹣1)B. C.(﹣1,5)D.(3,4)【考点】二次函数图象上点的坐标特征.【分析】分别计算出自变量为0、、﹣1、3所对应的函数值,然后根据二次函数图象上点的坐标特征进行判断.【解答】解:当x=0时,y=2x2﹣3x+1=1;当x=时,y=2x2﹣3x+1=2×﹣3×+1=0;当x=﹣1时,y=2x2﹣3x+1=2×1+3+1=6;当x=3时,y=2x2﹣3x+1=2×9﹣3×3+1=10;所以点(,0)在抛物线y=2x2﹣3x+1上,点(0,﹣1)、(﹣1,5)、(3,4)不在抛物线y=2x2﹣3x+1上.故选B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.4.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)2【考点】二次函数的性质.【分析】根据二次函数的性质求出各个函数的对称轴,选出正确的选项.【解答】解:y=(x+2)2的对称轴为x=﹣2,A正确;y=2x2﹣2的对称轴为x=0,B错误;y=﹣2x2﹣2的对称轴为x=0,C错误;y=2(x﹣2)2的对称轴为x=2,D错误.故选:A.【点评】本题考查的是二次函数的性质,正确求出二次函数图象的对称轴是解题的关键.5.将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.正方形D.菱形【考点】旋转对称图形.【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件,结合选项即可得出答案.【解答】解:由题意可得,此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形.故选:C.【点评】本题主要考查了旋转对称图形旋转的最小的度数的计算方法,把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.6.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140°B.70°C.60°D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.7.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°【考点】旋转的性质;正方形的性质.【分析】由旋转前后的对应角相等可知,∠DFC=∠BEC=60°;一个特殊三角形△ECF为等腰直角三角形,可知∠EFC=45°,把这两个角作差即可.【解答】解:∵△BCE绕点C顺时针方向旋转90°得到△DCF,∴CE=CF,∠DFC=∠BEC=60°,∠EFC=45°,∴∠EFD=60°﹣45°=15°.故选:B.【点评】本题考查旋转的性质和正方形的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣【考点】二次函数图象与系数的关系.【分析】根据二次函数的图象与系数的关系对各选项进行逐一分析即可.【解答】解:A、∵抛物线的开口向上,∴a>0,故选项A错误;B、∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选项B错误;C、由函数图象可知,当﹣1<x<3时,y<0,故选项C错误;D、∵抛物线与x轴的两个交点分别是(﹣1,0),(3,0),∴对称轴x=﹣==1,故选项D正确.故选D.【点评】本题考查的是二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键.9.两年前生产某药品的成本是5000元,现在生产这种药品的成本是3000元,设该药品成本的年平均下降率为x,则下面所列方程中正确的是()A.5000(1﹣2x)=3000 B.3000(1+2x)=5000C.3000(1+x)2=5000 D.5000(1﹣x)2=3000【考点】由实际问题抽象出一元一次方程.【分析】等量关系为:2年前的生产成本×(1﹣下降率)2=现在的生产成本,把相关数值代入计算即可.【解答】解:设这种药品成本的年平均下降率是x,根据题意得:5000(1﹣x)2=3000,故选D.【点评】本题考查一元二次方程的应用;得到2年内变化情况的等量关系是解决本题的关键.10.若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC的面积为()A.2+B.C.2+或2﹣D.4+2或2﹣【考点】三角形的外接圆与外心;等腰三角形的性质.【分析】根据题意可以画出相应的图形,然后根据不同情况,求出相应的边的长度,从而可以求出不同情况下△ABC的面积,本题得以解决.【解答】解:由题意可得,如右图所示存在两种情况,当△ABC 为△A 1BC 时,连接OB 、OC ,∵点O 是等腰△ABC 的外心,且∠BOC=60°,底边BC=2,OB=OC ,∴△OBC 为等边三角形,OB=OC=BC=2,OA 1⊥BC 于点D ,∴CD=1,OD=,∴=2﹣,当△ABC 为△A 2BC 时,连接OB 、OC ,∵点O 是等腰△ABC 的外心,且∠BOC=60°,底边BC=2,OB=OC ,∴△OBC 为等边三角形,OB=OC=BC=2,OA 1⊥BC 于点D ,∴CD=1,OD=,∴S △A2BC ===2+,由上可得,△ABC 的面积为或2+, 故选C .【点评】本题考查三角形的外接圆和外心,等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.11.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y=﹣(x +1)2+a 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的对称性,可利用对称性,找出点A 的对称点A′,再利用二次函数的增减性可判断y 值的大小.【解答】解:∵函数的解析式是y=﹣(x +1)2+a ,如右图,∴对称轴是x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选A.【点评】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.12.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由二次函数图象得到字母系数的正负,再与一次函数和反比例函数的图象相比较看是否一致.逐一排除.【解答】解:A、由二次函数的图象可知a<0,此时直线y=ax+b应经过二、四象限,故A可排除;B、由二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b应经过一、二、四象限,故B可排除;C、由二次函数的图象可知a>0,此时直线y=ax+b应经过一、三象限,故C可排除;正确的只有D.故选:D.【点评】此题主要考查了一次函数图象与二次函数图象,应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.二、填空题(本大题共6个小题;每小题3分,共18分,把答案写在题中横线上)13.把一元二次方程3x2+1=7x化为一般形式是3x2﹣7x+1=0.【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).【解答】解:由3x2+1=7x,得3x2﹣7x+1=0,即方程3x2+1=7x化为一元二次方程的一般形式为3x2﹣7x+1=0.故答案是:3x2﹣7x+1=0.【点评】考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.14.已知方程x2﹣3x+1=0的两个根是x1,x2,则:x1x2﹣x1﹣x2=﹣2.【考点】根与系数的关系.【分析】根据根与系数的关系得到x1+x2=3,x1x2=1,然后利用整体代入的方法计算原式的值.【解答】解:根据题意得x1+x2=3,x1x2=1,所以x1x2﹣x1﹣x2=x1x2﹣(x1+x2)=1﹣3=﹣2.故答案为﹣2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.15.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=﹣1.【考点】二次函数的性质.【分析】根据两已知点的坐标特征得到它们是抛物线的对称点,而这两个点关于直线x=﹣1对称,由此可得到抛物线的对称轴.【解答】解:∵点(3,4)和(﹣5,4)的纵坐标相同,∴点(3,4)和(﹣5,4)是抛物线的对称点,而这两个点关于直线x=﹣1对称,∴抛物线的对称轴为直线x=﹣1.故答案为﹣1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.16.如图,CD是⊙O的直径,弦AB⊥CD,若∠AOB=100°,则∠ABD=25°.【考点】圆周角定理.【分析】根据垂径定理得到=,求出∠AOD的度数,根据圆周角定理求出∠ABD的度数.【解答】解:∵CD是⊙O的直径,弦AB⊥CD,∴=,∴∠AOD=∠BOD=∠AOB=50°,∴∠ABD=∠AOD=25°,故答案为:25°.【点评】本题考查的是圆周角定理和垂径定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.17.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为8.【考点】抛物线与x轴的交点.【分析】由抛物线y=2x2+8x+m与x轴只有一个公共点可知,对应的一元二次方程2x2+8x+m=0,根的判别式△=b2﹣4ac=0,由此即可得到关于m的方程,解方程即可求得m的值.【解答】解:∵抛物线与x轴只有一个公共点,∴△=0,∴b2﹣4ac=82﹣4×2×m=0;∴m=8.故答案为:8.【点评】此题主要考查了二次函数根的判别式的和抛物线与x轴的交点个数的关系.18.如图,两条抛物线,与分别经过点(﹣2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为8.【考点】二次函数综合题.【分析】把阴影图形分割拼凑成矩形,利用矩形的面积即可求得答案.【解答】解:如图,过y2=﹣x2﹣1的顶点(0,﹣1)作平行于x轴的直线与y1=﹣x2+1围成的阴影,同过点(0,﹣3)作平行于x轴的直线与y2=﹣x2﹣1围成的图形形状相同,故把阴影部分向下平移2个单位即可拼成一个矩形,因此矩形的面积为4×2=8.故填8.【点评】此题主要考查利用二次函数图象的特点与分割拼凑的方法求不规则图形的面积.三、解答下列各题(本题有8个小题,共66分)19.(12分)(2016秋•定州市期中)用适当的方法解一元二次方程:(1)x2+3x﹣4=0(2)3x(x﹣2)=2(2﹣x)(3)(x+8)(x+1)=﹣12.【考点】解一元二次方程-因式分解法.【分析】(1)因式分解法求解可得;(2)因式分解法求解可得;(3)整理成一般式后,因式分解法求解可得.【解答】解:(1)∵(x﹣1)(x+4)=0,∴x﹣1=0或x+4=0,解得:x=1或x=﹣4;(2)∵3x(x﹣2)+2(x﹣2)=0,∴(x﹣2)(3x+2)=0,∴x﹣2=0或3x+2=0,解得:x=2或x=﹣;(3)整理成一般式可得x2+9x+20=0,∵(x+4)(x+5)=0,∴x+4=0或x+5=0,解得:x=﹣4或x=﹣5.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.如图所示,在平面直角坐标系中,点A、B的坐标分别为(4,2)和(3,0),将△OAB绕原点O按逆时针方向旋转90°到△OA′B′.(1)画出△OA′B′;(2)点A′的坐标为(﹣2,4);(3)求BB′的长.【考点】作图-旋转变换.【分析】(1)利用旋转的性质进而得出对应点坐标求出即可;(2)利用(1)中所画图形得出点A′的坐标;(3)利用勾股定理得出BB′的长.【解答】解:(1)如图所示:△OA′B′即为所求;(2)如图所示:点A′的坐标为:(﹣2,4);故答案为:(﹣2,4);(3)BB′==3.故答案为:3.【点评】此题主要考查了旋转变换以及勾股定理,根据题意得出对应点位置是解题关键.21.如图AB是⊙O的直径,C是⊙O上的一点,若AC=8cm,AB=10cm,OD⊥BC 于点D,求BD的长.【考点】圆周角定理;勾股定理;三角形中位线定理.【分析】由于AB是⊙O的直径,根据圆周角定理可得∠ACB=90°,可得出OD∥AC;由于AO=OB,则OD是△ABC的中位线,即BD=DC=BC,而BC的值可由勾股定理求得,由此得解.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°;∵OD⊥BC,∴OD∥AC,又∵AO=OB,∴OD是△ABC的中位线,即BD=BC;Rt△ABC中,AB=10cm,AC=8cm;由勾股定理,得:BC==6cm;故BD=BC=3cm.【点评】此题主要考查了圆周角定理、勾股定理、三角形中位线定理等知识,能够正确的判断出BD与BC的关系是解答此题的关键.22.已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)关于x的方程x2﹣2x+a﹣2=0有两个不相等的实数根,即判别式△=b2﹣4ac>0.即可得到关于a的不等式,从而求得a的范围.(2)设方程的另一根为x1,根据根与系数的关系列出方程组,求出a的值和方程的另一根.【解答】解:(1)∵b2﹣4ac=(2)2﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3.∴a的取值范围是a<3;(2)设方程的另一根为x1,由根与系数的关系得:,解得:,则a的值是﹣1,该方程的另一根为﹣3.【点评】本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23.用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2.(1)求出y与x的函数关系式.(2)当边长x为多少时,矩形的面积最大,最大面积是多少?【考点】二次函数的应用.【分析】(1)已知一边长为xcm,则另一边长为(20﹣2x).根据面积公式即可解答.(2)把函数解析式用配方法化简,得出y的最大值.【解答】解:(1)已知一边长为xcm,则另一边长为(10﹣x).则y=x(10﹣x)化简可得y=﹣x2+10x(2)y=10x﹣x2=﹣(x2﹣10x)=﹣(x﹣5)2+25,所以当x=5时,矩形的面积最大,最大为25cm2.【点评】本题考查的是二次函数的应用,难度一般,重点要注意配方法的运用.24.已知二次函数y=﹣3x+4.(1)将其配方成y=a(x﹣k)2+h的形式,并写出它的图象的开口方向、顶点坐标、对称轴.(2)画出图象,指出y<0时x的取值范围.(3)当0≤x≤4时,求出y的最小值及最大值.【考点】二次函数的三种形式;二次函数的图象;二次函数的最值.【分析】(1)把二次函数化为顶点式的形式,进而可得出结论;(2)根据二次函数的顶点坐标及与x轴的交点坐标画出函数图象,根据二次函数的图象可直接得出y<0时x的取值范围;(3)直接根据二次函数的图象即可得出结论.【解答】解:(1)原二次函数可化为:y=(x﹣3)2﹣;开口方向向上,顶点坐标(3,,对称轴:直线x=3;(2)如图所示,由图可知,当2<x<4时,y<0;(3)当x=0时,y有最大值4,当x=3时,y有最小值﹣.【点评】本题考查的是二次函数的三种形式,熟知二次函数的顶点式是解答此题的关键.25.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C 按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由.【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质.【分析】(1)由旋转的性质可知CO=CD,∠OCD=60°,可判断:△COD是等边三角形;(2)由(1)可知∠COD=60°,当α=150°时,∠ADO=∠ADC﹣∠CDO,可判断△AOD为直角三角形.【解答】(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴∠OCD=60°,CO=CD,∴△OCD是等边三角形;(2)解:△AOD为直角三角形.理由:∵△COD是等边三角形.∴∠ODC=60°,∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴∠ADC=∠BOC=α,∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC﹣∠CDO=150°﹣60°=90°,于是△AOD是直角三角形.【点评】本题考查了旋转的性质,等边三角形的判定,等腰三角形的性质,关键是利用旋转前后,对应边相等,对应角相等解题.26.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【考点】二次函数综合题.【分析】(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;=S△POQ+S△梯形PQBA﹣S△BOA,(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.【解答】解:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).【点评】本题是二次函数的综合题型,其中涉及到两函数图象交点的求解方法,二次函数顶点坐标的求解方法,三角形的面积,待定系数法求一次函数的解析式,难度适中.利用数形结合与方程思想是解题的关键.。
2018-2019学年九年级(上)期末数学试卷一.选择题(共12小题)1.下列事件中,是必然事件的是()A.打开电视,它正在播广告B.抛掷一枚硬币,正面朝上C.打雷后会下雨D.367人中有至少两人的生日相同2.在平面直角坐标系中,点P(﹣1,2)关于原点的对称点的坐标为()A.(﹣1,﹣2)B.(1,﹣2)C.(2,﹣1)D.(﹣2,1)3.一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.在体检中,12名同学的血型结果为:A型3人,B型3人,AB型4人,O型2人,若从这12名同学中随机抽出2人,这两人的血型均为O型的概率为()A.B.C.D.5.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣2)2+4 C.y=(x﹣2)2+2 D.y=(x﹣1)2+3 6.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x,由题意,所列方程正确的是()A.28(1﹣2x)=16 B.16(1+2x)=28C.28(1﹣x)2=16 D.16(1+x)2=287.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A处,则小明的影长为()米.A.4 B.5 C.6 D.78.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70°B.110°C.120°D.140°9.反比例函数y=(m≠0)的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上,其中正确的是()A.①②B.②③C.③④D.①④10.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=11.如图,水平地面上有一面积为30πcm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面,将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是()A.10πcm B.20πcm C.24πcm D.30πcm12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4二.填空题(共6小题)13.等边三角形绕它的中心至少旋转度,才能和原图形重合.14.设x1,x2是一元二次方程7x2﹣5=x+8的两个根,则x1+x2的值是.15.已知二次函数y=﹣x2﹣2x+3的图象上有两点A(﹣7,y1),B(﹣8,y2),则y1y2.(用>、<、=填空).16.如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y =(k>0,x>0)的图象上,若△OAB的面积为,则k的值为.17.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为.18.如图,在△ABC中,∠ACB=90°,BC=16cm,AC=12cm,点P从点B出发,以2cm/秒的速度向点C移动,同时点Q从点C出发,以1cm/秒的速度向点A移动,设运动时间为t秒,当t=秒时,△CPQ与△ABC相似.三.解答题(共8小题)19.用你喜欢的方法解方程(1)x2﹣6x﹣6=0(2)2x2﹣x﹣15=020.如图所示,点A(,3)在双曲线y=上,点B在双曲线y=之上,且AB∥x轴,C,D在x轴上,若四边形ABCD为矩形,求它的面积.21.如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上.(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)22.甲、乙两人分别都有标记为A、B、C的三张牌做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表的方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.23.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD =,AE=3,求AF的长.24.如图所示,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,求AD:OC的值.25.某超市销售一种商品,成本每千克30元,规定每千克售价不低于成本,且不高于70元,经市场调查,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?26.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B (3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.参考答案与试题解析一.选择题(共12小题)1.下列事件中,是必然事件的是()A.打开电视,它正在播广告B.抛掷一枚硬币,正面朝上C.打雷后会下雨D.367人中有至少两人的生日相同【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A、打开电视,它正在播广告是随机事件,故A不符合题意;B、抛掷一枚硬币,正面朝上是随机事件,故B不符合题意;C、打雷后会下雨是随机事件,故C不符合题意;D、367人中有至少两人的生日相同是必然事件,故D符合题意.故选:D.2.在平面直角坐标系中,点P(﹣1,2)关于原点的对称点的坐标为()A.(﹣1,﹣2)B.(1,﹣2)C.(2,﹣1)D.(﹣2,1)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:点P(﹣1,2)关于原点的对称点的坐标为(1,﹣2),故选:B.3.一元二次方程x2﹣4x+5=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根【分析】把a=1,b=﹣4,c=5代入△=b2﹣4ac进行计算,根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣4,c=5,∴△=b2﹣4ac=(﹣4)2﹣4×1×5=﹣4<0,所以原方程没有实数根.故选:D.4.在体检中,12名同学的血型结果为:A型3人,B型3人,AB型4人,O型2人,若从这12名同学中随机抽出2人,这两人的血型均为O型的概率为()A.B.C.D.【分析】根据题意可知,此题是不放回实验,一共有12×11=132种情况,两人的血型均为O型的有两种可能性,从而可以求得相应的概率.【解答】解:由题意可得,这两人的血型均为O型的概率为:=,故选:A.5.二次函数y=x2﹣2x+4化为y=a(x﹣h)2+k的形式,下列正确的是()A.y=(x﹣1)2+2 B.y=(x﹣2)2+4 C.y=(x﹣2)2+2 D.y=(x﹣1)2+3 【分析】利用配方法整理即可得解.【解答】解:y=x2﹣2x+4=(x2﹣2x+1)+3,=(x﹣1)2+3,所以,y=(x﹣1)2+3.故选:D.6.某药品原价每盒28元,为响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,设该药品平均每次降价的百分率是x,由题意,所列方程正确的是()A.28(1﹣2x)=16 B.16(1+2x)=28C.28(1﹣x)2=16 D.16(1+x)2=28【分析】可先表示出第一次降价后的价格,那么第一次降价后的价格×(1﹣降低的百分率)=16,把相应数值代入即可求解.【解答】解:设该药品平均每次降价的百分率是x,则第一次降价后的价格为28×(1﹣x)元,两次连续降价后的售价是在第一次降价后的价格的基础上降低x,为28×(1﹣x)×(1﹣x)元,则列出的方程是28(1﹣x)2=16.故选:C.7.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点0)20米的A处,则小明的影长为()米.A.4 B.5 C.6 D.7【分析】直接利用相似三角形的性质得出,故=,进而得出AM的长即可得出答案.【解答】解:由题意可得:OC∥AB,则△MBA∽△MCO,故=,即=,解得:AM=5.故选:B.8.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=()A.70°B.110°C.120°D.140°【分析】作所对的圆周角∠ADB,如图,利用圆内接四边形的性质得∠ADB=70°,然后根据圆周角定理求解.【解答】解:作所对的圆周角∠ADB,如图,∵∠ACB+∠ADB=180°,∴∠ADB=180°﹣110°=70°,∴∠AOB=2∠ADB=140°.故选:D.9.反比例函数y=(m≠0)的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若A(﹣1,h),B(2,k)在图象上,则h<k;④若P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上,其中正确的是()A.①②B.②③C.③④D.①④【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.【解答】解:∵反比例函数的图象位于一三象限,∴m>0故①错误;当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;将A(﹣1,h),B(2,k)代入y=得到h=﹣m,2k=m,∵m>0∴h<k故③正确;将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上故④正确,故选:C.10.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=【分析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(2,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=﹣,D选项正确.综上即可得出结论.【解答】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x2﹣3x+c与y轴的交点为(0,2),∴c=2,∴抛物线的解析式为y=x2﹣3x+2.当y=0时,有x2﹣3x+2=0,解得:x1=1,x2=2,∴抛物线与x轴的交点为(1,0)、(2,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x2﹣3x+2,∴抛物线的对称轴为直线x=﹣=﹣=,D选项正确.故选:D.11.如图,水平地面上有一面积为30πcm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面,将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是()A.10πcm B.20πcm C.24πcm D.30πcm【分析】根据题意可知点O移动的距离正好是灰色扇形的弧长,所以先根据扇形的面积求得扇形的圆心角的度数,再根据弧长公式求得弧长,即点O移动的距离.【解答】解:设扇形的圆心角为n度,则=30π∴n=300.∵扇形的弧长为=10π(cm),∴点O移动的距离10πcm.故选:A.12.如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为()A.12 B.9 C.6 D.4【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为(﹣6,4),根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.【解答】解:∵OA的中点是D,点A的坐标为(﹣6,4),∴D(﹣3,2),∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.故选:B.二.填空题(共6小题)13.等边三角形绕它的中心至少旋转120 度,才能和原图形重合.【分析】根据旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形作答即可.【解答】解:由于等边三角形三角完全相同,旋转时,只要使下一个角对准原角,就能重合,因为一圈360度,除以3,就得到120度.故答案为:120°.14.设x1,x2是一元二次方程7x2﹣5=x+8的两个根,则x1+x2的值是.【分析】把方程化为一般形式,利用根与系数的关系直接求解即可.【解答】解:把方程7x2﹣5=x+8化为一般形式可得7x2﹣x﹣13=0,∵x1,x2是一元二次方程7x2﹣5=x+8的两个根,∴x1+x2=,故答案为:.15.已知二次函数y=﹣x2﹣2x+3的图象上有两点A(﹣7,y1),B(﹣8,y2),则y1>y2.(用>、<、=填空).【分析】先根据已知条件求出二次函数的对称轴,再根据点A、B的横坐标的大小即可判断出y1与y2的大小关系.【解答】解:∵二次函数y=﹣x2﹣2x+3的对称轴是x=﹣1,开口向下,∴在对称轴的左侧y随x的增大而增大,∵点A(﹣7,y1),B(﹣8,y2)是二次函数y=﹣x2﹣2x+3的图象上的两点,﹣7>﹣8,∴y1>y2.故答案为:>.16.如图,在平面直角坐标系中,⊙A与x轴相切于点B,BC为⊙A的直径,点C在函数y =(k>0,x>0)的图象上,若△OAB的面积为,则k的值为10 .【分析】连接OC,求出△BCO面积即可解决问题.【解答】解:如图,连接OC,∵BC是直径,‘∴AC=AB,∴S△ABO=S△ACO=,∴S△BCO=5,∵⊙A与x轴相切于点B,∴CB⊥x轴,∴S△CBO=,∴k=10,故答案为10.17.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为2.【分析】连结BE,设⊙O的半径为R,由OD⊥AB,根据垂径定理得AC=BC=AB=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,根据勾股定理得到(R﹣2)2+42=R2,解得R =5,则OC=3,由于OC为△ABE的中位线,则BE=2OC=6,再根据圆周角定理得到∠ABE=90°,然后在Rt△BCE中利用勾股定理可计算出CE.【解答】解:连结BE,设⊙O的半径为R,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,在Rt△AOC中,OA=R,OC=R﹣CD=R﹣2,∵OC2+AC2=OA2,∴(R﹣2)2+42=R2,解得R=5,∴OC=5﹣2=3,∴BE=2OC=6,∵AE为直径,∴∠ABE=90°,在Rt△BCE中,CE===2.故答案为:2.18.如图,在△ABC中,∠ACB=90°,BC=16cm,AC=12cm,点P从点B出发,以2cm/秒的速度向点C移动,同时点Q从点C出发,以1cm/秒的速度向点A移动,设运动时间为t秒,当t= 4.8或秒时,△CPQ与△ABC相似.【分析】分CP和CB是对应边,CP和CA是对应边两种情况,利用相似三角形对应边成比例列式计算即可得解.【解答】解:CP和CB是对应边时,△CPQ∽△CBA,所以,,即,解得t=4.8;CP和CA是对应边时,△CPQ∽△CAB,所以,,即,解得t=.综上所述,当t=4.8或时,△CPQ与△CBA相似.故答案为4.8或.三.解答题(共8小题)19.用你喜欢的方法解方程(1)x2﹣6x﹣6=0(2)2x2﹣x﹣15=0【分析】(1)先求出b'2﹣4ac的值,再代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣6x﹣6=0,b'2﹣4ac=(﹣6)2﹣4×1×(﹣6)=60,x=,x1=3+,x2=3﹣;(2)2x2﹣x﹣15=0,(2x+5)(x﹣3)=0,2x+5=0,x﹣3=0,x1=﹣2.5,x2=3.20.如图所示,点A(,3)在双曲线y=上,点B在双曲线y=之上,且AB∥x轴,C,D在x轴上,若四边形ABCD为矩形,求它的面积.【分析】由点A的坐标以及AB∥x轴,可得出点B的坐标,从而得出AD、AB的长度,利用矩形的面积公式即可得出结论.【解答】解:∵A(,3),AB∥x轴,点B在双曲线y=之上,∴B(1,3),∴AB=1﹣=,AD=3,∴S=AB•AD=×3=2.21.如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上.(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)【分析】(1)根据图形旋转的性质画出旋转后的图形即可;(2)先根据勾股定理求出OA的长,再根据线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,利用扇形的面积公式得出结论即可;【解答】解:(1)如图.△A1B1C1即为所求三角形;(2)由勾股定理可知OA=,线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,则S扇形OAA1==2π.答:扫过的图形面积为2π.22.甲、乙两人分别都有标记为A、B、C的三张牌做游戏,游戏规则是:若两人出的牌不同,则A胜B,B胜C,C胜A;若两人出的牌相同,则为平局.(1)用树状图或列表的方法,列出甲、乙两人一次游戏的所有可能的结果;(2)求出现平局的概率.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果,(2)利用概率公式求解即可求得答案.【解答】解:(1)列表如下:(2)由列出的表格或画出的树状图,得甲、乙两人一次游戏的所有等可能的结果有9种,其中出现平局的结果有3种,所以出现平局的概率为=.23.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=,AE=3,求AF的长.【分析】(1)根据四边形ABCD是平行四边形,得出AB∥CD,AD∥BC,再根据平行线的性质得出∠B+∠C=180°,∠ADF=∠DEC,然后根据∠AFD+∠AFE=180°,∠AFE=∠B,得出∠AFD=∠C,从而得出△ADF∽△DEC;(2)根据已知和勾股定理得出DE=,再根据△ADF∽△DEC,得出=,即可求出AF的长.【解答】解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠B+∠C=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵AE⊥BC,AD=3,AE=3,∴在Rt△DAE中,DE===6,由(1)知△ADF∽△DEC,得=,∴AF===2.24.如图所示,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,求AD:OC的值.【分析】(1)连接OD,利用SAS得到三角形COD与三角形COB全等,利用全等三角形的对应角相等得到∠ODC为直角,即可得证;(2)由平行得相似,根据题意确定出所求即可.【解答】(1)证明:连接OD,∵OA=OD,∴∠ODA=∠OAD,∵AD∥OC,∴∠OAD=∠COD,∠ODA=∠COD,∴∠COD=∠BOC,在△COD和△BOC中,,∴△COD≌△BOC,∴∠ODC=∠OBC=90°,∴CD为圆O的切线;(2)解:∵△COD≌△COB,∴BC=CD,∵DE=2BC,∴DE=2CD,∵AD∥OC,∴△DAE∽△COE,∴AD:OC=ED:AC=2:3.25.某超市销售一种商品,成本每千克30元,规定每千克售价不低于成本,且不高于70元,经市场调查,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x 之间的函数表达式;(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本);(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?【分析】(1)待定系数法求解可得;(2)根据“总利润=每千克利润×销售量”可得函数解析式;(3)将所得函数解析式配方成顶点式即可得最值情况.【解答】解:(1)设y与x之间的函数解析式为y=kx+b,则,解得,即y与x之间的函数表达式是y=﹣2x+180;(2)由题意可得,W=(x﹣30)(﹣2x+180)=﹣2x2+240x﹣5400,即W与x之间的函数表达式是W=﹣2x2+240x﹣5400;(3)∵W=﹣2x2+240x﹣5400=﹣2(x﹣60)2+1800,30≤x≤70,∴当30≤x≤60时,W随x的增大而增大;当60≤x≤70时,W随x的增大而减小;当x=60时,W取得最大值,此时W=1800.26.如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B (3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.【分析】(1)根据待定系数法,可得函数解析式;(2)根据菱形的对角线互相垂直且平分,可得P点的纵坐标,根据自变量与函数值的对应关系,可得P点坐标;(3)根据平行于y轴的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ 的长,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【解答】解:(1)将点B和点C的坐标代入函数解析式,得,解得,二次函数的解析式为y=﹣x2+2x+3;(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,如图1,连接PP′,则PE⊥CO,垂足为E,∵C(0,3),∴E(0,),∴点P的纵坐标,当y=时,即﹣x2+2x+3=,解得x1=,x2=(不合题意,舍),∴点P的坐标为(,);(3)如图2,P在抛物线上,设P(m,﹣m2+2m+3),设直线BC的解析式为y=kx+b,将点B和点C的坐标代入函数解析式,得,解得.直线BC的解析为y=﹣x+3,设点Q的坐标为(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,AB=3﹣(﹣1)=4,S四边形ABPC=S△ABC+S△PCQ+S△PBQ=AB•OC+PQ•OF+PQ•FB=×4×3+(﹣m2+3m)×3=﹣(m﹣)2+,当m=时,四边形ABPC的面积最大.当m=时,﹣m2+2m+3=,即P点的坐标为(,).当点P的坐标为(,)时,四边形ACPB的最大面积值为.。
2024-2025学年河北省保定市定州市九年级(上)期中数学试卷一、选择题(本大题共12小题,每题3分,共36分)1.(3分)下列图形,是中心对称图形的是( )A.B.C.D.2.(3分)将方程5x2﹣x=7x化为一般形式后,二次项系数、一次项系数、常数项分别是( )A.5,7,﹣1B.﹣5,7,1C.5,﹣7,﹣1D.5,﹣8,03.(3分)用配方法解一元二次方程x2﹣6x+1=0,此方程可化为( )A.(x﹣3)2=8B.(x+3)2=8C.(x+3)2=3D.(x﹣3)2=34.(3分)若x=2关于x的一元二次方程x2﹣ax+2=0的一个根,则a的值为( )A.3B.﹣3C.1D.﹣15.(3分)将抛物线y=2x2+1向右平移3个单位后所得图象对应的函数解析式为( )A.y=2x2+4B.y=2x2﹣2C.y=2(x+3)2+1D.y=2(x﹣3)2+16.(3分)已知二次函数y=﹣x2+2x+4,则下列关于这个函数图象和性质的说法,正确的是( )A.图象的开口向上B.图象的顶点坐标是(1,3)C.当x<1时,y随x的增大而增大D.图象与x轴有唯一交点7.(3分)已知三角形两边长分别为4和7,第三边的长是方程x2﹣17x+66=0的根,则第三边的长为( )A.6B.11C.6或11D.78.(3分)如图,四边形ABCD内接于⊙O,若∠BCD=110°,则∠BOD的度数为( )A.35°B.70°C.110°D.140°9.(3分)如图,⊙O的半径为9,AB是弦,OC⊥AB于点C,将劣弧AB沿弦AB折叠交OC于点D,若OD=DC ,则弦AB 的长为( )A .B .C .D .10.(3分)如图,在△ABC 中,AB =AC ,∠BAC =50°,将△ABC 绕着点A 顺时针方向旋转得△ADE ,AB ,CE 相交于点F ,若AD ∥CE 时,则∠BAE 的大小是( )A .20°B .25°C .30°D .35°11.(3分)下表是某公司2022年1月份至5月份的收入统计表.其中,2月份和5月份被墨水污染.若2月份与3月份的增长率相同,设它们的增长率为x ,根据表中的信息,可列方程为( )月份12345收入/万元101214 A .10(1+x )2=12﹣10B .10(1+x )2=12C .10(1+x )(1+2x )=12D .10(1+x )3=1412.(3分)如图,小程的爸爸用一段10m 长的铁丝网围成一个一边靠墙(墙长5.5m )的矩形鸭舍,其面积为15m 2,在鸭舍侧面中间位置留一个1m 宽的门(由其它材料制成),则BC 长为( )A .5m 或6mB .2.5m 或3mC .5mD .3m二、填空题(本大题共4小题,每小题3分,共12分)把答案直接写在题中的横线上。
新人教版九年级数学上册期中考试试题及答案一.选择题(满分36分,每小题3分)1.下列方程是一元二次方程的是()A.x2﹣y=1 B.x2+2x﹣3=0 C.x2+=3 D.x﹣5y=6 2.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠2 3.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 4.下列解方程中,解法正确的是()A.x2=4x,两边都除以2x,可得x=2B.(x﹣2)(x+5)=2×6,∴x﹣2=2,x+5=6,x1=4,x2=1C.(x﹣2)2=4,解得x﹣2=2,x﹣2=﹣2,∴x1=4,x2=0D.x(x﹣a+1)=a,得x=a5.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣66.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)7.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点(0,0),其中正确的有()A.1个B.2个C.3个D.4个8.由二次函数y=2(x﹣3)2+1可知()A.其图象的开口向下B.其图象的对称轴为x=﹣3C.其最大值为1D.当x<3时,y随x的增大而减小9.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.210.二次函数y=﹣2x2+bx+c的图象如图所示,则下列结论正确的是()A.b<0,c>0 B.b<0,c<0 C.b>0,c<0 D.b>0,c>0 11.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0 12.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A.200(1+x)2=2500B.200(1+x)+200(1+x)2=2500C.200(1﹣x)2=2500D.200+200(1+x)+2000(1+x)2=250二.填空题(共6小题,满分18分,每小题3分)13.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.14.方程x2﹣5x=4的根是.15.如图,⊙O的半径为2,C1是函数的图象,C2是函数的图象,C3是函数的图象,则阴影部分的面积是平方单位(结果保留π).16.若二次函数y=x2﹣3x+2m的最小值是2,则m=.17.某厂去年的产值为a元,今年比去年增长x%,则今年的产值为.18.设A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,则y1,y2,y3的大小关系为.三.解答题(共8小题,满分66分)19.(6分)解方程:x2+6x﹣2=0.20.(6分)在平面直角坐标系中,抛物线y=ax2+bx+2经过点(﹣2,6),(2,2).(1)求这条抛物线所对应的函数表达式.(2)求y随x的增大而减小时x的取值范围.21.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.22.(8分)已知抛物线y=3(x+1)2﹣12如图所示(1)求出该抛物线与y轴的交点C的坐标;(2)求出该抛物线与x轴的交点A,B的坐标;(3)如果抛物线的顶点为D,试求四边形ABCD的面积.23.(9分)我县古田镇某纪念品商店在销售中发现:“成功从这里开始”的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?24.(9分)出租车给市民出行带来了极大便利,某市某县现有出租车约400辆,为了提高每辆出租车的运营效益,一般每辆车是24小时运营,司机“三班倒”轮换,经过调查,每个司机有两种运营方案.方案一:部分出租车司机愿意在火车站、汽车站、码头、宾馆等固定的出租点接客,他们认为这样比在路上跑车接客相对轻松并且效益好些,这些司机平均每天可接4趟长途客,每次120元,总共花时约4小时,长途每次往返平均60千米.在剩余的20小时,在市内固定出租点营业,平均每次等客5分钟,送客20分钟,返回15分钟,一次市内生意为12元,市内每次往返平均8千米.方案二:部分司机愿意全部在市内跑车接客,调查结果为平均每次空载跑车(或等客)5分钟,接送客15分钟,一次市内生意为10元,市内每次往返平均5千米.(1)每辆出租车按方案一在固定站接客一天的营业额是元,每辆出租车按方案二在市内接客一天的营业额是元.(2)已知出租车每千米平均耗油0.32元,出租车在固定站接客需交停车费8元/天,跑长途平均每次(含往返)过境费10元,请比较出租车一天在固定站接客和在市内短途接客的纯收入大小(市内空载跑车行程忽略不计).25.(10分)如图,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A、B两点(点A与点O 重合),点M(1,2)是抛物线上的点,且满足∠AMB=90°(1)求出抛物线C的解析式;(2)点N在抛物线C上,求满足条件S△ABM=S△ABN的N点(异于点M)的坐标.26.(10分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?(2)根据物价不门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?参考答案一.选择题1.解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.2.解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:A.3.解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.4.解:A、根据等式的性质,两边同除以一个不为0的数,等式仍然成立,在x未知的情况下,不能同除以2x,因为2x可能等于0,所以不对;B、两个式子的积是2×6=12,这两个式子不一定是2和6,还可能是其它值,故计算方法不对;C、利用直接开平方法求解,正确;D、两个数的积是a,这两个数不一定是a,故错误.故选:C.5.解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.6.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.7.解:①二次函数的图象是抛物线,正确;②因为a=﹣<0,抛物线开口向下,正确;③因为b=0,对称轴是y轴,正确;④顶点(0,0)也正确.故选:D.8.解:∵y=2(x﹣3)2+1,∴抛物线开口向上,对称轴为x=3,顶点坐标为(3,1),∴函数有最小值1,当x<3时,y随x的增大而减小,故选:D.9.解:设方程的另一个根为m,则1+m=4,∴m=3,故选:C.10.解:如图,抛物线的开口方向向下,则a<0.如图,抛物线的对称轴x=﹣<0,则a、b同号,即b<0.如图,抛物线与y轴交于正半轴,则c>0.综上所述,b<0,c>0.故选:A.11.解:∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0∴k>﹣1∵抛物线y=kx2﹣2x﹣1为二次函数∴k≠0则k的取值范围为k>﹣1且k≠0.12.解:由题意可得,200(1+x)+200(1+x)2=2500,故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.14.解:∵x2﹣5x=4,∴x2﹣5x﹣4=0,∵a=1,b=﹣5,c=﹣4,∴x===,∴x1=,x2=.故答案为:x1=,x2=.15.解:抛物线y=x2与抛物线y=﹣x2的图形关于x轴对称,直线y=x与x轴的正半轴的夹角为60°,根据图形的对称性,把左边阴影部分的面积对折到右边,可以得到阴影部分就是一个扇形,并且扇形的圆心角为150°,半径为2,所以:S阴影==.故答案为:.16.解:由y=x2﹣3x+2m,得y=(x﹣)2+2m﹣,∴y最小=2m﹣=2,解得,m=;故答案是:.17.解:∵今年比去年增长x%,∴今年相对于去年的增长率为1+x%,∴今年的产值为a×(1+x%).故答案为a×(1+x%).18.解:∵A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,∴y1=1,y2=2,y3=﹣2.∵﹣2<1<2,∴y3<y1<y2.故答案为:y3<y1<y2.三.解答题(共8小题,满分66分)19.解:∵x2+6x﹣2=0,∴x2+6x=2,则x2+6x+9=2+9,即(x+3)2=11,∴x+3=±,∴x=﹣3±.20.解:(1)将点(﹣2,6),(2,2)代入y=ax2+bx+2中,得,∴a=,b=﹣1,∴y=x2﹣x+2;(2)∵抛物线y=x2﹣x+2对称轴为直线x=﹣=1,∵a=>0,则抛物线开口向上,∴y随x的增大而减小时x<1.21.解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.22.解:(1)当x=0时,y=3(x+1)2﹣12=﹣9,则C点坐标为(0,﹣9);(2)当x=0时,3(x+1)2﹣12=0,解得x1=﹣3,x2=1,则A(﹣3,0),B(1,0);(3)D点坐标为(﹣1,﹣12),所以四边形ABCD的面积=×2×12+×(9+12)×1+×1×9=27.23.解:设每件纪念品应降价x元,则:化简得:x2﹣30x+200=0解得:x1=20,x2=10∵商店要尽快减少库存,扩大销量而降价越多,销量就越大∴x=20答:每件纪念品应降价20元.24.解:(1)方案一在固定站接客一天的营业额是:4×120+20×60÷(5+20+15)×12=840(元),案二在市内接客一天的营业额是:24×60÷(5+15)×10=720(元);(2)方案一的综合费用为:0.32×[60×4+20×60÷(5+20+15)×8×2]+8+10×4=278.4(元),其纯收入为840﹣278.4=561.6(元);方案二的综合费用为:0.32×[24×60÷(5+15)×5×2]=230.4(元),其纯收入为720﹣230.4=489.6(元);561.6>489.6,所以一辆出租车一天在固定站接客比在市内短途接客的纯收入大.25.解:(1)过点M作MH⊥AB于H,∵∠OMB=90°,MH⊥OB,∴△OMH∽△MBH,∴MH2=OH•HB,∴BH=4,∴B(5,0)设抛物线的解析式为y=ax2+bx,把M(1,2),B(5,0)代入得到,交点,∴抛物线的解析式为y=﹣x2+x.(2)由题意可知点N的纵坐标为±2时,当y=2时,2=﹣x2+,解得x=1或4,可得N(4,2),当y=﹣2时,﹣2=﹣x2+,解得x=,可得N(,﹣2)或(,﹣2);26.解:(1)由题意,得:w=(x﹣20)×y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:﹣10x2+700x﹣10000=2000,解得:x1=30,x2=40,又∵单价不得高于32元,∴销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.新人教版九年级数学上册期中考试试题(含答案)一.选择题(每小题3分,总分36分)1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣12.若关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,则m的取值范围是()A.m<3 B.m≤3 C.m<3且m≠2 D.m≤3且m≠23.方程x (x ﹣1)=x 的根是( ) A .x =2B .x =﹣2C .x 1=﹣2,x 2=0D .x 1=2,x 2=04.下列方程中以1,﹣2为根的一元二次方程是( ) A .(x +1)(x ﹣2)=0 B .(x ﹣1)(x +2)=1 C .(x +2)2=1D .5.把二次函数y =3x 2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是( ) A .y =3(x ﹣2)2+1 B .y =3(x +2)2﹣1 C .y =3(x ﹣2)2﹣1D .y =3(x +2)2+16.函数y =﹣x 2﹣4x +3图象顶点坐标是( ) A .(2,﹣7)B .(2,7)C .(﹣2,﹣7)D .(﹣2,7)7.抛物线y =(x +2)2+1的顶点坐标是( ) A .(2,1)B .(﹣2,1)C .(2,﹣1)D .(﹣2,﹣1)8.y =(x ﹣1)2+2的对称轴是直线( ) A .x =﹣1B .x =1C .y =﹣1D .y =19.如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2的值为( ) A .﹣1B .2C .D .10.当a >0,b <0,c >0时,下列图象有可能是抛物线y =ax 2+bx +c 的是( )A .B .C .D .11.不论x 为何值,函数y =ax 2+bx +c (a ≠0)的值恒大于0的条件是( ) A .a >0,△>0B .a >0,△<0C .a <0,△<0D .a <0,△>012.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x 名同学,根据题意,列出方程为( ) A .x (x +1)=1035 B .x (x ﹣1)=1035×2 C .x (x ﹣1)=1035D .2x (x +1)=1035二.填空题(每小题3分,总分18分)13.若关于x 的一元二次方程x 2﹣3x +m =0有实数根,则m 的取值范围是 . 14.方程x 2﹣3x +1=0的解是 .15.如图所示,在同一坐标系中,作出①y =3x 2②y =x 2③y =x 2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号) .16.抛物线y =﹣x 2+15有最 点,其坐标是 .17.水稻今年一季度增产a 吨,以后每季度比上一季度增产的百分率为x ,则第三季度化肥增产的吨数为 . 18.已知二次函数y =+5x ﹣10,设自变量的值分别为x 1,x 2,x 3,且﹣3<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系为 三.解答题(本大题共8个小题,) 19.(6分)解方程x 2﹣4x +1=0 x (x ﹣2)=4﹣2x ;20.(6分)抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,求抛物线的解析式. 21.(8分)已知关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根x 1、x 2. (1)求m 的取值范围;(2)当x 1=1时,求另一个根x 2的值. 22.(8分)已知:抛物线y =﹣x 2+x ﹣(1)直接写出抛物线的开口方向、对称轴、顶点坐标; (2)求抛物线与坐标轴的交点坐标; (3)当x 为何值时,y 随x 的增大而增大?23.(9分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?24.(9分)某广告公司要为客户设计一幅周长为12m的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元?25.(10分)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A和点B,与y 轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)26.(10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?参考答案一.选择题1.下列方程中,关于x的一元二次方程是()A.(x+1)2=2(x+1)B.C.ax2+bx+c=0 D.x2+2x=x2﹣1【分析】利用一元二次方程的定义判断即可.解:下列方程中,关于x的一元二次方程是(x+1)2=2(x+1),故选:A.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.2.若关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,则m的取值范围是()A.m<3 B.m≤3 C.m<3且m≠2 D.m≤3且m≠2 【分析】由于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,那么二次项系数不等于0,并且其判别式△是非负数,由此可以建立关于m的不等式组,解不等式组即可求出m的取值范围.解:∵关于x的一元二次方程(m﹣2)x2﹣2x+1=0有实根,∴m﹣2≠0,并且△=(﹣2)2﹣4(m﹣2)=12﹣4m≥0,∴m≤3且m≠2.故选:D.【点评】本题考查了根的判别式的知识,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.此题切记不要忽略一元二次方程二次项系数不为零这一隐含条件.3.方程x(x﹣1)=x的根是()A.x=2 B.x=﹣2 C.x1=﹣2,x2=0 D.x1=2,x2=0【分析】先将原方程整理为一般形式,然后利用因式分解法解方程.解:由原方程,得x 2﹣2x =0,∴x (x ﹣2)=0, ∴x ﹣2=0或x =0, 解得,x 1=2,x 2=0; 故选:D .【点评】本题考查了一元二次方程的解法﹣﹣因式分解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法. 4.下列方程中以1,﹣2为根的一元二次方程是( ) A .(x +1)(x ﹣2)=0 B .(x ﹣1)(x +2)=1C .(x +2)2=1D .【分析】根据因式分解法解方程对A 进行判断; 根据方程解的定义对B 进行判断; 根据直接开平方法对C 、D 进行判断.解:A 、x +1=0或x ﹣2=0,则x 1=﹣1,x 2=2,所以A 选项错误;B 、x =1或x =﹣2不满足(x ﹣1)(x +2)=1,所以B 选项错误;C 、x +2=±1,则x 1=﹣1,x 2=﹣3,所以C 选项错误;D 、x +=±,则x 1=1,x 2=﹣2,所以D 选项正确.故选:D .【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了直接开平方法解一元二次方程, 5.把二次函数y =3x 2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是( ) A .y =3(x ﹣2)2+1 B .y =3(x +2)2﹣1 C .y =3(x ﹣2)2﹣1D .y =3(x +2)2+1【分析】变化规律:左加右减,上加下减.解:按照“左加右减,上加下减”的规律,y =3x 2的图象向左平移2个单位,再向上平移1个单位得到y =3(x +2)2+1.故选D .【点评】考查了抛物线的平移以及抛物线解析式的性质. 6.函数y =﹣x 2﹣4x +3图象顶点坐标是( ) A .(2,﹣7)B .(2,7)C .(﹣2,﹣7)D .(﹣2,7)【分析】先把二次函数化为顶点式的形式,再得出其顶点坐标即可. 解:∵原函数解析式可化为:y =﹣(x +2)2+7, ∴函数图象的顶点坐标是(﹣2,7). 故选:D .【点评】本题考查的是二次函数的性质,根据题意把二次函数的解析式化为顶点式的形式是解答此题的关键.7.抛物线y =(x +2)2+1的顶点坐标是( ) A .(2,1)B .(﹣2,1)C .(2,﹣1)D .(﹣2,﹣1)【分析】已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标. 解:因为y =(x +2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1). 故选:B .【点评】考查顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ),对称轴是x =h .要掌握顶点式的性质.8.y =(x ﹣1)2+2的对称轴是直线( ) A .x =﹣1B .x =1C .y =﹣1D .y =1【分析】二次函数的一般形式中的顶点式是:y =a (x ﹣h )2+k (a ≠0,且a ,h ,k 是常数),它的对称轴是x =h ,顶点坐标是(h ,k ). 解:y =(x ﹣1)2+2的对称轴是直线x =1. 故选:B .【点评】本题主要考查二次函数顶点式中对称轴的求法.9.如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根,那么x 1+x 2的值为( ) A .﹣1B .2C .D .【分析】可以直接利用两根之和得到所求的代数式的值. 解:如果x 1,x 2是方程x 2﹣2x ﹣1=0的两个根, 那么x 1+x 2=2.故选:B.【点评】本题考查一元二次方程ax2+bx+c=0的根与系数的关系即韦达定理,两根之和是,两根之积是.10.当a>0,b<0,c>0时,下列图象有可能是抛物线y=ax2+bx+c的是()A.B.C.D.【分析】根据二次函数的图象与系数的关系可知.解:∵a>0,∴抛物线开口向上;∵b<0,∴对称轴为x=>0,∴抛物线的对称轴位于y轴右侧;∵c>0,∴与y轴的交点为在y轴的正半轴上.故选:A.【点评】本题考查二次函数的图象与系数的关系.11.不论x为何值,函数y=ax2+bx+c(a≠0)的值恒大于0的条件是()A.a>0,△>0 B.a>0,△<0 C.a<0,△<0 D.a<0,△>0【分析】根据二次函数的性质可知,只要抛物线开口向上,且与x轴无交点即可.解:欲保证x取一切实数时,函数值y恒为正,则必须保证抛物线开口向上,且与x轴无交点;则a>0且△<0.故选:B.【点评】当x取一切实数时,函数值y恒为正的条件:抛物线开口向上,且与x轴无交点;当x取一切实数时,函数值y恒为负的条件:抛物线开口向下,且与x轴无交点.12.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035×2C.x(x﹣1)=1035 D.2x(x+1)=1035【分析】如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:C.【点评】本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.二.填空题(每小题3分,总分18分)13.若关于x的一元二次方程x2﹣3x+m=0有实数根,则m的取值范围是m≤.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:在有实数根下必须满足△=b2﹣4ac≥0.解:一元二次方程x2﹣3x+m=0有实数根,△=b2﹣4ac=9﹣4m≥0,解得m.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.方程x2﹣3x+1=0的解是x1=,x2=.【分析】观察原方程,可用公式法求解;首先确定a、b、c的值,在b2﹣4ac≥0的前提条件下,代入求根公式进行计算.解:a=1,b=﹣3,c=1,b2﹣4ac=9﹣4=5>0,x=;∴x1=,x2=.故答案为:x1=,x2=.【点评】在一元二次方程的四种解法中,公式法是主要的,公式法可以说是通法,即能解任何一个一元二次方程.但对某些特殊形式的一元二次方程,用直接开平方法简便.因此,在遇到一道题时,应选择适当的方法去解.15.如图所示,在同一坐标系中,作出①y=3x2②y=x2③y=x2的图象,则图象从里到外的三条抛物线对应的函数依次是(填序号)①③②.【分析】抛物线的形状与|a|有关,根据|a|的大小即可确定抛物线的开口的宽窄.解:①y=3x2,②y=x2,③y=x2中,二次项系数a分别为3、、1,∵3>1>,∴抛物线②y=x2的开口最宽,抛物线①y=3x2的开口最窄.故依次填:①③②.【点评】抛物线的开口大小由|a|决定,|a|越大,抛物线的开口越窄;|a|越小,抛物线的开口越宽.16.抛物线y=﹣x2+15有最高点,其坐标是(0,15).【分析】根据抛物线的开口方向判断该抛物线的最值情况;根据顶点坐标公式求得顶点坐标.解:∵抛物线y=﹣x2+15的二次项系数a=﹣1<0,∴抛物线y=﹣x2+15的图象的开口方向是向下,∴该抛物线有最大值;当x=0时,y取最大值,即y最大值=15;∴顶点坐标是(0,15).故答案是:高、(0,15).【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.17.水稻今年一季度增产a 吨,以后每季度比上一季度增产的百分率为x ,则第三季度化肥增产的吨数为 a (1+x )2 .【分析】第二季度的吨数为:a (1+x ),第三季度是在第二季度的基础上增加的,为a (1+x )(1+x )=a (1+x )2.关键描述语是:以后每季度比上一季度增产的百分率为x . 解:依题意可知:第二季度的吨数为:a (1+x ),第三季度是在第二季度的基础上增加的,为a (1+x )(1+x )=a (1+x )2. 故答案为a (1+x )2.【点评】本题考查了列代数式.解决问题的关键是读懂题意,找到所求的量的等量关系,需注意第三季度是在第二季度的基础上增加的. 18.已知二次函数y =+5x ﹣10,设自变量的值分别为x 1,x 2,x 3,且﹣3<x 1<x 2<x 3,则对应的函数值y 1,y 2,y 3的大小关系为 y 1<y 2<y 3【分析】先利用抛物线的对称轴方程得到抛物线的对称轴为直线x =﹣5,而﹣3<x 1<x 2<x 3,然后根据二次函数的性质得到y 1,y 2,y 3的大小关系.解:抛物线的对称轴为直线x =﹣=﹣5,抛物线开口向上,所以当x >﹣5时,y 随x 的增大而增大, 而﹣3<x 1<x 2<x 3, 所以y 1<y 2<y 3. 故答案为y 1<y 2<y 3.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质. 三.解答题(本大题共8个小题,) 19.(6分)解方程x 2﹣4x +1=0 x (x ﹣2)=4﹣2x ;【分析】先移项得x 2﹣4x =﹣1,再把方程两边加上4得到x 2﹣4x +4=﹣1+4,即(x ﹣2)2=3,然后利用直接开平方法求解;先移项,然后分解因式得出两个一元一次方程,解一元一次方程即可. 解:x 2﹣4x +1=0x 2﹣4x =﹣1,x 2﹣4x +4=﹣1+4,即(x ﹣2)2=3,∴x ﹣2=±, ∴x 1=2+,x 2=2﹣;x (x ﹣2)=4﹣2x x (x ﹣2)+2(x ﹣2)=0,(x ﹣2)(x +2)=0, ∴x ﹣2=0或x +2=0, ∴x 1=2,x 2=﹣2.【点评】本题考查了解一元二次方程﹣配方法:先把方程二次项系数化为1,再把常数项移到方程右边,然后把方程两边加上一次项系数的一半得平方,这样方程左边可写成完全平方式,再利用直接开平方法解方程.也考查了因式分解法解一元二次方程.20.(6分)抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点,求抛物线的解析式. 【分析】先设为顶点式,再把顶点坐标和经过的点(1,2)代入即可解决, 解:由抛物线y =ax 2+bx +c 的顶点为(2,4),且过(1,2)点, 可设抛物线为:y =a (x ﹣2)2+4,把(1,2)代入得:2=a +4,解得:a =﹣2,所以抛物线为:y =﹣2(x ﹣2)2+4,即y =﹣2x 2+8x ﹣4,【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键. 21.(8分)已知关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根x 1、x 2. (1)求m 的取值范围;(2)当x 1=1时,求另一个根x 2的值.【分析】(1)根据题意可得根的判别式△>0,再代入可得9﹣4m >0,再解即可; (2)根据根与系数的关系可得x 1+x 2=﹣,再代入可得答案. 解:(1)由题意得:△=(﹣3)2﹣4×1×m =9﹣4m >0, 解得:m <;(2)∵x1+x2=﹣=3,x1=1,∴x2=2.【点评】此题主要考查了根与系数的关系,以及根的判别式,关键是掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.22.(8分)已知:抛物线y=﹣x2+x﹣(1)直接写出抛物线的开口方向、对称轴、顶点坐标;(2)求抛物线与坐标轴的交点坐标;(3)当x为何值时,y随x的增大而增大?【分析】(1)把二次函数的一般式配成顶点式,然后根据二次函数的性质解决问题;(2)计算自变量为0对应的函数值得到抛物线与y轴的交点坐标,通过判断方程﹣x2+x ﹣=0没有实数得到抛物线与x轴没有交点;(3)利用二次函数的性质确定x的范围.解:(1)y=﹣x2+x﹣=﹣(x﹣1)2﹣2,所以抛物线的开口向下,对称轴为直线x=1,顶点坐标为(1,﹣2);(2)当x=0时,y=﹣x2+x﹣=﹣,则抛物线与y轴的交点坐标为(0,﹣);当y=0时,﹣x2+x﹣=0,△<0,方程没有实数解,则抛物线与x轴没有交点;即抛物线与坐标轴的交点坐标为(0,﹣);(3)当x<1时,y随x的增大而增大.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.23.(9分)百货商店服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,那么每件童装应降价多少元?【分析】利用童装平均每天售出的件数×每件盈利=每天销售这种童装利润列出方程解答即可;解:设每件童装应降价x 元,根据题意列方程得, (40﹣x )(20+2x )=1200,解得x 1=20,x 2=10(因为尽快减少库存,不合题意,舍去), 答:每件童装降价20元;【点评】本题是一道运用一元二次方程解答的运用题,考查了一元二次方程的解法和基本数量关系:平均每天售出的件数×每件盈利=每天销售的利润的运用.24.(9分)某广告公司要为客户设计一幅周长为12m 的矩形广告牌,广告牌的设计费为每平方米1000元.请你设计一个广告牌边长的方案,使得根据这个方案所确定的广告牌的长和宽能使获得的设计费最多,设计费最多为多少元? 【分析】设矩形一边长为xm ,面积为Sm 2,则另一边长为m ,列出面积与x 的二次函数关系式,求最值.解:设矩形一边长为xm ,面积为Sm 2,则另一边长为m ,则其面积S =x •=x (6﹣x )=﹣x 2+6x .∵0<2x <12, ∴0<x <6.∵S =﹣x 2+6x =﹣(x ﹣3)2+9, ∴a =﹣1<0,S 有最大值, 当x =3时,S 最大值=9.∴设计费最多为9×1000=9000(元).【点评】本题主要考查二次函数的应用,由矩形面积等于长乘以宽列出函数关系式,利用函数关系式求最值,运用二次函数解决实际问题,比较简单.25.(10分)如图,对称轴为直线x =2的抛物线y =x 2+bx +c 与x 轴交于点A 和点B ,与y 轴交于点C ,且点A 的坐标为(﹣1,0) (1)求抛物线的解析式; (2)直接写出B 、C 两点的坐标;(3)求过O ,B ,C 三点的圆的面积.(结果用含π的代数式表示)。
保定定州2018-2019年初三一期数学中级试卷及解析【一】选择题〔本大题共16个小题,每题3分,共48分〕1、以下漂亮旳图案,既是轴对称图形又是中心对称图形旳是()A、 B、C、D、2、一元二次方程x2﹣2x=0旳根是()A、x=2B、x=0C、x1=﹣2,x2=0D、x1=2,x2=03、x=2是方程〔3x﹣m〕〔x+3〕=0旳一个根,那么m旳值为()A、6B、﹣6C、2D、﹣24、一元二次方程x2﹣4x+3=0旳根旳情况是()A、有两个不相等旳实数根B、有两个相等旳实数根C、没有实数根D、不能确定5、用配方法解关于x旳一元二次方程x2﹣2x﹣3=0,配方后旳方程能够是()A、〔x﹣1〕2=4B、〔x+1〕2=4C、〔x﹣1〕2=16D、〔x+1〕2=166、以下说法正确旳选项是()A、一个点能够确定一条直线B、平分弦旳直径垂于直弦C、三个点能够确定一个圆D、在图形旋转中图形上可能存在不动点7、假设α、β是一元二次方程x2+2x﹣6=0旳两根,那么α2+β2=()A、﹣8B、32C、16D、408、将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到旳抛物线旳【解析】式为()A、y=3〔x+2〕2+3B、y=3〔x﹣2〕2+3C、y=3〔x+2〕2﹣3D、y=3〔x﹣2〕2﹣39、抛物线y=x2﹣x﹣1与x轴旳一个交点为〔m,0〕,那么代数式m2﹣m+2018旳值为()A、2018B、2018C、2016D、201710、如图,点A、B、C在⊙O上,∠AOB=100°,那么∠ACB旳度数是()A、50°B、80°C、100°D、200°11、如图,点A、B、C、D、O都在方格纸旳格点上,假设△COD是由△AOB绕点O按逆时针方向旋转而得,那么旋转旳角度为()A、30°B、45°C、90°D、135°12、△ABO与△A1B1O在平面直角坐标系中旳位置如下图,它们关于点O成中心对称,其中点A〔4,2〕,那么点A1旳坐标是()A、〔4,﹣2〕B、〔﹣4,﹣2〕C、〔﹣2,﹣3〕D、〔﹣2,﹣4〕13、中国银杏节某纪念品原价168元,连续两次降价a%后,售价为128元,以下所列方程中,正确旳选项是()A、168〔1+a%〕2=128B、168〔1﹣a%〕2=128C、168〔1﹣2a%〕=128D、168〔1+2a%〕=1282A、y轴B、直线x=C、直线x=2D、直线x=15、二次函数y=ax2+bx+c〔a≠0〕旳图象如下图,以下结论正确旳选项是()A、a<0B、b2﹣4ac<0C、当﹣1<x<3时,y>0D、﹣16、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径旳圆与AB 交于点D,那么AD旳长为()A、B、C、D、【二】填空题17、:〔x2+y2+1〕2﹣4=0,那么x2+y2=﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、18、如图,四边ABCD是圆旳内接四边形,假设∠ABC=50°,那么∠ADC=﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、19、二次函数y=﹣x2+2x+m旳部分图象如下图,那么关于x旳一元二次方程﹣x2+2x+m=0旳解为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、20、一张桌子旳桌面长为6米,宽为4米,台布面积是桌面面积旳2倍,假如将台布铺在桌子上,各边垂下旳长度相同,那么各边垂下旳长度为﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏米、【三】解答题21、解方程:〔1〕〔2x+1〕2=﹣〔2x+1〕〔因式分解法〕〔2〕2x2﹣4x﹣9=0〔用配方法解〕22、如图,△ABC三个顶点旳坐标分别为A〔﹣2,3〕,B〔﹣3,1〕,C〔﹣1,2〕、〔1〕将△ABC向右平移4个单位,画出平移后旳△A1B1C1;〔2〕画出△ABC关于x轴对称旳△A2B2C2;〔3〕将△ABC绕原点O旋转180°,画出旋转后旳△A3B3C3;〔4〕在△ABC,△A1B1C1,△A2B2C2,△A3B3C3中﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏成轴对称,对称轴是﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏;△﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏成中心对称,对称中心是点﹏﹏﹏﹏﹏﹏﹏﹏﹏﹏、23、如图,△ABC内接于⊙O,BC=4,CA=3,∠A﹣∠B=90°,求⊙O旳半径、24、如图,有长为24米旳篱笆,一面利用墙〔强旳最大可用长度为a为12米〕,围成中间隔有一道篱笆旳长方形花圃、设花圃旳宽AB为x米,花圃ABCD旳面积为S米2、〔1〕当x为何值时,花圃ABCD旳面积最大?最大面积是多少?〔2〕假如要围成面积为45米2旳花圃,AB旳长是多少米?25、关于x旳一元二次方程〔a+c〕x2+2bx+〔a﹣c〕=0,其中a、b、c分别为△ABC三边旳长、〔1〕假如x=﹣1是方程旳根,试推断△ABC旳形状,并说明理由;〔2〕假如方程有两个相等旳实数根,试推断△ABC旳形状,并说明理由;〔3〕假如△ABC是等边三角形,试求那个一元二次方程旳根、26、如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a〔x﹣2〕2+k通过点A、B,并与X轴交于另一点C,其顶点为P、〔1〕求a,k旳值;〔2〕抛物线旳对称轴上有一点Q,使△ABQ是以AB为底边旳等腰三角形,求Q点旳坐标;〔3〕在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点旳四边形为正方形,求此正方形旳边长、2018-2016学年河北省保定市定州市九年级〔上〕期中数学试卷【一】选择题〔本大题共16个小题,每题3分,共48分〕1、以下漂亮旳图案,既是轴对称图形又是中心对称图形旳是()A、 B、C、D、【考点】中心对称图形;轴对称图形、【分析】依照轴对称图形与中心对称图形旳概念求解、【解答】解:A、不是轴对称图形,是中心对称图形、故此选项错误;B、不是轴对称图形,是中心对称图形、故此选项错误;C、不是轴对称图形,是中心对称图形、故此选项错误;D、是轴对称图形,也是中心对称图形、故此选项正确、应选D、【点评】此题要紧考查了中心对称图形与轴对称图形,轴对称图形旳关键是查找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要查找对称中心,旋转180度后与原图重合、2、一元二次方程x2﹣2x=0旳根是()A、x=2B、x=0C、x1=﹣2,x2=0D、x1=2,x2=0【考点】解一元二次方程-因式分解法、【专题】计算题、【分析】方程左边旳多项式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解、【解答】解:分解因式得:x〔x﹣2〕=0,可得x=0或x﹣2=0,解得:x1=2,x2=0、应选D、【点评】此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积旳形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解、3、x=2是方程〔3x﹣m〕〔x+3〕=0旳一个根,那么m旳值为()A、6B、﹣6C、2D、﹣2【考点】一元二次方程旳解、【分析】将x旳值代入旳方程即可求得未知数m旳值、【解答】解:∵x=2是方程〔3x﹣m〕〔x+3〕=0旳一个根,∴〔3×2﹣m〕〔2+3〕=0,解得:m=6,应选A、【点评】此题要紧考查了方程旳根旳定义,把求未知系数旳问题转化为解方程旳问题,是待定系数法旳应用、4、一元二次方程x2﹣4x+3=0旳根旳情况是()A、有两个不相等旳实数根B、有两个相等旳实数根C、没有实数根D、不能确定【考点】根旳判别式、【分析】先求出△旳值,再根据一元二次方程根旳情况与判别式△旳关系即可得出【答案】、【解答】解:一元二次方程x2﹣4x+3=0中,△=16﹣4×1×3=4>0,那么原方程有两个不相等旳实数根、应选A、【点评】此题考查了根旳判别式,一元二次方程根旳情况与判别式△旳关系:〔1〕△>0⇔方程有两个不相等旳实数根;〔2〕△=0⇔方程有两个相等旳实数根;〔3〕△<0⇔方程没有实数根5、用配方法解关于x旳一元二次方程x2﹣2x﹣3=0,配方后旳方程能够是()A、〔x﹣1〕2=4B、〔x+1〕2=4C、〔x﹣1〕2=16D、〔x+1〕2=16【考点】解一元二次方程-配方法、【专题】计算题、【分析】在此题中,把常数项﹣3移项后,应该在左右两边同时加上一次项系数﹣2旳一半旳平方、【解答】解:把方程x2﹣2x﹣3=0旳常数项移到等号旳右边,得到x2﹣2x=3,方程两边同时加上一次项系数一半旳平方,得到x2﹣2x+1=3+1,配方得〔x﹣1〕2=4、应选A、【点评】此题考查了配方法旳一般步骤:〔1〕把常数项移到等号旳右边;〔2〕把二次项旳系数化为1;〔3〕等式两边同时加上一次项系数一半旳平方、选择用配方法解一元二次方程时,最好使方程旳二次项旳系数为1,一次项旳系数是2旳倍数、6、以下说法正确旳选项是()A、一个点能够确定一条直线B、平分弦旳直径垂于直弦C、三个点能够确定一个圆D、在图形旋转中图形上可能存在不动点【考点】旋转旳性质;直线旳性质:两点确定一条直线;垂径定理;确定圆旳条件、【分析】利用直线旳性质对A进行推断;依照垂径定理旳推理对B进行推断;依照确定圆旳条件对C进行推断;假设以图形上一点为旋转中心,那么依照旋转旳性质可对D进行推断、【解答】解:A、两点确定一条直线,因此A选项错误;B、平分弦〔非直径〕旳直径垂于直弦,因此B选项错误;C、不在同一条直线上旳三个点能够确定一个圆,因此C选项错误;D、在图形旋转中图形上可能存在不动点,因此D选项正确、应选D、【点评】此题考查了旋转旳性质:对应点到旋转中心旳距离相等;对应点与旋转中心所连线段旳夹角等于旋转角;旋转前、后旳图形全等、也考查了直线旳性质、垂径定理和确定圆旳条件、7、假设α、β是一元二次方程x2+2x﹣6=0旳两根,那么α2+β2=()A、﹣8B、32C、16D、40【考点】根与系数旳关系、【专题】计算题、【分析】依照根与系数旳关系得到α+β=﹣2,αβ=﹣6,再利用完全平方公式得到α2+β2=〔α+β〕2﹣2αβ,然后利用整体代入旳方法计算、【解答】解:依照题意得α+β=﹣2,αβ=﹣6,因此α2+β2=〔α+β〕2﹣2αβ=〔﹣2〕2﹣2×〔﹣6〕=16、应选:C、【点评】此题考查了一元二次方程ax2+bx+c=0〔a≠0〕旳根与系数旳关系:假设方程两个为x1,x2,那么x1+x2=﹣,x1•x2=、8、将抛物线y=3x2向上平移3个单位,再向左平移2个单位,那么得到旳抛物线旳【解析】式为()A、y=3〔x+2〕2+3B、y=3〔x﹣2〕2+3C、y=3〔x+2〕2﹣3D、y=3〔x﹣2〕2﹣3【考点】二次函数图象与几何变换、【专题】探究型、【分析】直截了当依照“上加下减,左加右减”旳原那么进行解答即可、【解答】解:由“上加下减”旳原那么可知,将抛物线y=3x2向上平移3个单位所得抛物线旳【解析】式为:y=3x2+3;由“左加右减”旳原那么可知,将抛物线y=3x2+3向左平移2个单位所得抛物线旳【解析】式为:y=3〔x+2〕2+3、应选A、【点评】此题考查旳是二次函数旳图象与几何变换,熟知二次函数图象平移旳法那么是解答此题旳关键、9、抛物线y=x2﹣x﹣1与x轴旳一个交点为〔m,0〕,那么代数式m2﹣m+2018旳值为()A、2018B、2018C、2016D、2017【考点】抛物线与x轴旳交点、【分析】依照抛物线y=x2﹣x﹣1与x轴旳一个交点为〔m,0〕得到m2﹣m﹣1=0,整体代入即可求出代数式m2﹣m+2018旳值、【解答】解:∵抛物线y=x2﹣x﹣1与x轴旳一个交点为〔m,0〕,∴m2﹣m﹣1=0,∴m2﹣m+2018=2016,应选C、【点评】此题要紧考查了抛物线与x轴旳交点、函数图象上点旳坐标性质以及整体思想旳应用,求出m2﹣m=1是解题关键、10、如图,点A、B、C在⊙O上,∠AOB=100°,那么∠ACB旳度数是()A、50°B、80°C、100°D、200°【考点】圆周角定理、【分析】利用圆周角定理可知∠AOB=2∠ACB,可求得∠ACB=50°、【解答】解:∵∠AOB和∠ACB是弧AB所对旳角,∴∠AOB=2∠ACB,∵∠AOB=100°,∴∠ACB=50°,应选A、【点评】此题要紧考查圆周角定理,掌握在同圆或等圆中同弧所对旳圆周角是圆心角旳一半是解题旳关键、11、如图,点A、B、C、D、O都在方格纸旳格点上,假设△COD是由△AOB绕点O按逆时针方向旋转而得,那么旋转旳角度为()A、30°B、45°C、90°D、135°【考点】旋转旳性质、【专题】网格型;数形结合、【分析】△COD是由△AOB绕点O按逆时针方向旋转而得,由图可知,∠AOC为旋转角,可利用△AOC旳三边关系解答、【解答】解:如图,设小方格旳边长为1,得,OC==,AO==,AC=4,∵OC2+AO2=+=16,AC2=42=16,∴△AOC是直角三角形,∴∠AOC=90°、应选:C、【点评】此题考查了旋转旳性质,旋转前后对应角相等,此题也可通过两角互余旳性质解答、12、△ABO与△A1B1O在平面直角坐标系中旳位置如下图,它们关于点O成中心对称,其中点A〔4,2〕,那么点A1旳坐标是()A、〔4,﹣2〕B、〔﹣4,﹣2〕C、〔﹣2,﹣3〕D、〔﹣2,﹣4〕【考点】关于原点对称旳点旳坐标、【专题】几何图形问题、【分析】依照两个点关于原点对称时,它们旳坐标符号相反可得【答案】、【解答】解:∵A和A1关于原点对称,A〔4,2〕,∴点A1旳坐标是〔﹣4,﹣2〕,应选:B、【点评】此题要紧考查了关于原点对称旳点旳坐标,关键是掌握点旳坐标旳变化规律、13、中国银杏节某纪念品原价168元,连续两次降价a%后,售价为128元,以下所列方程中,正确旳选项是()A、168〔1+a%〕2=128B、168〔1﹣a%〕2=128C、168〔1﹣2a%〕=128D、168〔1+2a%〕=128【考点】由实际问题抽象出一元二次方程、【专题】增长率问题、【分析】此题可先用a表示第一次降价后纪念品旳售价,再依照题意表示第二次降价后旳售价,然后依照条件得到关于a旳方程、【解答】解:当纪念品第一次降价a%时,其售价为168﹣168a%=168〔1﹣a%〕;当纪念品第二次降价a%后,其售价为168〔1﹣a%〕﹣168〔1﹣a%〕a%=168〔1﹣a%〕2、因此168〔1﹣a%〕2=128、应选B、【点评】此题要紧考查由实际问题抽象出一元二次方程,要依照题意列出第一次降价后纪念品旳售价,再依照题意列出第二次降价后售价旳方程,令其等于128即可、2A、y轴B、直线x=C、直线x=2D、直线x=【考点】二次函数旳性质、【专题】图表型、【分析】由于x=1、2时旳函数值相等,然后依照二次函数旳对称性列式计算即可得解、【解答】解:∵x=1和2时旳函数值差不多上﹣1,∴对称轴为直线x==、应选:D、【点评】此题考查了二次函数旳性质,要紧利用了二次函数旳对称性,比较简单、15、二次函数y=ax2+bx+c〔a≠0〕旳图象如下图,以下结论正确旳选项是()A、a<0B、b2﹣4ac<0C、当﹣1<x<3时,y>0D、﹣【考点】二次函数图象与系数旳关系、【专题】存在型、【分析】依照二次函数旳图象与系数旳关系对各选项进行逐一分析即可、【解答】解:A、∵抛物线旳开口向上,∴a>0,应选项A错误;B、∵抛物线与x轴有两个不同旳交点,∴△=b2﹣4ac>0,应选项B错误;C、由函数图象可知,当﹣1<x<3时,y<0,应选项C错误;D、∵抛物线与x轴旳两个交点分别是〔﹣1,0〕,〔3,0〕,∴对称轴x=﹣==1,应选项D正确、应选D、【点评】此题考查旳是二次函数旳图象与系数旳关系,能利用数形结合求解是解答此题旳关键、16、如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径旳圆与AB 交于点D,那么AD旳长为()A、B、C、D、【考点】垂径定理;勾股定理、【专题】探究型、【分析】先依照勾股定理求出AB旳长,过C作CM⊥AB,交AB于点M,由垂径定理可知M 为AD旳中点,由三角形旳面积可求出CM旳长,在Rt△ACM中,依照勾股定理可求出AM旳长,进而可得出结论、【解答】解:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB===5,过C作CM⊥AB,交AB于点M,如下图,∵CM⊥AB,∴M为AD旳中点,∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=5,∴CM=,在Rt△ACM中,依照勾股定理得:AC2=AM2+CM2,即9=AM2+〔〕2,解得:AM=,∴AD=2AM=、应选C、【点评】此题考查旳是垂径定理,依照题意作出辅助线,构造出直角三角形是解答此题旳关键、【二】填空题17、:〔x2+y2+1〕2﹣4=0,那么x2+y2=1、【考点】平方根、【专题】计算题、【分析】首先依照条件能够得到〔x2+y2+1〕2=4,然后两边同时开平方即可求出x2+y2旳值、【解答】解:∵〔x2+y2+1〕2﹣4=0,∴〔x2+y2+1〕2=4,∵x2+y2+1>0,∴x2+y2+1=2,∴x2+y2=1、故【答案】为:1、【点评】此题考查了平方根旳定义,形如x2=a旳方程旳解法,一般直截了当开方计算即可、此题也利用整体代值旳思想、18、如图,四边ABCD是圆旳内接四边形,假设∠ABC=50°,那么∠ADC=130°、【考点】圆内接四边形旳性质、【分析】直截了当依照圆内接四边形旳性质进行解答即可、【解答】解:∵四边ABCD是圆旳内接四边形,∠ABC=50°,∴∠ADC=180°﹣50°=130°、故【答案】为:130°、【点评】此题考查旳是圆内接四边形旳性质,熟知圆内接四边形旳对角互补是解答此题旳关键、19、二次函数y=﹣x2+2x+m旳部分图象如下图,那么关于x旳一元二次方程﹣x2+2x+m=0旳解为x1=﹣1或x2=3、【考点】抛物线与x轴旳交点、【分析】由二次函数y=﹣x2+2x+m旳部分图象能够得到抛物线旳对称轴和抛物线与x轴旳一个交点坐标,然后能够求出另一个交点坐标,再利用抛物线与x轴交点旳横坐标与相应旳一元二次方程旳根旳关系即可得到关于x旳一元二次方程﹣x2+2x+m=0旳解、【解答】解:依题意得二次函数y=﹣x2+2x+m旳对称轴为x=1,与x轴旳一个交点为〔3,0〕,∴抛物线与x轴旳另一个交点横坐标为1﹣〔3﹣1〕=﹣1,∴交点坐标为〔﹣1,0〕∴当x=﹣1或x=3时,函数值y=0,即﹣x2+2x+m=0,∴关于x旳一元二次方程﹣x2+2x+m=0旳解为x1=﹣1或x2=3、故【答案】为:x1=﹣1或x2=3、【点评】此题考查旳是关于二次函数与一元二次方程,在解题过程中,充分利用二次函数图象,依照图象提取有用条件来解答,如此能够降低题旳难度,从而提高解题效率、20、一张桌子旳桌面长为6米,宽为4米,台布面积是桌面面积旳2倍,假如将台布铺在桌子上,各边垂下旳长度相同,那么各边垂下旳长度为1米、【考点】一元二次方程旳应用、【专题】几何图形问题、【分析】设垂下旳长度为x、依照矩形旳性质列出等式求出x旳长后易求台布旳长、【解答】解:设垂下旳长度为x,那么〔6+2x〕×〔4+2x〕=2×6×4,解得x=﹣6或1,依照实际意义得x=1,故【答案】为:1、【点评】考查了一元二次方程旳应用,解决此题旳关键是读懂题意,得到相应旳等量关系、【三】解答题21、解方程:〔1〕〔2x+1〕2=﹣〔2x+1〕〔因式分解法〕〔2〕2x2﹣4x﹣9=0〔用配方法解〕【考点】解一元二次方程-因式分解法;解一元二次方程-配方法、【分析】〔1〕移项、然后提公因式,即可化为两个一元一次方程,即可求解;〔2〕首先移项、二次项次数化成1,然后配方,转化为两个一元一次方程,即可求解、【解答】解:〔1〕原方程可化为:〔2x+1〕[〔2x+1〕+1]=0,∴x1=﹣,x2=﹣1;〔2〕原方程可化为:x2﹣2x=,配方,得:x2﹣2x+1=,那么〔x﹣1〕2=,x﹣1=±,∴x1=1+,x2=1﹣、【点评】此题考查了一元二次方程旳解法、解一元二次方程常用旳方法有直截了当开平方法,配方法,公式法,因式分解法,要依照方程旳特点灵活选用合适旳方法、22、如图,△ABC三个顶点旳坐标分别为A〔﹣2,3〕,B〔﹣3,1〕,C〔﹣1,2〕、〔1〕将△ABC向右平移4个单位,画出平移后旳△A1B1C1;〔2〕画出△ABC关于x轴对称旳△A2B2C2;〔3〕将△ABC绕原点O旋转180°,画出旋转后旳△A3B3C3;〔4〕在△ABC,△A1B1C1,△A2B2C2,△A3B3C3中△ABC与△A2B2C2成轴对称,对称轴是x轴;△ABC与△A3B3C3成中心对称,对称中心是点O、【考点】作图-旋转变换;作图-轴对称变换;作图-平移变换、【专题】作图题、【分析】〔1〕依照网格结构找出点A、B、C向右平移4个单位旳对应点A1、B1、C1旳位置,然后顺次连接即可;〔2〕依照网格结构找出点A、B、C关于x轴对称旳点A2、B2、C2旳位置,然后顺次连接即可;〔3〕依照网格结构找出点A、B、C绕原点O旋转180°旳对应点A3、B3、C3旳位置,然后顺次连接即可;〔4〕依照轴对称和中心对称旳性质结合图象解答即可、【解答】解:〔1〕△A1B1C1如下图;〔2〕△A2B2C2如下图;〔3〕△A3B3C3如下图;〔4〕故【答案】为:△ABC与△A2B2C2;x轴;ABC与△A3B3C3;O、【点评】此题考查了利用轴对称变换作图,利用平移变换作图,利用旋转变换作图,熟练掌握网格结构准确找出对应点旳位置是解题旳关键、23、如图,△ABC内接于⊙O,BC=4,CA=3,∠A﹣∠B=90°,求⊙O旳半径、【考点】圆周角定理;勾股定理、【专题】计算题、【分析】作直径BD,连结DC、DA,如图依照圆周角定理得∠BAD=∠BCD=90°,由于∠CAB ﹣∠CBA=90°,可得到∠CAD=∠CBA,那么可证出∠CAD=∠CDA,因此CA=CD=3,然后在Rt △BCD中依照勾股定理计算出BD,从而可得到圆旳半径、【解答】解:作直径BD,连结DC、DA,如图,∵BD为直径,∴∠BAD=∠BCD=90°,∵∠CAB﹣∠CBA=90°,∴∠CAD=∠CBA,而∠CBA=∠CDA,∴∠CAD=∠CDA,∴CA=CD=3,在Rt△BCD中,∵BC=4,CD=3,∴BD==5,B∴⊙O旳半径为、【点评】此题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对旳圆周角相等,都等于这条弧所对旳圆心角旳一半、推论:半圆〔或直径〕所对旳圆周角是直角,90°旳圆周角所对旳弦是直径、也考查了勾股定理、24、如图,有长为24米旳篱笆,一面利用墙〔强旳最大可用长度为a为12米〕,围成中间隔有一道篱笆旳长方形花圃、设花圃旳宽AB为x米,花圃ABCD旳面积为S米2、〔1〕当x为何值时,花圃ABCD旳面积最大?最大面积是多少?〔2〕假如要围成面积为45米2旳花圃,AB旳长是多少米?【考点】一元二次方程旳应用;二次函数旳应用、【专题】几何图形问题、【分析】〔1〕用总长减去三个宽即为BC旳长,进而表示出矩形面积,求出最值即可;〔2〕利用矩形旳面积公式列出方程求解即可、【解答】解:〔1〕由题意可得:S=x〔24﹣3x〕=﹣3x2+24x=﹣3〔x﹣4〕2+48,当x=4时,面积最大,最大面积为48m2;〔2〕由条件﹣3x2+24x=45化为x2﹣8x+15=0解得x1=5,x2=3,当x=3时,BC=24﹣3x=15>10,不合题意,舍去,当x=5时,BC=24﹣3x=9,假如要围成面积为45米2旳花圃,AB旳长是5米、【点评】此题考查了一元二次方程、二次函数旳应用,依照条件列出二次函数式是解题旳关键、25、关于x旳一元二次方程〔a+c〕x2+2bx+〔a﹣c〕=0,其中a、b、c分别为△ABC三边旳长、〔1〕假如x=﹣1是方程旳根,试推断△ABC旳形状,并说明理由;〔2〕假如方程有两个相等旳实数根,试推断△ABC旳形状,并说明理由;〔3〕假如△ABC是等边三角形,试求那个一元二次方程旳根、【考点】一元二次方程旳应用、【专题】代数几何综合题、【分析】〔1〕直截了当将x=﹣1代入得出关于a,b旳等式,进而得出a=b,即可推断△ABC 旳形状;〔2〕利用根旳判别式进而得出关于a,b,c旳等式,进而推断△ABC旳形状;〔3〕利用△ABC是等边三角形,那么a=b=c,进而代入方程求出即可、【解答】解:〔1〕△ABC是等腰三角形;理由:∵x=﹣1是方程旳根,∴〔a+c〕×〔﹣1〕2﹣2b+〔a﹣c〕=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;〔2〕∵方程有两个相等旳实数根,∴〔2b〕2﹣4〔a+c〕〔a﹣c〕=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;〔3〕当△AB C是等边三角形,∴〔a+c〕x2+2bx+〔a﹣c〕=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1、【点评】此题要紧考查了一元二次方程旳应用以及根旳判别式和勾股定理逆定理等知识,正确由猎取等量关系是解题关键、26、如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a〔x﹣2〕2+k通过点A、B,并与X轴交于另一点C,其顶点为P、〔1〕求a,k旳值;〔2〕抛物线旳对称轴上有一点Q,使△ABQ是以AB为底边旳等腰三角形,求Q点旳坐标;〔3〕在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点旳四边形为正方形,求此正方形旳边长、【考点】二次函数综合题、【专题】几何综合题、【分析】〔1〕先求出直线y=﹣3x+3与x轴交点A,与y轴交点B旳坐标,再将A、B两点坐标代入y=a〔x﹣2〕2+k,得到关于a,k旳二元一次方程组,解方程组即可求解;〔2〕设Q点旳坐标为〔2,m〕,对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E、在Rt△AQF与Rt△BQE中,用勾股定理分别表示出AQ2=AF2+QF2=1+m2,BQ2=BE2+EQ2=4+〔3﹣m〕2,由AQ=BQ,得到方程1+m2=4+〔3﹣m〕2,解方程求出m=2,即可求得Q点旳坐标;〔3〕当点N在对称轴上时,由NC与AC不垂直,得出AC为正方形旳对角线,依照抛物线旳对称性及正方形旳性质,得到M点与顶点P〔2,﹣1〕重合,N点为点P关于x轴旳对称点,现在,MF=NF=AF=CF=1,且AC⊥MN,那么四边形AMCN为正方形,在Rt△AFN中依照勾股定理即可求出正方形旳边长、【解答】解:〔1〕∵直线y=﹣3x+3与x轴、y轴分别交于点A、B,∴A〔1,0〕,B〔0,3〕、又∵抛物线y=a〔x﹣2〕2+k通过点A〔1,0〕,B〔0,3〕,∴,解得,故a,k旳值分别为1,﹣1;〔2〕设Q点旳坐标为〔2,m〕,对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E、在Rt△AQF中,AQ2=AF2+QF2=1+m2,在Rt△BQE中,BQ2=BE2+EQ2=4+〔3﹣m〕2,∵AQ=BQ,∴1+m2=4+〔3﹣m〕2,∴m=2,∴Q点旳坐标为〔2,2〕;〔3〕当点N在对称轴上时,NC与AC不垂直,因此AC应为正方形旳对角线、又∵对称轴x=2是AC旳中垂线,∴M点与顶点P〔2,﹣1〕重合,N点为点P关于x轴旳对称点,其坐标为〔2,1〕、现在,MF=NF=AF=CF=1,且AC⊥MN,∴四边形AMCN为正方形、在Rt△AFN中,AN==,即正方形旳边长为、【点评】此题是二次函数旳综合题型,其中涉及到旳知识点有二元一次方程组旳解法,等腰三角形旳性质,勾股定理,二次函数旳性质,正方形旳判定与性质,综合性较强,难度适中、。
九年级数学参考答案一、选择题1—6:DDAABD ;7—12:CADACB ;13—16:BDDC .二、填空题:17. 1; 18. 130°; 19. x 1=﹣1,x 2=3; 20. 1 。
三、解答题:21. (1)解:原方程可化为:0]1)12)[(12(=+++x x(2)解:原方程可化为:配方得:整理得:22. 解:(1)(2)(3)如图所示。
(4)与△A 3 B 3C 3成轴对称的图形是 △A 2B 2C 2 ,对称轴是 y 轴 ;与△A 3B 3C 3成中心对称的图形是△A 1B 1C 1 ,或△ABC 。
23. 解:连结BO 并延长交⊙O 于D. 连结DC 、DA则090=∠=∠BCD BAD ,009090+∠=+∠=∠CAD CBA CAB在中,BC = 4,由勾股定理得:BD=5.⊙O 的半径为24.解:(1)由题意可得:S=x (24﹣3x )=﹣3x 2+24x=﹣3(x ﹣4)2+48,当x=4时,面积最大,最大面积为48m 2;(2)由条件﹣3x 2+24x=45化为x 2﹣8x+15=0解得x 1=5,x 2=3,当x=3时,BC=24﹣3x=15>10,不合题意,舍去,当x=5时,BC=24﹣3x=9,如果要围成面积为45米2的花圃,AB 的长是5米.25. 解:(1)△ABC 是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c )×(﹣1)2﹣2b+(a ﹣c )=0,∴a+c ﹣2b+a ﹣c=0,∴a ﹣b=0,∴a=b ,∴△ABC 是等腰三角形;(2)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.26.解:(1)∵直线y=﹣3x+3与x轴、y轴分别交于点A、B,∴A(1,0),B(0,3).又∵抛物线y=a(x﹣2)2+k经过点A(1,0),B(0,3),∴,解得,故a,k的值分别为1,﹣1;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF中,AQ2=AF2+QF2=1+m2,在Rt△BQE中,BQ2=BE2+EQ2=4+(3﹣m)2,∵AQ=BQ,∴1+m2=4+(3﹣m)2,∴m=2,∴Q点的坐标为(2,2);(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.又∵对称轴x=2是AC的中垂线,∴M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,其坐标为(2,1).此时,MF=NF=AF=CF=1,且AC⊥MN,∴四边形AMCN为正方形.在Rt△AFN中,AN==,即正方形的边长为.。
2017-2018学年河北省保定市定州市九年级(上)期末数学试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知反比例函数y=(k≠0)的图象经过点M(﹣2,2),则k的值是()A.﹣4B.﹣1C.1D.43.抛物线y=x2+2x+3的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=﹣2D.直线x=24.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m5.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x﹣2)2=5B.(x+2)2=5C.(x+2)2=3D.(x﹣2)2=36.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为()A.B.C.D.7.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°8.在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A .B .C .2倍D .3倍9.如图,正六边形ABCDEF 内接于⊙O ,M 为EF 的中点,连接DM ,若⊙O 的半径为2,则MD 的长度为( )A .B .C .2D .110.一次函数y=ax ﹣a 与反比例函数y=(a ≠0)在同一平面直角坐标系中的图象可能是( )A .B .C .D .11.如图,把直角△ABC 的斜边AC 放在直线l 上,按顺时针的方向在直线l 上转动两次,使它转到△A 2B 1C 2的位置,设AB=,∠BAC=30°,则顶点A 运动到点A 2的位置时,点A 所经过的路线为( )A .( +)πB .( +)πC .2πD .π12.如图,抛物线y 1=a (x+2)2﹣3与y 2=(x ﹣3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B,C.则以下结沦:①无论x取何值,y2的值总是正数;②2a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A.①②B.②③C.③④D.①④二、填空题{本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.一元二次方程y2=2y的解为.14.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x相同,则可列出方程为.15.已知二次函数y=2x2﹣6x+m的图象与x轴没有交点,则m的值为.16.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为.17.已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为.18.如图是反比例函数与在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x 轴分别交这两个图象于点A,B.若点P在x轴上运动,则△ABP的面积等于.三、解答下列各题(本题有8个小题,共66分)19.(6分)解方程:x2﹣6x+4=0(用配方法)20.(6分)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离B(树底)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,求树AB的高度.21.(8分)如图,小明同学用一把直尺和一块三角板测量一个光盘的直径,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,求此光盘的直径.22.(8分)四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问这个游戏规则公平吗?并说明理由.23.(8分)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若F是OC边上一点,且∠CBF=∠BED,求点F的坐标.24.(8分)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.25.(10分)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为元,今年生产的这种玩具每件的出厂价为元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.26.(12分)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.2017-2018学年河北省保定市定州市九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、不是轴对称图形,是中心对称图形,故A 选项错误;B 、不是轴对称图形,是中心对称图形,故B 选项错误;C 、既是轴对称图形,也是中心对称图形,故C 选项正确;D 、是轴对称图形,不是中心对称图形,故D 选项错误.故选:C .【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.已知反比例函数y=(k ≠0)的图象经过点M (﹣2,2),则k 的值是( )A .﹣4B .﹣1C .1D .4【分析】把点(﹣2,2)代入反比例函数y=(k ≠0)中,可直接求k 的值.【解答】解:把点(﹣2,2)代入反比例函数y=(k ≠0)中得2=所以,k=xy=﹣4,故选:A .【点评】本题主要考查反比例函数图象上点的坐标特征,反比例函数的比例系数等于在函数图象上面的点的横纵坐标的乘积.3.抛物线y=x2+2x+3的对称轴是()A.直线x=1B.直线x=﹣1C.直线x=﹣2D.直线x=2【分析】先把一般式化为顶点式,然后根据二次函数的性质确定抛物线的对称轴方程.【解答】解:∵y=x2+2x+3=(x+1)2+2,∴抛物线的对称轴为直线x=﹣1.故选:B.【点评】本题考查了二次函数的性质:对于二次函数y=ax2+bx+c(a≠0),它的顶点坐标是(﹣,),对称轴为直线x=﹣.4.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得, =,解得:x=15.故选:C.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.5.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x﹣2)2=5B.(x+2)2=5C.(x+2)2=3D.(x﹣2)2=3【分析】移项后两边配上一次项系数一半的平方即可.【解答】解:∵x2+4x=﹣1,∴x2+4x+4=﹣1+4,即(x+2)2=3,故选:C.【点评】本题主要考查配方法解一元二次方程,掌握用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解,是解题的关键.6.“同吋掷两枚质地均匀的骰子,至少有一枚骰子的点数是3”的概率为()A.B.C.D.【分析】首先利用列表法,列举出所有的可能,再看至少有一个骰子点数为3的情况占总情况的多少即可.【解答】解:列表如下由表可知一共36种等可能结果,其中至少有一枚骰子的点数是3的有11种结果,所以至少有一枚骰子的点数是3的概率为,故选:B.【点评】此题主要考查了列表法求概率,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验,找到两个骰子点数相同的情况数和至少有一个骰子点数为3的情况数是关键.7.如图,四边形ABCD是⊙O的内接四边形,若∠BOD=88°,则∠BCD的度数是()A.88°B.92°C.106°D.136°【分析】首先根据∠BOD=88°,应用圆周角定理,求出∠BAD的度数多少;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD的度数是多少即可.【解答】解:∵∠BOD=88°,∴∠BAD=88°÷2=44°,∵∠BAD+∠BCD=180°,∴∠BCD=180°﹣44°=136°,即∠BCD的度数是136°.故选:D.【点评】(1)此题主要考查了圆内接四边形的性质和应用,要熟练掌握,解答此题的关键是要明确:①圆内接四边形的对角互补.②圆内接四边形的任意一个外角等于它的内对角(就是和它相邻的内角的对角).(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.在小孔成像问题中,如图所示,若为O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A.B.C.2倍D.3倍【分析】如图,作OE⊥AB于E,EO的延长线交CD于F.由△AOB∽△DOC,推出===(相似三角形的对应高的比等于相似比),由此即可解决问题.【解答】解:如图,作OE⊥AB于E,EO的延长线交CD于F.∵AB∥CD,∴FO⊥CD,△AOB∽△DOC,∴===(相似三角形的对应高的比等于相似比),∴CD=AB,故选:A.【点评】本题考查相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,记住相似三角形对应高的比等于相似比,属于中考常考题型.9.如图,正六边形ABCDEF内接于⊙O,M为EF的中点,连接DM,若⊙O的半径为2,则MD的长度为()A.B.C.2D.1【分析】连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.【解答】解:连接OM、OD、OF,如图所示:∵正六边形ABCDEF内接于⊙O,M为EF的中点,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin∠MFO=2×=,∴MD===;故选:A.【点评】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.10.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C .D .【分析】先根据一次函数的性质判断出a 取值,再根据反比例函数的性质判断出a 的取值,二者一致的即为正确答案.【解答】解:A 、由函数y=ax ﹣a 的图象可知a <0,由函数y=(a ≠0)的图象可知a >0,相矛盾,故错误;B 、由函数y=ax ﹣a 的图象可知a >0,﹣a >0,由函数y=(a ≠0)的图象可知a <0,错误;C 、由函数y=ax ﹣a 的图象可知a <0,由函数y=(a ≠0)的图象可知a <0,正确;D 、由函数y=ax ﹣a 的图象可知m >0,﹣a <0,一次函数与y 轴交与负半轴,相矛盾,故错误; 故选:C .【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.11.如图,把直角△ABC 的斜边AC 放在直线l 上,按顺时针的方向在直线l 上转动两次,使它转到△A 2B 1C 2的位置,设AB=,∠BAC=30°,则顶点A 运动到点A 2的位置时,点A 所经过的路线为( )A .( +)πB .( +)πC .2πD .π【分析】A 点所经过的弧长有两段,①以C 为圆心,CA 长为半径,∠ACA 1为圆心角的弧长;②以B 1为圆心,AB 长为半径,∠A 1B 1A 2为圆心角的弧长.分别求出两段弧长,然后相加即可得到所求的结论.【解答】解:在Rt △ABC 中,AB=,∠BAC=30°,∴∠ACB=60°,AC=2;由分析知:点A 经过的路程是由两段弧长所构成的:①A ~A 1段的弧长:L 1==,②A 1~A 2段的弧长:L 2==,∴点A 所经过的路线为(+)π,故选:A .【点评】本题考查的是弧长的计算,30度角直角三角形的性质,旋转的性质,难点在于与动点知识相结合,但是只要将运动的过程分解清楚,就能顺利作答.12.如图,抛物线y 1=a (x+2)2﹣3与y 2=(x ﹣3)2+1交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B ,C .则以下结沦:①无论x 取何值,y 2的值总是正数;②2a=1;③当x=0时,y 2﹣y 1=4;④2AB=3AC ;其中正确结论是( )A .①②B .②③C .③④D .①④【分析】利用二次函数的性质得到y 2的最小值为1,则可对①进行判断;把A 点坐标代入y 1=a (x+2)2﹣3中求出a ,则可对②进行判断;分别计算x=0时两函数的对应值,再计算y 2﹣y 1的值,则可对③进行判断;利用抛物线的对称性计算出AB 和AC ,则可对④进行判断. 【解答】解:∵y 2=(x ﹣3)2+1, ∴y 2的最小值为1,所以①正确;把A (1,3)代入y 1=a (x+2)2﹣3得a (1+2)2﹣3=3, ∴3a=2,所以②错误;当x=0时,y 1=(x+2)2﹣3=﹣,y 2=(x ﹣3)2+1=,∴y 2﹣y 1=+=,所以③错误;抛物线y 1=a (x+2)2﹣3的对称轴为直线x=﹣2,抛物线y 2=(x ﹣3)2+1的对称轴为直线x=3, ∴AB=2×3=6,AC=2×2=4, ∴2AB=3AC ,所以④正确. 故选:D .【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y 轴交于(0,c).也考查了二次函数的性质.二、填空题{本大题共6个小题;每小题3分,共18分.把答案写在题中横线上)13.一元二次方程y2=2y的解为y1=0,y2=2 .【分析】利用因式分解法解方程.【解答】解:y2﹣2y=0,y(y﹣2)=0,y=0或y﹣2=0,所以y1=0,y2=2.故答案为y1=0,y2=2.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).14.某农户2010年的年收入为4万元,由于“惠农政策”的落实,2012年年收入增加到5.8万元.设每年的年增长率x相同,则可列出方程为4(1+x)2=5.8 .【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设每年的年增长率为x,根据“由2010年的年收入4万元增加到2012年年收入5.8万元”,即可得出方程.【解答】解:设每年的年增长率为x,则2011年的年收入为4(1+x)万元,2012年的年收入为4(1+x)2万元,根据题意得:4(1+x)2=5.8.故答案为4(1+x)2=5.8.【点评】本题考查了由实际问题抽象出一元二次方程﹣﹣增长率问题.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(增长为+,下降为﹣).15.已知二次函数y=2x2﹣6x+m的图象与x轴没有交点,则m的值为m>.【分析】由二次函数y=2x2﹣6x+m的图象与x轴没有交点,可知△<0,解不等式即可.【解答】解:∵二次函数y=2x2﹣6x+m的图象与x轴没有交点,∴△<0,∴(﹣6)2﹣4×2×m<0,解得:m>;故答案为:m>.【点评】本题考查了抛物线与x轴的交点,熟记:有两个交点,△>0;有一个交点,△=0;没有交点,△<0是解决问题的关键.16.如图,在▱ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为10 .【分析】根据平行于三角形一边的直线和其他两边相交,所截得的三角形与原三角形相似,再根据相似三角形的对应边成比例可解得AB的长,而在▱ABCD中,CD=AB.【解答】解:∵EF∥AB∴△DEF∽△DAB∴EF:AB=DE:DA=DE:(DE+EA)=2:5∴AB=10∵在▱ABCD中AB=CD.∴CD=10.【点评】本题考查了相似三角形的判定和相似三角形的性质,以及平行四边形的性质,注意对应边的比不要搞错.17.已知:如图,矩形ABCD的长和宽分别为2和1,以D为圆心,AD为半径作AE弧,再以AB的中点F为圆心,FB长为半径作BE弧,则阴影部分的面积为 1 .【分析】根据题意扇形DAE的面积与扇形FBE的面积相等,则阴影部分的面积等于矩形面积的一半.【解答】解:∵AF=BF,AD=1,AB=2,∴AD=BF=1,∴扇形DAE的面积=扇形FBE的面积,∴阴影部分的面积=1×1=1.故答案为1.【点评】考查了扇形面积的求法以及拼图的能力.18.如图是反比例函数与在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x 轴分别交这两个图象于点A,B.若点P在x轴上运动,则△ABP的面积等于 5 .【分析】先设C(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数与的图象上,可得到A点坐标为(,b),B点坐标为(﹣,b),从而求出AB的长,然后根据三角形的面积公式计算即可.【解答】解:设C(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,∴当y=b,x=,即A点坐标为(,b),又∵点B在反比例函数y=﹣的图象上,∴当y=b,x=﹣,即B点坐标为(﹣,b),∴AB=﹣(﹣)=,=•AB•OC=••b=5.∴S△ABC故答案为:5.【点评】本题考查的是反比例函数系数k的几何意义,即在反比例函数y=的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.三、解答下列各题(本题有8个小题,共66分)19.(6分)解方程:x2﹣6x+4=0(用配方法)【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得 x 2﹣6x=﹣4,等式的两边同时加上一次项系数的一半的平方,得 x 2﹣6x+9=﹣4+9, 即(x ﹣3)2=5,∴x=±+3,∴x 1=+3,x 2=﹣+3.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.20.(6分)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离B (树底)8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,求树AB 的高度.【分析】先过E 作EF ⊥BD 于点E ,再根据入射角等于反射角可知,∠1=∠2,故可得出∠DEC=∠AEB ,由CD ⊥BD ,AB ⊥BD 可知∠CDE=∠ABE ,进而可得出△CDE ∽△ABE ,再由相似三角形的对应边成比例即可求出大树AB 的高度.【解答】解:过点E 作EF ⊥BD 于点E ,则∠1=∠2, ∵∠DEF=∠BEF=90°, ∴∠DEC=∠AEB , ∵CD ⊥BD ,AB ⊥BD , ∴∠CDE=∠ABE=90°, ∴△CDE ∽△ABE ,∴=,∵DE=3.2米,CD=1.6米,EB=8.4米,∴=,解得AB=4.2(米).答:树AB的高度为4.2米.【点评】本题考查的是相似三角形在实际生活中的应用、光的反射定律等知识,解答此题的关键知道入射角等于反射角,熟练掌握相似三角形的判定和性质,属于中考常考题型.21.(8分)如图,小明同学用一把直尺和一块三角板测量一个光盘的直径,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,求此光盘的直径.【分析】先画图,根据题意求出∠OAB=60°,再根据直角三角形的性质和勾股定理求得OB,从而得出光盘的直径.【解答】解:如图,设光盘的圆心为O,三角板的另外两点为C,D,连接OB,OA,∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的直径为6cm.【点评】本题考查了切线的性质,勾股定理,是基础知识要熟练掌握.22.(8分)四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图l,将扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明设计的游戏规则是两人同时抽取一张扑克牌,两张牌面数字之和为奇数时,小亮获胜;否则小明获胜.请问这个游戏规则公平吗?并说明理由.【分析】先利用树状图展示所有有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,再根据概率公式求出P(小亮获胜)和P(小明获胜),然后通过比较两概率的大小判断游戏的公平性.【解答】解:此游戏规则不公平.理由如下:画树状图得:共有12种等可能的结果,其中两张牌面数字之和为奇数的有8种情况,所以P(小亮获胜)==;P(小明获胜)=1﹣=,因为>,所以这个游戏规则不公平.【点评】本题考查了游戏公平性:判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.23.(8分)如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(4,6).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若F是OC边上一点,且∠CBF=∠BED,求点F的坐标.【分析】(1)根据题意可得中点D的坐标为(2,6),可求解析式,即可求k和点E的坐标;(2)由题意可证Rt△FBC∽Rt△DEB,可求CF的长,则可得OF的长,即可求点F的坐标.【解答】解:(1)在矩形OABC中,B(4,6),∴BC边中点D的坐标为(2,6),∵又曲线y=的图象经过点(2,6),∴k=12,∴解析式y=∵E点在AB上,∴E点的横坐标为4,∵反比例函数y=图象经过点E,∴E点纵坐标为3,∴E点坐标为(4,3);(2)由(1)得,BD=2,BE=3,BC=4,∵∠CBF=∠BED,∠BCF=∠DBE=90°∴Rt△FBC∽Rt△DEB,∴,即,∴CF=,∵OF=OC﹣CF∴OF=,即点F的坐标为(0,).【点评】本题考查了反比例函数综合题,反比例函数的性质,矩形的性质,相似三角形的性质和判定,熟练运用相似三角形的判定和性质是解决问题的关键.24.(8分)如图,已知AB是⊙O的直径,P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:PA为⊙O的切线;(2)若OB=5,OP=,求AC的长.【分析】(1)欲证明PA为⊙O的切线,只需证明OA⊥AP;(2)通过相似三角形△ABC∽△PAO的对应边成比例来求线段AC的长度.【解答】(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠B=90°.又∵OP∥BC,∴∠AOP=∠B,∴∠BAC+∠AOP=90°.∵∠P=∠BAC.∴∠P+∠AOP=90°,∴由三角形内角和定理知∠PAO=90°,即OA⊥AP.又∵OA是的⊙O的半径,∴PA为⊙O的切线;(2)解:由(1)知,∠PAO=90°.∵OB=5,∴OA=OB=5.又∵OP=,∴在直角△APO中,根据勾股定理知PA==,由(1)知,∠ACB=∠PAO=90°.∵∠BAC=∠P,∴△ABC∽△POA,∴=.∴=,解得AC=8.即AC的长度为8.【点评】本题考查的知识点有切线的判定与性质,三角形相似的判定与性质,得到两个三角形中的两组对应角相等,进而得到两个三角形相似,是解答(2)题的关键.25.(10分)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为(10+7x)元,今年生产的这种玩具每件的出厂价为(12+6x)元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10•0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12•0.5x)元/件;(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)﹣(10+7x),然后整理即可;(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量,得到w=2(1+x)(2﹣x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案.【解答】解:(1)10+7x;12+6x;(2)y=(12+6x)﹣(10+7x),∴y=2﹣x (0<x≤1);(3)∵w=2(1+x)•y=2(1+x)(2﹣x)=﹣2x2+2x+4,∴w=﹣2(x﹣0.5)2+4.5∵﹣2<0,0<x≤1,∴w有最大值,∴当x=0.5时,w=4.5(万元).最大答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.【点评】本题考查了二次函数的顶点式:y=a(x﹣k)2+h,(a≠0),当a<0,抛物线的开口向下,函数有最大值,当x=k,函数的最大值为h.也考查了代数式的表示和利润的含义以及配方法.26.(12分)如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过点A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由.【分析】方法一:(1)首先根据OA的旋转条件确定B点位置,然后过B做x轴的垂线,通过构建直角三角形和OB的长(即OA长)确定B点的坐标.(2)已知O、A、B三点坐标,利用待定系数法求出抛物线的解析式.(3)根据(2)的抛物线解析式,可得到抛物线的对称轴,然后先设出P点的坐标,而O、B坐标已知,可先表示出△OPB三边的边长表达式,然后分①OP=OB、②OP=BP、③OB=BP三种情况分类讨论,然后分辨是否存在符合条件的P点.方法二:(3)用参数表示点M坐标,分类讨论三种情况,利用两点间距离公式便可求解.(4)列出点M的参数坐标,利用MO=MB求解.此问也可通过求出OB的垂直平分线与y轴的交点得出M点.【解答】解:(1)如图,过B点作BC⊥x轴,垂足为C,则∠BCO=90°,∵∠AOB=120°,∴∠BOC=60°,又∵OA=OB=4,∴OC=OB=×4=2,BC=OB•sin60°=4×=2,∴点B的坐标为(﹣2,﹣2);(2)∵抛物线过原点O和点A、B,∴可设抛物线解析式为y=ax2+bx,将A(4,0),B(﹣2.﹣2)代入,得:,解得,∴此抛物线的解析式为y=﹣x2+x;(3)存在;如图,抛物线的对称轴是直线x=2,直线x=2与x轴的交点为D,设点P的坐标为(2,y),①若OB=OP,则22+|y|2=42,解得y=±2,当y=2时,在Rt△P′OD中,∠P′DO=90°,sin∠P′OD==,∴∠P′OD=60°,∴∠P′OB=∠P′OD+∠AOB=60°+120°=180°,即P′、O、B三点在同一直线上,∴y=2不符合题意,舍去,。
九年级(上)期中数学试卷一、选择题(本大题共16小题,共42.0分)1.下列图案中既是中心对称图形,又是轴对称图形的是()A. B. C. D.2.下列方程中,一定是一元二次方程的是()A. 2x2−3x+1=0B. (x+2)(2x−1)=2x2C. 5x2−1=0D. ax2+bx+c=03.函数y=-x2+1的图象大致为()A. B.C. D.4.下列四个图中,∠x是圆周角的是()A. B. C. D.5.下列方程中没有实数根的是()A. x2−x−1=0B. x2+3x+2=0C. 2015x2+11x−20=0D. x2+x+2=06.二次函数y=x2-2x+2的顶点坐标是()A. (1,1)B. (2,2)C. (1,2)D. (1,3)7.在平面直角坐标系中,把点P(-3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A. (3,2)B. (2,−3)C. (−3,−2)D. (3,−2)8.如图,一块直角三角板ABC的斜边AB与量角器的直径重合,点D对应54°,则∠BCD的度数为()A. 27∘B. 54∘C. 63∘D. 36∘9.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A. m=0,n=0B. m=0,n≠0C. m≠0,n=0D. m≠0,n≠010.如图,MN是⊙O的直径,MN=2,点A在⊙O上,∠AMN=30°,B为AN的中点,P是直径MN上一动点,则PA+PB的最小值为()A. 22B. 2C. 1D. 211.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使点A′恰好落在AB上,则旋转角度为()A. 30∘B. 45∘C. 60∘D. 90∘12.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A. △ACD的外心B. △ABC的外心C. △ACD的内心D. △ABC的内心13.某经济开发区今年一月份工业产值达50亿元,第一季度总产值为175亿元,问2、3月份平均每月的增长率是多少?设平均每月的增长率为x,根据题意得方程为()A. 50(1+x)2=175B. 50+50(1+x)2=175C. 50(1+x)+50(1+x)2=175D. 50+50(1+x)+50(1+x)2=17514.如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A. (0,0)B. (1,0)C. (1,−1)D. (2.5,0.5)15.观察下列图形及图形所对应的算式,根据你发现的规律计算1+8+16+24+…+8n(n是正整数)的结果为()A. (2n+1)2B. (2n−1)2C. (n+2)2D. n216.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=-1是对称轴,有下列判断:①b-2a=0;②4a-2b+c<0;③a-b+c=-9a;④若(-3,y1),(32,y2)是抛物线上两点,则y1>y2,其中正确的是()A. ①②③B. ①③④C. ①②④D. ②③④二、填空题(本大题共3小题,共12.0分)17.75°的圆心角所对的弧长是2.5πcm,则此弧所在圆的半径是______cm.18.已知关于x的方程x2-2(k-1)x+k=0的两个实数根为x1,x2.若x1+x2-3=x1x2,则k的值为______.19.如图,把△ABC放置在平面直角坐标系中,已知AB=BC,∠ABC=90°,A(3,0),B(0,-1),点C在第四象限.则点C的坐标是______,若点A关于y轴的对称点为A′,将△ABC绕点B逆时针旋转到A与A′重合,此时点C的坐标是______.三、计算题(本大题共2小题,共16.0分)20.解方程:(用指定方法解下列一元二次方程)(1)2x2+4x-1=0(公式法)(2)x2+6x+5=0(配方法)21.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.四、解答题(本大题共5小题,共50.0分)22.如图,已知抛物线y=x2+x-6与x轴两个交点分别是A、B(点A在点B的左侧).(1)求A、B的坐标;(2)利用函数图象,写出y<0时,x的取值范围.23.已知:关于x的方程2x2+kx-1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是-1,求另一个根及k值.24.如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?答:______.(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.25.(1)如图(1)已知,已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.求证:△ODE是等边三角形;(2)如图(2)若∠A=60°,AB≠AC,则(1)的结论是否成立?如果成立,请给出证明,如果不成立,请说明理由.26.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)当销售价定为多少元时会获得最大利润?求出最大利润.答案和解析1.【答案】B【解析】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2.【答案】C【解析】解:A,2x2-+1=0,不是整式方程,故不是一元二次方程;B,原方程变形为:3x-2=0,故不是一元二次方程;C,5x2-1=0是一元二次方程;D,ax2+bx+c=0,当a=0时,不是一元二次方程;故选:C.根据一元二次方程的概念判断即可.本题考查的是一元二次方程的概念,一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数;②只含有一个未知数;③未知数的最高次数是2.3.【答案】B【解析】解:∵二次项系数a<0,∴开口方向向下,∵一次项系数b=0,∴对称轴为y轴,∵常数项c=1,∴图象与y轴交于(0,1),故选:B.根据二次函数的开口方向,对称轴,和y轴的交点可得相关图象.考查二次函数的图象的性质:二次项系数a<0,开口方向向下;一次项系数b=0,对称轴为y轴;常数项是抛物线与y轴的交点的纵坐标.4.【答案】C【解析】解:根据圆周角定义:即可得∠x是圆周角的有:C,不是圆周角的有:A,B,D.故选:C.由圆周角的定义:顶点在圆上,并且两边都与圆相交的角叫做圆周角,即可求得答案.此题考查了圆周角定义.此题比较简单,解题的关键是理解圆周角的定义.5.【答案】D【解析】解:A、x2-x-1=0,△=(-1)2-4×(-1)=9>0,方程有两个不相等的根,此选项错误;B、x2+3x+2=0,△=32-4×2=1>0,方程有两个不相等的根,此选项错误;C、2015x2+11x-20=0,△=112-4×2015×(-20)>0,方程有两个不相等的根,此选项错误;D、x2+x+2=0,△=12-4×2=-7<0,方程没有实数根,此选项正确;故选:D.分别求出各个选项中一元二次方程根的判别式,进而作出判断.本题主要考查了根的判别式的知识,利用一元二次方程根的判别式(△=b2-4ac)判断方程的根的情况.一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.6.【答案】A【解析】解:y=x2-2x+2的顶点横坐标是-=1,纵坐标是=1,y=x2-2x+2的顶点坐标是(1,1).故选:A.根据顶点坐标公式,可得答案.本题考查了二次函数的性质,二次函数的顶点坐标是(-,).7.【答案】D【解析】解:根据题意得,点P关于原点的对称点是点P′,∵P点坐标为(-3,2),∴点P′的坐标(3,-2).故选:D.将点P绕原点O顺时针旋转180°,实际上是求点P关于原点的对称点的坐标.本题考查了坐标与图形的变换-旋转,熟练掌握关于原点的对称点的坐标特征是解决问题的关键.8.【答案】C【解析】解:∵一块直角三角板ABC的斜边AB与量角器的直径重合,∴点A、B、C、D都在以AB为直径的圆上,∵点D对应54°,即∠AOD=54°,∴∠ACD=∠AOD=27°,∴∠BCD=90°-∠ACD=63°.故选:C.先根据圆周角定理得到∠ACD=∠AOD=27°,然后利用互余求解.此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.9.【答案】C【解析】解:方程有一个根是0,即把x=0代入方程,方程成立.得到n=0;则方程变成x2+mx=0,即x(x+m)=0则方程的根是0或-m,因为两根中只有一根等于0,则得到-m≠0即m≠0方程x2+mx+n=0的两根中只有一个等于0,正确的条件是m≠0,n=0.故选:C.代入方程的解求出n的值,再用因式分解法确定m的取值范围.本题主要考查了方程的解的定义,以及因式分解法解一元二次方程.10.【答案】B【解析】解:作A关于MN的对称点Q,连接MQ,BQ,BQ交MN于P,此时AP+PB=QP+PB=QB,根据两点之间线段最短,PA+PB的最小值为QB的长度,连接AO,OB,OQ,∵B为中点,∴∠BON=∠AMN=30°,∴∠QON=2∠QMN=2×30°=60°,∴∠BOQ=30°+60°=90°.∵直径MN=2,∴OB=1,∴BQ==.则PA+PB的最小值为.故选:B.首先作A关于MN的对称点Q,连接MQ,然后根据圆周角定理、圆的对称性质和勾股定理解答.本题较复杂,解答此题的关键是找到点A的对称点,把题目的问题转化为两点之间线段最短解答.11.【答案】C【解析】解:∵∠ACB=90°,∠ABC=30°,∴∠A=60°,∵△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,∴CA′=CA,∠ACA′等于旋转角,∴△ACA′为等边三角形,∴∠ACA′=60°,即旋转角度为60°.故选:C.先利用互余得到∠A=60°,再根据旋转的性质得CA′=CA,∠ACA′等于旋转角,然后判断△ACA′为等边三角形得到∠ACA′=60°,从而得到旋转角的度数.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.本题的关键是证明△ACA′为等边三角形.12.【答案】B【解析】解:由图中可得:OA=OB=OC=,所以点O在△ABC的外心上,故选:B.根据网格得出OA=OB=OC,进而判断即可.此题考查三角形的外心问题,关键是根据勾股定理得出OA=OB=OC.13.【答案】D【解析】【分析】本题考查的是由实际问题抽象出一元二次方程,设平均每月的增长率为x,先用x表示出二月份的产值,再根据题意表示出三月份的产值,然后将三个月的产值相加,即可列出方程.【解答】解:二月份的产值为:50(1+x),三月份的产值为:50(1+x)(1+x)=50(1+x)2,故第一季度总产值为:50+50(1+x)+50(1+x)2=175.故选D.14.【答案】C【解析】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,∴点A的对应点为点D,点B的对应点为点E,作线段AD和BE的垂直平分线,它们的交点为P(1,-1),∴旋转中心的坐标为(1,-1).故选:C.先根据旋转的性质得到点A的对应点为点D,点B的对应点为点E,再根据旋转的性质得到旋转中心在线段AD的垂直平分线,也在线段BE的垂直平分线,即两垂直平分线的交点为旋转中心,而易得线段BE的垂直平分线为直线x=1,线段AD的垂直平分线为以AD为对角线的正方形的另一条对角线所在的直线.本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.15.【答案】A【解析】解:图(1):1+8=9=(2×1+1)2;图(2):1+8+16=25=(2×2+1)2;图(3):1+8+16+24=49=(3×2+1)2;…;那么图(n):1+8+16+24+…+8n=(2n+1)2.故选:A.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.主要考查了学生通过特例分析从而归纳总结出一般结论的能力.注意此题的规律为:(2n+1)2.16.【答案】B【解析】解:∵抛物线的对称轴是直线x=-1,∴-=-1,b=2a,∴b-2a=0,故①正确;∵抛物线的对称轴是直线x=-1,和x轴的一个交点是(2,0),∴抛物线和x轴的另一个交点是(-4,0),∴把x=-2代入得:y=4a-2b+c>0,故②错误;∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,又∵b=2a,∴c=-4a-2b=-8a,∴a-b+c=a-2a-8a=-9a,故③正确;根据图象,可知抛物线对称轴的右边y随x的增大而减小,∵抛物线和x轴的交点坐标是(2,0)和(-4,0),抛物线的对称轴是直线x=-1,∴点(-3,y1)关于对称轴的对称点的坐标是((1,y1),∵(,y2),1<,∴y1>y2,故④正确;即正确的有①③④,故选:B.利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.17.【答案】6【解析】解:由题意得:圆的半径R=180×2.5π÷(75π)=6cm.故本题答案为:6.由弧长公式:l=计算.本题考查了弧长公式.18.【答案】5【解析】解:∵方程x2-2(k-1)x+k=0的两个实数根为x1、x2,∴x1+x2=2(k-1),x1x2=k.∵x1+x2-3=x1x2,∴2(k-1)-3=k,解得:k=5.故答案为:5.根据根与系数的关系可得出x1+x2=2(k-1)、x1x2=k,结合x1+x2-3=x1x2可得出关于k的一元一次方程,解之即可得出结论.本题考查了根与系数的关系以及解一元一次方程,根据根与系数的关系结合x1+x2-3=x1x2找出关于k的一元一次方程是解题的关键.19.【答案】(1,-4)(1,2)【解析】解:(1)如图:过点C作CD⊥y轴于点D,∵∠ABC=90°,∠AOB=90°,∴∠OAB+∠OBA=90°,∠OBA+∠DBC=90°,∴∠OAB=∠DBC.在△OAB和△DBC中,,∴△OAB≌△DBC(AAS),∴BD=AO,DC=OB.∵A(3,0),B(0,-1),∴BD=AO=3,DC=OB=1,OD=OB+BD=4,∴点C的坐标为(1,-4).故答案为:(1,-4).(2)设将△ABC绕点B逆时针旋转到△A'BC',过点C'作C'F⊥y轴,垂足为点F,∵点A关于y轴的对称点为A′,∴点A'(-3,0)∴A'O=3∵∠A'BO+∠C'BF=90°,∠C'BF+∠BC'F=90°∴∠A'BO=∠BC'F,且∠A'OB=∠C'FB=90°,A'B=BC'∴△A'BO≌△BC'F(AAS)∴A'O=BF=3,OB=C'F=1∴OF=2∴点C'(1,2)故答案为:(1,2)(1)过点C作CD⊥y轴于点D,通过角的计算可找出∠OAB=∠DBC,结合∠AOB=∠BDC、AB=BC,即可证出△OAB≌△DBC(AAS),根据全等三角形的性质即可得出BD=AO、DC=OB,再结合点A、B的坐标即可得出DC、OD的长度,进而可得出点C的坐标;(2)设将△ABC绕点B逆时针旋转到△A'BC',过点C'作C'F⊥y轴,垂足为点F,可证△A'BO≌△BC'F(AAS),可得A'O=BF=3,OB=C'F=1,即可求点C坐标.本题考查了全等三角形的判定与性质以及坐标与图形性质,熟练运用全等三角形的判定是解题的关键.20.【答案】解:(1)∵a=2、b=4、c=-1,∴△=42-4×2×(-1)=24>0,则x=−4±264=−2±62;(2)∵x2+6x+5=0,∴x2+6x=-5,则x2+6x+9=-5+9,即(x+3)2=4,∴x+3=2或x+3=-2,解得:x=-1或x=-5.【解析】(1)先由a、b、c的值判断△的符号,再代入求根公式计算可得;(2)将常数项移到方程的右边,再两边配上一次项系数一半的平方,写成完全平方式后开方即可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.【答案】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA-AE=4-2=2,在Rt△OEF中,∠DEB=30°,∴OF=12OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF=OD2−OF2=15,则CD=2DF=215.【解析】过O作OF垂直于CD,连接OD,利用垂径定理得到F为CD的中点,由AE+EB求出直径AB的长,进而确定出半径OA与OD的长,由OA-AE求出OE的长,在直角三角形OEF中,利用30°所对的直角边等于斜边的一半求出OF的长,在直角三角形ODF中,利用勾股定理求出DF的长,由CD=2DF即可求出CD的长.此题考查了垂径定理,勾股定理,以及含30°直角三角形的性质,利用了转化的思想,熟练掌握定理是解本题的关键.22.【答案】21.解:(1)令y=0,即x2+x-6=0解得x=-3或x=2,∵点A在点B的左侧∴点A、B的坐标分别为(-3,0)、(2,0)(2)∵当y<0时,x的取值范围为:-3<x<2【解析】(1)令y=0代入y=x2+x-6即可求出x的值,此时x的值分别是A、B两点的横坐标.(2)根据图象可知:y<0是指x轴下方的图象,根据A、B两点的坐标即可求出x的范围.本题考查二次函数与x轴的交点问题,涉及一元二次方程的解法,根据图象解不等式等知识.23.【答案】证明:(1)∵a=2,b=k,c=-1∴△=k2-4×2×(-1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0,∴方程2x2+kx-1=0有两个不相等的实数根.解:(2)把x=-1代入原方程得,2-k-1=0∴k=1∴原方程化为2x2+x-1=0,解得:x1=-1,x2=12,即另一个根为12.【解析】本题是对根的判别式与根与系数关系的综合考查,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.并且本题考查了一元二次方程的解的定义,已知方程的一个根求方程的另一根与未知系数是常见的题型.若方程有两个不相等的实数根,则应有△=b2-4ac>0,故计算方程的根的判别式即可证明方程根的情况,第二小题可以直接代入x=-1,求得k的值后,解方程即可求得另一个根.24.【答案】不正确【解析】解:(1)不正确;故答案为:不正确;(2)连接BE,可得△ADG≌△ABE,则DG=BE.如图,∵四边形ABCD是正方形,∴AD=AB,∵四边形GAEF是正方形,∴AG=AE,又∵∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.(1)显然,当A,F,B在同一直线上时,DF≠BF.(2)注意使用两个正方形的边和90°的角,可判断出△DAG≌△BAE,那么DG=BE.本题考查了全等三角形的性质和判定和正方形的性质的应用,解此题关键是求出△DAG≌△BAE,题目比较好,难度也适中.25.【答案】解:(1)∵△BAC是等边三角形,∴∠B=∠C=60°.∵OD=OB=OE=OC,∴△OBD和△OEC都是等边三角形.∴∠BOD=∠COE=60°.∴∠DOE=60°.∴△ODE是等边三角形.(2)结论(1)仍成立.证明:连接CD,∵BC是直径,∴∠BDC=90°.∴∠ADC=90°.∵∠A=60°,∴∠ACD=30°.∴∠DOE=2∠ACD=60°.∵OD=OE,∴△ODE是等边三角形.【解析】(1)根据有一个角是60°的等腰三角形是等边三角形进行证明;(2)此题只要求得∠BOD+∠COE=120°即可.根据三角形的内角和定理和等腰三角形的性质进行求解或构造∠DOE所对的弧所对的圆周角,只要求得圆周角是30°即可.解答本题的关键是能够熟练运用圆周角定理及其推论求得有关角的度数.注意:有一个角是60°的等腰三角形是等边三角形.26.【答案】解:(1)由题意可得:y=(x-30)[600-10(x-40)],=-10x2+1300x-30000;(2)当x=45时,600-10(x-40)=550(件),y=-10×452+1300×45-30000=8250(元);(3)y=-10x2+1300x-30000,=-10(x-65)2+12250,故当x=65(元),最大利润为12250元.【解析】(1)利用已知表示出每件的利润以及销量进而表示出总利润即可;(2)将x=45代入求出即可求出月销售量和销售利润;(3)利用配方法求出二次函数最值即可得出答案.此题主要考查了二次函数的应用以及配方法求二次函数最值,得出y与x的函数关系是解题关键.。
2016-2017学年河北省保定市定州市九年级(上)期中数学试卷一、选择题(本大题共12个小题;每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.点P(5,﹣3)关于原点的对称点是()A.(5,3)B.(﹣3,5)C.(﹣5,3)D.(3,﹣5)2.方程(x+3)(x﹣2)=0的解是()A.x1=3,x2=2 B.x1=﹣3,x2=2 C.x1=3,x2=﹣2 D.x1=﹣3,x2=﹣2 3.在抛物线y=2x2﹣3x+1上的点是()A.(0,﹣1)B. C.(﹣1,5)D.(3,4)4.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)25.将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.正方形D.菱形6.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140°B.70°C.60°D.40°7.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣9.两年前生产某药品的成本是5000元,现在生产这种药品的成本是3000元,设该药品成本的年平均下降率为x,则下面所列方程中正确的是()A.5000(1﹣2x)=3000 B.3000(1+2x)=5000C.3000(1+x)2=5000 D.5000(1﹣x)2=300010.若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC的面积为()A.2+B.C.2+或2﹣D.4+2或2﹣11.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y212.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.二、填空题(本大题共6个小题;每小题3分,共18分,把答案写在题中横线上)13.把一元二次方程3x2+1=7x化为一般形式是.14.已知方程x2﹣3x+1=0的两个根是x1,x2,则:x1x2﹣x1﹣x2=.15.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=.16.如图,CD是⊙O的直径,弦AB⊥CD,若∠AOB=100°,则∠ABD=.17.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为.18.如图,两条抛物线,与分别经过点(﹣2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为.三、解答下列各题(本题有8个小题,共66分)19.(12分)用适当的方法解一元二次方程:(1)x2+3x﹣4=0(2)3x(x﹣2)=2(2﹣x)(3)(x+8)(x+1)=﹣12.20.(6分)如图所示,在平面直角坐标系中,点A、B的坐标分别为(4,2)和(3,0),将△OAB绕原点O按逆时针方向旋转90°到△OA′B′.(1)画出△OA′B′;(2)点A′的坐标为;(3)求BB′的长.21.(6分)如图AB是⊙O的直径,C是⊙O上的一点,若AC=8cm,AB=10cm,OD⊥BC于点D,求BD的长.22.(8分)已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.23.(8分)用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2.(1)求出y与x的函数关系式.(2)当边长x为多少时,矩形的面积最大,最大面积是多少?24.(8分)已知二次函数y=﹣3x+4.(1)将其配方成y=a(x﹣k)2+h的形式,并写出它的图象的开口方向、顶点坐标、对称轴.(2)画出图象,指出y<0时x的取值范围.(3)当0≤x≤4时,求出y的最小值及最大值.25.(8分)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC 绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由.26.(10分)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.2016-2017学年河北省保定市定州市九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.点P(5,﹣3)关于原点的对称点是()A.(5,3)B.(﹣3,5)C.(﹣5,3)D.(3,﹣5)【考点】关于原点对称的点的坐标.【分析】利用两点关于原点对称,横坐标互为相反数,纵坐标互为相反数求出即可.【解答】解:∵5的相反数是﹣5,﹣3的相反数是3,∴点P(5,﹣3)关于原点的对称点的坐标为(﹣5,3),故选:C.【点评】此题主要考查了两点关于原点对称的坐标的特点:两点关于原点对称,两点的横坐标互为相反数,纵坐标互为相反数,用到的知识点为:a的相反数为﹣a.2.方程(x+3)(x﹣2)=0的解是()A.x1=3,x2=2 B.x1=﹣3,x2=2 C.x1=3,x2=﹣2 D.x1=﹣3,x2=﹣2【考点】解一元二次方程-因式分解法.【分析】先观察再确定方法解方程.根据左边乘积为0的特点应用因式分解法.【解答】解:根据题意可知:x+3=0或x﹣2=0;即x1=﹣3,x2=2.故选B.【点评】此题较简单,只要同学们明白有理数的乘法法则即可,即两数相乘等于0,那么其中一个数必然等于0.3.在抛物线y=2x2﹣3x+1上的点是()A.(0,﹣1)B. C.(﹣1,5)D.(3,4)【考点】二次函数图象上点的坐标特征.【分析】分别计算出自变量为0、、﹣1、3所对应的函数值,然后根据二次函数图象上点的坐标特征进行判断.【解答】解:当x=0时,y=2x2﹣3x+1=1;当x=时,y=2x2﹣3x+1=2×﹣3×+1=0;当x=﹣1时,y=2x2﹣3x+1=2×1+3+1=6;当x=3时,y=2x2﹣3x+1=2×9﹣3×3+1=10;所以点(,0)在抛物线y=2x2﹣3x+1上,点(0,﹣1)、(﹣1,5)、(3,4)不在抛物线y=2x2﹣3x+1上.故选B.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.4.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)2【考点】二次函数的性质.【分析】根据二次函数的性质求出各个函数的对称轴,选出正确的选项.【解答】解:y=(x+2)2的对称轴为x=﹣2,A正确;y=2x2﹣2的对称轴为x=0,B错误;y=﹣2x2﹣2的对称轴为x=0,C错误;y=2(x﹣2)2的对称轴为x=2,D错误.故选:A.【点评】本题考查的是二次函数的性质,正确求出二次函数图象的对称轴是解题的关键.5.将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是()A.平行四边形B.矩形C.正方形D.菱形【考点】旋转对称图形.【分析】根据旋转对称图形的性质,可得出四边形需要满足的条件,结合选项即可得出答案.【解答】解:由题意可得,此四边形的对角线互相垂直、平分且相等,则这个四边形是正方形.故选:C.【点评】本题主要考查了旋转对称图形旋转的最小的度数的计算方法,把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角.6.如图,点A,B,C,P在⊙O上,CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,则∠P的度数为()A.140°B.70°C.60°D.40°【考点】圆周角定理.【分析】先根据四边形内角和定理求出∠DOE的度数,再由圆周角定理即可得出结论.【解答】解:∵CD⊥OA,CE⊥OB,垂足分别为D,E,∠DCE=40°,∴∠DOE=180°﹣40°=140°,∴∠P=∠DOE=70°.故选B.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.7.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°【考点】旋转的性质;正方形的性质.【分析】由旋转前后的对应角相等可知,∠DFC=∠BEC=60°;一个特殊三角形△ECF为等腰直角三角形,可知∠EFC=45°,把这两个角作差即可.【解答】解:∵△BCE绕点C顺时针方向旋转90°得到△DCF,∴CE=CF,∠DFC=∠BEC=60°,∠EFC=45°,∴∠EFD=60°﹣45°=15°.故选:B.【点评】本题考查旋转的性质和正方形的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.8.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣【考点】二次函数图象与系数的关系.【分析】根据二次函数的图象与系数的关系对各选项进行逐一分析即可.【解答】解:A、∵抛物线的开口向上,∴a>0,故选项A错误;B、∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选项B错误;C、由函数图象可知,当﹣1<x<3时,y<0,故选项C错误;D、∵抛物线与x轴的两个交点分别是(﹣1,0),(3,0),∴对称轴x=﹣==1,故选项D正确.故选D.【点评】本题考查的是二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键.9.两年前生产某药品的成本是5000元,现在生产这种药品的成本是3000元,设该药品成本的年平均下降率为x,则下面所列方程中正确的是()A.5000(1﹣2x)=3000 B.3000(1+2x)=5000C.3000(1+x)2=5000 D.5000(1﹣x)2=3000【考点】由实际问题抽象出一元一次方程.【分析】等量关系为:2年前的生产成本×(1﹣下降率)2=现在的生产成本,把相关数值代入计算即可.【解答】解:设这种药品成本的年平均下降率是x,根据题意得:5000(1﹣x)2=3000,故选D.【点评】本题考查一元二次方程的应用;得到2年内变化情况的等量关系是解决本题的关键.10.若点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,则△ABC的面积为()A.2+B.C.2+或2﹣D.4+2或2﹣【考点】三角形的外接圆与外心;等腰三角形的性质.【分析】根据题意可以画出相应的图形,然后根据不同情况,求出相应的边的长度,从而可以求出不同情况下△ABC的面积,本题得以解决.【解答】解:由题意可得,如右图所示存在两种情况,当△ABC为△A1BC时,连接OB、OC,∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,∴CD=1,OD=,∴=2﹣,当△ABC为△A2BC时,连接OB、OC,∵点O是等腰△ABC的外心,且∠BOC=60°,底边BC=2,OB=OC,∴△OBC为等边三角形,OB=OC=BC=2,OA1⊥BC于点D,∴CD=1,OD=,===2+,∴S△A2BC由上可得,△ABC的面积为或2+,故选C.【点评】本题考查三角形的外接圆和外心,等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.11.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y3>y2>y1D.y3>y1>y2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的对称性,可利用对称性,找出点A的对称点A′,再利用二次函数的增减性可判断y值的大小.【解答】解:∵函数的解析式是y=﹣(x+1)2+a,如右图,∴对称轴是x=﹣1,∴点A关于对称轴的点A′是(0,y1),那么点A′、B、C都在对称轴的右边,而对称轴右边y随x的增大而减小,于是y1>y2>y3.故选A.【点评】本题考查了二次函数图象上点的坐标的特征,解题的关键是能画出二次函数的大致图象,据图判断.12.已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由二次函数图象得到字母系数的正负,再与一次函数和反比例函数的图象相比较看是否一致.逐一排除.【解答】解:A、由二次函数的图象可知a<0,此时直线y=ax+b应经过二、四象限,故A可排除;B、由二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b应经过一、二、四象限,故B可排除;C、由二次函数的图象可知a>0,此时直线y=ax+b应经过一、三象限,故C可排除;正确的只有D.故选:D.【点评】此题主要考查了一次函数图象与二次函数图象,应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.二、填空题(本大题共6个小题;每小题3分,共18分,把答案写在题中横线上)13.把一元二次方程3x2+1=7x化为一般形式是3x2﹣7x+1=0.【考点】一元二次方程的一般形式.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0).【解答】解:由3x2+1=7x,得3x2﹣7x+1=0,即方程3x2+1=7x化为一元二次方程的一般形式为3x2﹣7x+1=0.故答案是:3x2﹣7x+1=0.【点评】考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.14.已知方程x2﹣3x+1=0的两个根是x1,x2,则:x1x2﹣x1﹣x2=﹣2.【考点】根与系数的关系.【分析】根据根与系数的关系得到x1+x2=3,x1x2=1,然后利用整体代入的方法计算原式的值.【解答】解:根据题意得x1+x2=3,x1x2=1,所以x1x2﹣x1﹣x2=x1x2﹣(x1+x2)=1﹣3=﹣2.故答案为﹣2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.15.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=﹣1.【考点】二次函数的性质.【分析】根据两已知点的坐标特征得到它们是抛物线的对称点,而这两个点关于直线x=﹣1对称,由此可得到抛物线的对称轴.【解答】解:∵点(3,4)和(﹣5,4)的纵坐标相同,∴点(3,4)和(﹣5,4)是抛物线的对称点,而这两个点关于直线x=﹣1对称,∴抛物线的对称轴为直线x=﹣1.故答案为﹣1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.16.如图,CD是⊙O的直径,弦AB⊥CD,若∠AOB=100°,则∠ABD=25°.【考点】圆周角定理.【分析】根据垂径定理得到=,求出∠AOD的度数,根据圆周角定理求出∠ABD的度数.【解答】解:∵CD是⊙O的直径,弦AB⊥CD,∴=,∴∠AOD=∠BOD=∠AOB=50°,∴∠ABD=∠AOD=25°,故答案为:25°.【点评】本题考查的是圆周角定理和垂径定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.17.抛物线y=2x2+8x+m与x轴只有一个公共点,则m的值为8.【考点】抛物线与x轴的交点.【分析】由抛物线y=2x2+8x+m与x轴只有一个公共点可知,对应的一元二次方程2x2+8x+m=0,根的判别式△=b2﹣4ac=0,由此即可得到关于m的方程,解方程即可求得m的值.【解答】解:∵抛物线与x轴只有一个公共点,∴△=0,∴b2﹣4ac=82﹣4×2×m=0;∴m=8.故答案为:8.【点评】此题主要考查了二次函数根的判别式的和抛物线与x轴的交点个数的关系.18.如图,两条抛物线,与分别经过点(﹣2,0),(2,0)且平行于y轴的两条平行线围成的阴影部分的面积为8.【考点】二次函数综合题.【分析】把阴影图形分割拼凑成矩形,利用矩形的面积即可求得答案.【解答】解:如图,过y2=﹣x2﹣1的顶点(0,﹣1)作平行于x轴的直线与y1=﹣x2+1围成的阴影,同过点(0,﹣3)作平行于x轴的直线与y2=﹣x2﹣1围成的图形形状相同,故把阴影部分向下平移2个单位即可拼成一个矩形,因此矩形的面积为4×2=8.故填8.【点评】此题主要考查利用二次函数图象的特点与分割拼凑的方法求不规则图形的面积.三、解答下列各题(本题有8个小题,共66分)19.(12分)(2016秋•定州市期中)用适当的方法解一元二次方程:(1)x2+3x﹣4=0(2)3x(x﹣2)=2(2﹣x)(3)(x+8)(x+1)=﹣12.【考点】解一元二次方程-因式分解法.【分析】(1)因式分解法求解可得;(2)因式分解法求解可得;(3)整理成一般式后,因式分解法求解可得.【解答】解:(1)∵(x﹣1)(x+4)=0,∴x﹣1=0或x+4=0,解得:x=1或x=﹣4;(2)∵3x(x﹣2)+2(x﹣2)=0,∴(x﹣2)(3x+2)=0,∴x﹣2=0或3x+2=0,解得:x=2或x=﹣;(3)整理成一般式可得x2+9x+20=0,∵(x+4)(x+5)=0,∴x+4=0或x+5=0,解得:x=﹣4或x=﹣5.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.如图所示,在平面直角坐标系中,点A、B的坐标分别为(4,2)和(3,0),将△OAB绕原点O按逆时针方向旋转90°到△OA′B′.(1)画出△OA′B′;(2)点A′的坐标为(﹣2,4);(3)求BB′的长.【考点】作图-旋转变换.【分析】(1)利用旋转的性质进而得出对应点坐标求出即可;(2)利用(1)中所画图形得出点A′的坐标;(3)利用勾股定理得出BB′的长.【解答】解:(1)如图所示:△OA′B′即为所求;(2)如图所示:点A′的坐标为:(﹣2,4);故答案为:(﹣2,4);(3)BB′==3.故答案为:3.【点评】此题主要考查了旋转变换以及勾股定理,根据题意得出对应点位置是解题关键.21.如图AB是⊙O的直径,C是⊙O上的一点,若AC=8cm,AB=10cm,OD⊥BC 于点D,求BD的长.【考点】圆周角定理;勾股定理;三角形中位线定理.【分析】由于AB是⊙O的直径,根据圆周角定理可得∠ACB=90°,可得出OD∥AC;由于AO=OB,则OD是△ABC的中位线,即BD=DC=BC,而BC的值可由勾股定理求得,由此得解.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°;∵OD⊥BC,∴OD∥AC,又∵AO=OB,∴OD是△ABC的中位线,即BD=BC;Rt△ABC中,AB=10cm,AC=8cm;由勾股定理,得:BC==6cm;故BD=BC=3cm.【点评】此题主要考查了圆周角定理、勾股定理、三角形中位线定理等知识,能够正确的判断出BD与BC的关系是解答此题的关键.22.已知关于x的方程x2+2x+a﹣2=0.(1)若该方程有两个不相等的实数根,求实数a的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.【考点】根的判别式;一元二次方程的解;根与系数的关系.【分析】(1)关于x的方程x2﹣2x+a﹣2=0有两个不相等的实数根,即判别式△=b2﹣4ac>0.即可得到关于a的不等式,从而求得a的范围.(2)设方程的另一根为x1,根据根与系数的关系列出方程组,求出a的值和方程的另一根.【解答】解:(1)∵b2﹣4ac=(2)2﹣4×1×(a﹣2)=12﹣4a>0,解得:a<3.∴a的取值范围是a<3;(2)设方程的另一根为x1,由根与系数的关系得:,解得:,则a的值是﹣1,该方程的另一根为﹣3.【点评】本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23.用长为20cm的铁丝,折成一个矩形,设它的一边长为xcm,面积为ycm2.(1)求出y与x的函数关系式.(2)当边长x为多少时,矩形的面积最大,最大面积是多少?【考点】二次函数的应用.【分析】(1)已知一边长为xcm,则另一边长为(20﹣2x).根据面积公式即可解答.(2)把函数解析式用配方法化简,得出y的最大值.【解答】解:(1)已知一边长为xcm,则另一边长为(10﹣x).则y=x(10﹣x)化简可得y=﹣x2+10x(2)y=10x﹣x2=﹣(x2﹣10x)=﹣(x﹣5)2+25,所以当x=5时,矩形的面积最大,最大为25cm2.【点评】本题考查的是二次函数的应用,难度一般,重点要注意配方法的运用.24.已知二次函数y=﹣3x+4.(1)将其配方成y=a(x﹣k)2+h的形式,并写出它的图象的开口方向、顶点坐标、对称轴.(2)画出图象,指出y<0时x的取值范围.(3)当0≤x≤4时,求出y的最小值及最大值.【考点】二次函数的三种形式;二次函数的图象;二次函数的最值.【分析】(1)把二次函数化为顶点式的形式,进而可得出结论;(2)根据二次函数的顶点坐标及与x轴的交点坐标画出函数图象,根据二次函数的图象可直接得出y<0时x的取值范围;(3)直接根据二次函数的图象即可得出结论.【解答】解:(1)原二次函数可化为:y=(x﹣3)2﹣;开口方向向上,顶点坐标(3,,对称轴:直线x=3;(2)如图所示,由图可知,当2<x<4时,y<0;(3)当x=0时,y有最大值4,当x=3时,y有最小值﹣.【点评】本题考查的是二次函数的三种形式,熟知二次函数的顶点式是解答此题的关键.25.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C 按顺时针方向旋转60°得△ADC,连接OD.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由.【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质.【分析】(1)由旋转的性质可知CO=CD,∠OCD=60°,可判断:△COD是等边三角形;(2)由(1)可知∠COD=60°,当α=150°时,∠ADO=∠ADC﹣∠CDO,可判断△AOD为直角三角形.【解答】(1)证明:∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴∠OCD=60°,CO=CD,∴△OCD是等边三角形;(2)解:△AOD为直角三角形.理由:∵△COD是等边三角形.∴∠ODC=60°,∵将△BOC绕点C按顺时针方向旋转60°得△ADC,∴∠ADC=∠BOC=α,∴∠ADC=∠BOC=150°,∴∠ADO=∠ADC﹣∠CDO=150°﹣60°=90°,于是△AOD是直角三角形.【点评】本题考查了旋转的性质,等边三角形的判定,等腰三角形的性质,关键是利用旋转前后,对应边相等,对应角相等解题.26.(10分)(2015•佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【考点】二次函数综合题.【分析】(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;=S△POQ+S△梯形PQBA﹣S△BOA,(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.【解答】解:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).【点评】本题是二次函数的综合题型,其中涉及到两函数图象交点的求解方法,二次函数顶点坐标的求解方法,三角形的面积,待定系数法求一次函数的解析式,难度适中.利用数形结合与方程思想是解题的关键.。
河北省定州市2018届九年级数学上学期期中试题九年级数学参考答案一、选择题1—6: CACCBC; 7—12:DDDCCB.二、填空题13. ﹣2;14. 0或1;15. 10°;16. 5;17. 25+25(1+x)+25(1+x)2=82.75;18. ﹣1。
三、解答题19. (1)x==;(2)x=﹣1或x=﹣5.20.解:(1)令y=0,即x2+x﹣6=0解得x=﹣3或x=2,∵点A在点B的左侧∴点A、B的坐标分别为(﹣3,0)、(2,0)(2)当y<0时,x的取值范围为:﹣3<x<221. 解:过点作,垂足为,连结OD.∵ ,∴OD.=.∵ ∠,∴ ,∴ =22. (1)证明:∵a=2,b=k,c=﹣1∴△=k2﹣4×2×(﹣1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0,∴方程2x2+kx﹣1=0有两个不相等的实数根.(2)解:把x=﹣1代入原方程得,2﹣k﹣1=0∴k=1∴原方程化为2x2+x﹣1=0,解得:x1=﹣1,x2=,即另一个根为.23. 解:(1)换元,降次(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.24. 解:(1)不正确;(2)能找到。
连接BE,则可证得DG=BE,则DG=BE.如图,∵四边形ABCD是正方形,∴AD=AB,∵四边形GAEF是正方形,∴AG=AE,又∵∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.25. 解:(1)由题意可得:y=(x﹣30)[600﹣10(x﹣40)]=﹣10x2+1300x﹣30000;(2)当x=45时,600﹣10(x﹣40)=550(件),y=﹣10×452+1300×45﹣30000=8250(元);(3)当y=10000时,10000=﹣10x2+1300x﹣30000解得:x1=50,x2=80,当x=80时,600﹣10(80﹣40)=200<300(不合题意舍去)故销售价应定为:50元;(4)y=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,故当x=65(元),最大利润为12250元.26. 解:(1)抛物线与x轴交于点A、B,且AB=2,根据对称性,得AM=MB=1,∵对称轴为直线x=2,∴OA=1,OB=3,∴点A、B的坐标分别为(1,0)、(3,0),把A、B两点坐标代入y=x2+bx+c,得到,解得,∴抛物线的解析式为:y=x2﹣4x+3.(2)如图1中,连结BC,与对称轴交点则为点P,连接AP、AC.11由线段垂直平分线性质,得AP=BP ,∴CB=BP+CP=AP+CP ,∴AC+AP+CP=AC+BC ,根据“两点之间,线段最短”,得当点P 在线段AB 上时,△APC 周长的最小,∵C 为(0,3) ∴OC=3,在Rt △AOC 中,有AC==, 在Rt △BOC 中,有BC==3, ∴△APC的周长的最小值为:+3.(3)如图2中,当点D 为抛物线的顶点,且EM=DM 时,以点A 、B 、D 、E 为顶点的四边形是菱形,此时点D (2,﹣1)故答案为D (2,﹣1).。
2017-2018学年河北省保定市定州市九年级(上)期中数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.(3分)二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)3.(3分)如图,点A,B,C是⊙O上的三点,已知∠ACB=50°,那么∠AOB的度数是()A.90°B.95°C.100° D.120°4.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使点A′恰好落在AB上,则旋转角度为()A.30°B.45°C.60°D.90°5.(3分)函数y=﹣x2+1的图象大致为()A.B.C.D.6.(3分)用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±7.(3分)下列方程中没有实数根的是()A.x2﹣x﹣1=0 B.x2+3x+2=0C.2015x2+11x﹣20=0 D.x2+x+2=08.(3分)在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(3,2) B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)9.(3分)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30°C.75°D.60°10.(3分)如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0) B.(1,0) C.(1,﹣1)D.(2.5,0.5)11.(3分)对于抛物线y=(x+1)2+3有以下结论:①抛物线开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小.其中正确结论的个数为()A.1 B.2 C.3 D.412.(3分)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是.14.(3分)若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.15.(3分)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠ODC=.16.(3分)已知关于x的方程x2﹣2(k﹣1)x+k=0的两个实数根为x1,x2.若x1+x2﹣3=x1x2,则k的值为.17.(3分)某商场第一季度的利润是82.75万元,其中一月份的利润是25万元.若设平均每月利润的增长率为x,则依题意可列方程(不必求解).18.(3分)如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于.三、解答题(本大题共8小题,共66分)19.(8分)解方程:(用指定方法解下列一元二次方程)(1)2x2+4x﹣1=0(公式法)(2)x2+5x+5=0(配方法)20.(6分)如图,已知抛物线y=x2+x﹣6与x轴两个交点分别是A、B(点A在点B的左侧).(1)求A、B的坐标;(2)利用函数图象,写出y<0时,x的取值范围.21.(8分)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD的长.22.(8分)已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.23.(8分)阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.24.(8分)如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?答:.(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.25.(10分)某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.26.(10分)如图,已知抛物线y=x2+bx+c与x轴交于点A、B,AB=2,与y轴交于点C,对称轴为直线x=2,对称轴交x轴于点M.(1)求抛物线的函数解析式;(2)设P为对称轴上一动点,求△APC周长的最小值;(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是菱形,则点D的坐标为.2017-2018学年河北省保定市定州市九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列图案既是中心对称图形,又是轴对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,是轴对称图形,故本选项不符合题意;B、不是中心对称图形,是轴对称图形,故本选项不符合题意;C、既是中心对称图形,又是轴对称图形,故本选项符合题意;D、不是中心对称图形,是轴对称图形,故本选项不符合题意.故选:C.2.(3分)二次函数y=x2﹣2x+2的顶点坐标是()A.(1,1) B.(2,2) C.(1,2) D.(1,3)【解答】解:y=x2﹣2x+2的顶点横坐标是﹣=1,纵坐标是=1,y=x2﹣2x+2的顶点坐标是(1,1).故选:A.3.(3分)如图,点A,B,C是⊙O上的三点,已知∠ACB=50°,那么∠AOB的度数是()A.90°B.95°C.100° D.120°【解答】解:∵∠ACB与∠AOB是同弧所对的圆周角与圆心角,∠ACB=50°,∴∠AOB=100°.故选:C.4.(3分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使点A′恰好落在AB上,则旋转角度为()A.30°B.45°C.60°D.90°【解答】解:∵∠ACB=90°,∠ABC=30°,∴∠A=60°,∵△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,∴CA′=CA,∠ACA′等于旋转角,∴△ACA′为等边三角形,∴∠ACA′=60°,即旋转角度为60°.故选:C.5.(3分)函数y=﹣x2+1的图象大致为()A.B.C.D.【解答】解:∵二次项系数a<0,∴开口方向向下,∵一次项系数b=0,∴对称轴为y轴,∵常数项c=1,∴图象与y轴交于(0,1),故选:B.6.(3分)用配方法解方程x2+6x+4=0,下列变形正确的是()A.(x+3)2=﹣4 B.(x﹣3)2=4 C.(x+3)2=5 D.(x+3)2=±【解答】解:∵x2+6x+4=0,∴x2+6x=﹣4,∴x2+6x+9=5,即(x+3)2=5.故选:C.7.(3分)下列方程中没有实数根的是()A.x2﹣x﹣1=0 B.x2+3x+2=0C.2015x2+11x﹣20=0 D.x2+x+2=0【解答】解:A、x2﹣x﹣1=0,△=(﹣1)2﹣4×(﹣1)=9>0,方程有两个不相等的根,此选项错误;B、x2+3x+2=0,△=32﹣4×2=1>0,方程有两个不相等的根,此选项错误;C、2015x2+11x﹣20=0,△=112﹣4×2015×(﹣20)>0,方程有两个不相等的根,此选项错误;D、x2+x+2=0,△=12﹣4×2=﹣7<0,方程没有实数根,此选项正确;故选:D.8.(3分)在平面直角坐标系中,把点P(﹣3,2)绕原点O顺时针旋转180°,所得到的对应点P′的坐标为()A.(3,2) B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【解答】解:根据题意得,点P关于原点的对称点是点P′,∵P点坐标为(﹣3,2),∴点P′的坐标(3,﹣2).故选:D.9.(3分)如图,将⊙O沿弦AB折叠,圆弧恰好经过圆心O,点P是优弧上一点,则∠APB的度数为()A.45°B.30°C.75°D.60°【解答】解:作半径OC⊥AB于D,连结OA、OB,如图,∵将⊙O沿弦AB折叠,圆弧恰好经过圆心O,∴OD=CD,∴OD=OC=OA,∴∠OAD=30°,又OA=OB,∴∠OBA=30°,∴∠AOB=120°,∴∠APB=∠AOB=60°.故选:D.10.(3分)如图,在平面直角坐标系xOy中,△ABC顶点的横、纵坐标都是整数.若将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,则旋转中心的坐标是()A.(0,0) B.(1,0) C.(1,﹣1)D.(2.5,0.5)【解答】解:∵将△ABC以某点为旋转中心,顺时针旋转90°得到△DEF,∴点A的对应点为点D,点B的对应点为点E,作线段AD和BE的垂直平分线,它们的交点为P(1,﹣1),∴旋转中心的坐标为(1,﹣1).故选:C.11.(3分)对于抛物线y=(x+1)2+3有以下结论:①抛物线开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x>1时,y随x的增大而减小.其中正确结论的个数为()A.1 B.2 C.3 D.4【解答】解:抛物线y=(x+1)2+3开口向上,故①错误;对称轴为直线x=﹣1,故②错误;顶点坐标为(﹣1,3),故③正确;∵x>﹣1时,y随x的增大而增大,∴x>1时,y随x的增大而增大.故④错误.综上所述,结论正确的是③共1个.故选:A.12.(3分)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的是()A.①②③B.①③④C.①②④D.②③④【解答】解:∵抛物线的对称轴是直线x=﹣1,∴﹣=﹣1,b=2a,∴b﹣2a=0,故①正确;∵抛物线的对称轴是直线x=﹣1,和x轴的一个交点是(2,0),∴抛物线和x轴的另一个交点是(﹣4,0),∴把x=﹣2代入得:y=4a﹣2b+c>0,故②错误;∵图象过点(2,0),代入抛物线的解析式得:4a+2b+c=0,又∵b=2a,∴c=﹣4a﹣2b=﹣8a,∴a﹣b+c=a﹣2a﹣8a=﹣9a,故③正确;根据图象,可知抛物线对称轴的右边y随x的增大而减小,∵抛物线和x轴的交点坐标是(2,0)和(﹣4,0),抛物线的对称轴是直线x=﹣1,∴点(﹣3,y1)关于对称轴的对称点的坐标是((1,y1),∵(,y2),1<,∴y1>y2,故④正确;即正确的有①③④,故选:B.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)若一元二次方程(m﹣2)x2+3(m2+15)x+m2﹣4=0的常数项是0,则m的值是﹣2.【解答】解:由题意得:m2﹣4=0,且m﹣2≠0,解得:m=﹣2,故答案为:﹣2.14.(3分)若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是0或1.【解答】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:△=4﹣4m=0,解得:m=1.故答案为:0或1.15.(3分)如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠ODC=10°.【解答】解:连接OC,∵⊙O的直径AB⊥弦CD,∴弧BC=弧BD,∵∠BAC=40°,∴∠BOC=2∠BAC=80°;∵弧BC=弧BD,∴∠BOD=∠BOC=80°,∴∠ODC=90°﹣80°=10°,故答案为:10°.16.(3分)已知关于x的方程x2﹣2(k﹣1)x+k=0的两个实数根为x1,x2.若x1+x2﹣3=x1x2,则k的值为5.【解答】解:∵方程x2﹣2(k﹣1)x+k=0的两个实数根为x1、x2,∴x1+x2=2(k﹣1),x1x2=k.∵x1+x2﹣3=x1x2,∴2(k﹣1)﹣3=k,解得:k=5.故答案为:5.17.(3分)某商场第一季度的利润是82.75万元,其中一月份的利润是25万元.若设平均每月利润的增长率为x,则依题意可列方程(不必求解)25[1+(1+x)+(1+x)2]=82.75.【解答】解:设利润平均每月的增长率为x,又知:第一季度的利润是82.75万元,所以可列方程为:25[1+(1+x)+(1+x)2]=82.75;故答案为:25[1+(1+x)+(1+x)2]=82.75.18.(3分)如图,△ABC绕点A顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1.【解答】解:∵△ABC绕点A顺时针旋转45°得到△AB′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=sin45°AC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.三、解答题(本大题共8小题,共66分)19.(8分)解方程:(用指定方法解下列一元二次方程)(1)2x2+4x﹣1=0(公式法)(2)x2+5x+5=0(配方法)【解答】解:(1)a=2,b=4,c=﹣1,△=b2﹣4ac=16﹣4×2×(﹣1)=24>0,x==,x1=﹣1+,x2=﹣1﹣;(2)移项,得x2+5x=﹣5,配方,得x2+5x+=,(x+)2=,开方,得x+=,x1=,x2=.20.(6分)如图,已知抛物线y=x2+x﹣6与x轴两个交点分别是A、B(点A在点B的左侧).(1)求A、B的坐标;(2)利用函数图象,写出y<0时,x的取值范围.【解答】解:(1)令y=0,得:x2+x﹣6=0,解得:x=﹣3或x=2,∵点A在点B的左侧,∴点A、B的坐标分别为(﹣3,0)、(2,0);(2)由函数图象知,当﹣3<x<2时,函数图象位于x轴下方,即y<0,∴y<0时,﹣3<x<2.∵当y<0时,x的取值范围为:﹣3<x<2.21.(8分)如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD的长.【解答】解:过O作OF⊥CD,交CD于点F,连接OD,∴F为CD的中点,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=OE=1,在Rt△ODF中,OF=1,OD=4,根据勾股定理得:DF==,则CD=2DF=.22.(8分)已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.【解答】(1)证明:∵a=2,b=k,c=﹣1,∴△=k2﹣4×2×(﹣1)=k2+8,∵无论k取何值,k2≥0,∴k2+8>0,即△>0.∴方程有两个不相等的实数根;(2)解:设另一根为x1,则﹣1+x1=﹣,﹣1•x1=﹣,解得,x1=,k=1.23.(8分)阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.【解答】解:(1)换元,降次(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.24.(8分)如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?答:不正确.(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.【解答】解:(1)不正确;故答案为:不正确;(2)连接BE,可得△ADG≌△ABE,则DG=BE.如图,∵四边形ABCD是正方形,∴AD=AB,∵四边形GAEF是正方形,∴AG=AE,又∵∠DAG+∠GAB=90°,∠BAE+∠GAB=90°,∴∠DAG=∠BAE,∴△DAG≌△BAE,∴DG=BE.25.(10分)某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.【解答】解:(1)由题意可得:y=(x﹣30)[600﹣10(x﹣40)]=﹣10x2+1300x﹣30000;(2)当x=45时,600﹣10(x﹣40)=550(件),y=﹣10×452+1300×45﹣30000=8250(元);(3)当y=10000时,10000=﹣10x2+1300x﹣30000解得:x1=50,x2=80,当x=80时,600﹣10(80﹣40)=200<300(不合题意舍去)故销售价应定为:50元;(4)y=﹣10x2+1300x﹣30000=﹣10(x﹣65)2+12250,故当x=65(元),最大利润为12250元.26.(10分)如图,已知抛物线y=x2+bx+c与x轴交于点A、B,AB=2,与y轴交于点C,对称轴为直线x=2,对称轴交x轴于点M.(1)求抛物线的函数解析式;(2)设P为对称轴上一动点,求△APC周长的最小值;(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是菱形,则点D的坐标为(2,﹣1).【解答】解:(1)抛物线与x轴交于点A、B,且AB=2,根据对称性,得AM=MB=1,∵对称轴为直线x=2,∴OA=1,OB=3,∴点A、B的坐标分别为(1,0)、(3,0),把A、B两点坐标代入y=x2+bx+c,得到,解得,∴抛物线的解析式为:y=x2﹣4x+3.(2)如图1中,连结BC,与对称轴交点则为点P,连接AP、AC.由线段垂直平分线性质,得AP=BP,∴CB=BP+CP=AP+CP,∴AC+AP+CP=AC+BC,根据“两点之间,线段最短”,得△APC周长的最小,∵C为(0,3)∴OC=3,在Rt△AOC中,有AC==,在Rt△BOC中,有BC==3,∴△APC的周长的最小值为:+3.(3)如图2中,当点D为抛物线的顶点时,EM=DM时,以点A、B、D、E为顶点的四边形是菱形,此时点D(2,﹣1)故答案为D(2,﹣1).赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:l运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。