第六章平面问题的直角坐标解法讲义
- 格式:ppt
- 大小:1.22 MB
- 文档页数:63
6.3.2平面向量的正交分解及坐标表示6.3.3平面向量加、减运算的坐标表示知识点一平面向量的正交分解及坐标表示( 1)平面向量的正交分解□01把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.( 2)平面向量的坐标表示知识点二平面向量加、减运算的坐标运算1.在直角坐标平面内,以原点为起点的向量OA →=a ,点A 的位置被向量a 唯一确定,此时点A 的坐标与向量a 的坐标统一为( x ,y ).2.平面向量的坐标与该向量的起点、终点坐标有关;应把向量的坐标与点的坐标区别开来,只有起点在原点时,向量的坐标才与终点的坐标相等.3.符号( x ,y )在直角坐标系中有两重意义,它既可以表示一个固定的点,又可以表示一个向量.为了加以区分,在叙述中,就常说点( x ,y )或向量( x ,y ).特别注意:向量a =( x ,y )中间用等号连接,而点的坐标A ( x ,y )中间没有等号. 4.( 1)平面向量的正交分解实质上是平面向量基本定理的一种应用形式,只是两个基向量e 1和e 2互相垂直.( 2)由向量坐标的定义,知两向量相等的充要条件是它们的横、纵坐标对应相等,即a =b ⇔x 1=x 2且y 1=y 2,其中a =( x 1,y 1),b =( x 2,y 2).( 3)向量的坐标只与起点、终点的相对位置有关,而与它们的具体位置无关. ( 4)当向量确定以后,向量的坐标就是唯一确定的,因此向量在平移前后,其坐标不变.1.判一判( 正确的打“√”,错误的打“×”)( 1)与x 轴平行的向量的纵坐标为0;与y 轴平行的向量的横坐标为0.( ) ( 2)两个向量的终点不同,则这两个向量的坐标一定不同.( ) ( 3)当向量的始点在坐标原点时,向量的坐标就是向量终点的坐标.( ) ( 4)向量可以平移,平移前后它的坐标发生变化.( ) 答案 ( 1)√ ( 2)× ( 3)√ ( 4)× 2.做一做( 1)已知AB →=( -2,4),则下列说法正确的是( ) A .A 点的坐标是( -2,4) B .B 点的坐标是( -2,4)C .当B 是原点时,A 点的坐标是( -2,4)D .当A 是原点时,B 点的坐标是( -2,4)( 2)已知AB →=( 1,3),且点A ( -2,5),则点B 的坐标为( ) A .( 1,8) B .( -1,8) C .( 3,-2) D .( -3,2) ( 3)若a =( 2,1),b =( 1,0),则a +b 的坐标是( )A .( 1,1)B .( -3,-1)C .( 3,1)D .( 2,0)( 4)若点M ( 3,5),点N ( 2,1),用坐标表示向量MN →=________. 答案 ( 1)D ( 2)B ( 3)C ( 4)( -1,-4)题型一 平面向量的正交分解及坐标表示例1 ( 1)已知向量i =( 1,0),j =( 0,1),对坐标平面内的任一向量a ,给出下列四个结论:①存在唯一的一对实数x ,y ,使得a =( x ,y );②若x 1,x 2,y 1,y 2∈R ,a =( x 1,y 1)≠( x 2,y 2),则x 1≠x 2,且y 1≠y 2; ③若x ,y ∈R ,a =( x ,y ),且a ≠0,则a 的始点是原点O ; ④若x ,y ∈R ,a ≠0,且a 的终点坐标是( x ,y ),则a =( x ,y ). 其中正确结论的个数是( ) A .1 B .2 C .3 D .4( 2)如图所示,在边长为1的正方形ABCD 中,AB 与x 轴正半轴成30°角.求点B 和点D 的坐标以及AB →与AD →的坐标.[详细解析] ( 1)由平面向量基本定理,知①正确;例如,a =( 1,0)≠( 1,3),但1=1,故②错误;因为向量可以平移,所以a =( x ,y )与a 的始点是不是原点无关,故③错误;当a 的终点坐标是( x ,y )时,a =( x ,y )是以a 的起点是原点为前提的,故④错误.( 2)由题知B ,D 分别是30°,120°角的终边与单位圆的交点. 设B ( x 1,y 1),D ( x 2,y 2).由三角函数的定义,得 x 1=cos30°=32,y 1=sin30°=12,∴B ⎝ ⎛⎭⎪⎫32,12.x 2=cos120°=-12,y 2=sin120°=32, ∴D ⎝ ⎛⎭⎪⎫-12,32. ∴AB →=⎝ ⎛⎭⎪⎫32,12,AD →=⎝ ⎛⎭⎪⎫-12,32.[答案] ( 1)A ( 2)见详细解析求点和向量坐标的常用方法( 1)求一个点的坐标,可以转化为求该点相对于坐标原点的位置向量的坐标. ( 2)在求一个向量时,可以首先求出这个向量的起点坐标和终点坐标,再运用终点坐标减去起点坐标得到该向量的坐标.( 1)如图,{e 1,e 2}是一个正交基底,且e 1=( 1,0),e 2=( 0,1),则向量a 的坐标为( )A .( 1,3)B .( 3,1)C .( -1,-3)D .( -3,-1)( 2)已知O 是坐标原点,点A 在第一象限,|OA →|=43,∠xOA =60°, ①求向量OA →的坐标;②若B ( 3,-1),求BA →的坐标. 答案 ( 1)A ( 2)见详细解析详细解析 ( 1)由图可知a =e 1+3e 2,又e 1=( 1,0),e 2=( 0,1), 则a =( 1,3).故选A.( 2)①设点A ( x ,y ),则x =43cos60°=23, y =43sin60°=6,即A ( 23,6),故OA →=( 23,6). ②BA →=( 23,6)-( 3,-1)=( 3,7). 题型二 平面向量加、减运算的坐标表示例2 ( 1)已知三点A ( 2,-1),B ( 3,4),C ( -2,0),则向量AB →+CA →=________,BC →-AB →=________;( 2)已知向量a ,b 的坐标分别是( -1,2),( 3,-5),求a +b ,a -b 的坐标. [详细解析] ( 1)∵A ( 2,-1),B ( 3,4),C ( -2,0), ∴AB →=( 1,5),CA →=( 4,-1),BC →=( -5,-4).∴AB →+CA →=( 1,5)+( 4,-1)=( 1+4,5-1)=( 5,4).BC →-AB →=( -5,-4)-( 1,5)=( -5-1,-4-5)=( -6,-9). ( 2)a +b =( -1,2)+( 3,-5)=( 2,-3), a -b =( -1,2)-( 3,-5)=( -4,7).[答案] ( 1)( 5,4) ( -6,-9) ( 2)见详细解析平面向量坐标运算的技巧( 1)若已知向量的坐标,则直接应用两个向量和、差的运算法则进行. ( 2)若已知有向线段两端点的坐标,则可先求出向量的坐标,然后再进行向量的坐标运算.( 3)向量加、减的坐标运算可完全类比数的运算进行.( 1)已知a =( 1,2),b =( -3,4),求向量a +b ,a -b 的坐标;( 2)已知A ( -2,4),B ( 3,-1),C ( -3,-4),且CM →=CA →,CN →=CB →,求M ,N 及MN →的坐标.解 ( 1)a +b =( 1,2)+( -3,4)=( -2,6), a -b =( 1,2)-( -3,4)=( 4,-2). ( 2)由A ( -2,4),B ( 3,-1),C ( -3,-4), 可得CA →=( -2,4)-( -3,-4)=( 1,8), CB →=( 3,-1)-( -3,-4)=( 6,3), 设M ( x 1,y 1),N ( x 2,y 2),则CM →=( x 1+3,y 1+4)=( 1,8),x 1=-2,y 1=4; CN →=( x 2+3,y 2+4)=( 6,3),x 2=3,y 2=-1, 所以M ( -2,4),N ( 3,-1),MN →=( 3,-1)-( -2,4)=( 5,-5).题型三 平面向量加、减坐标运算的应用例3 如图所示,已知直角梯形ABCD ,AD ⊥AB ,AB =2AD =2CD ,过点C 作CE ⊥AB 于点E ,用向量的方法证明:DE ∥BC .[证明] 如图,以E 为原点,AB 所在直线为x 轴,EC 所在直线为y 轴建立直角坐标系,设|AD →|=1,则|DC →|=1,|AB →|=2. ∵CE ⊥AB ,而AD =DC , ∴四边形AECD 为正方形,∴可求得各点坐标分别为E ( 0,0),B ( 1,0),C ( 0,1),D ( -1,1). ∵ED →=( -1,1)-( 0,0)=( -1,1), BC →=( 0,1)-( 1,0)=( -1,1),∴ED →=BC →,∴ED →∥BC →,即DE ∥BC .通过建立平面直角坐标系,可以将平面内的任一向量用一个有序实数对来表示;反过来,任一有序实数对都表示一个向量.因此向量的坐标表示实质上是向量的代数表示,引入向量的坐标后,可使向量运算代数化,将数和形结合起来,从而将几何问题转化为代数问题来解决.已知平行四边形ABCD 的四个顶点A ,B ,C ,D 的坐标依次为( 3,-1),( 1,2),( m,1),( 3,n ).求m sin α+n cos α的最大值.解 ∵四边形ABCD 为平行四边形,则AD →=BC →,即( 3-3,n +1)=( m -1,1-2),即⎩⎪⎨⎪⎧m -1=0,n +1=-1,得m =1,n =-2,得m sin α+n cos α=sin α-2cos α=5sin( α+φ),其中tan φ=-2,故m sin α+n cos α的最大值为 5.1.设平面向量a =( 3,5),b =( -2,1),则a +b =( ) A .( 1,6) B .( 5,4) C .( 1,-6) D .( -6,5)答案 A详细解析 a +b =( 3,5)+( -2,1)=( 3-2,5+1)=( 1,6). 2.已知向量OA →=( 1,-2),OB →=( -3,4),则AB →=( ) A .( -4,6) B .( 2,-3) C .( 2,3) D .( 6,4) 答案 A详细解析 AB →=OB →-OA →=( -3,4)-( 1,-2)=( -4,6). 3.如图,向量a ,b ,c 的坐标分别是________,________,________.答案 ( -4,0) ( 0,6) ( -2,-5)详细解析 将各向量分别向基底i ,j 所在直线分解,则a =-4i +0·j ,∴a =( -4,0);b =0·i +6j ,∴b =( 0,6);c =-2i -5j ,∴c =( -2,-5).4.在平面直角坐标系中,|a |=22,a 的方向相对于x 轴正方向的逆时针转角为135°,则a 的坐标为________.答案 ( -2,2)详细解析 因为|a |cos135°=22×⎝ ⎛⎭⎪⎫-22=-2,|a |·sin135°=22×22=2,所以a 的坐标为( -2,2).5.在平面直角坐标系xOy 中,向量a ,b 的位置如图所示,已知|a |=4,|b |=3,且∠AOx =45°,∠OAB =105°,分别求向量a ,b 的坐标.解 设a =( a 1,a 2),b =( b 1,b 2),由于∠AOx =45°, 所以a 1=|a |cos45°=4×22=22, a 2=|a |sin45°=4×22=2 2.由已知可以求得向量b 的方向相对于x 轴正方向的逆时针转角为120°, 所以b 1=|b |cos120°=3×⎝ ⎛⎭⎪⎫-12=-32,b 2=|b |sin120°=3×32=332. 故a =( 22,22),b =⎝ ⎛⎭⎪⎫-32,332.。
“平面直角坐标系”一:学生情况及其分析:人教版的小朋友现在学到了轴对称图形,很多题目都和平面直角坐标系相关,而基础不是很好的同学对这部分知识大多遗忘了。
这份讲义是按照平面直角坐标系中常考的集中题型进行分类复习的,知识点和考点一目了然。
二:教学目的:回顾平面直角坐标系的基础知识和基本题型,综合目前学到的轴对称图形等,也再次强调数形结合的直观性和重要性。
三:教学设计:(每一个知识点的回顾和例题的讲解,教师都要或是要求学生亲自动笔画出平面直角坐标系,结合图形具体理解每一个知识点的内容和题目的解答。
)知识点回顾1:1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、已知点的坐标找出该点的方法:分别以点的横坐标、纵坐标在数轴上表示的点为垂足,作x 轴y 轴的的垂线,两垂线的交点即为要找的点。
3、已知点求出其坐标的方法:由该点分别向x 轴y 轴作垂线,垂足在x 轴上的坐标是改点的横坐标,垂足在y 轴上的坐标是该点的纵坐标。
4、各个象限内点的特征:第一象限:(+,+) 点P (x,y ),则x >0,y >0; 第二象限:(-,+) 点P (x,y ),则x <0,y >0; 第三象限:(-, -) 点P (x,y ),则x <0,y <0; 第四象限:(+,-) 点P (x,y ),则x >0,y <0;例题1:象限内的点的特征1、原点O 的坐标是 ,点M (a ,0)在 轴上。
2、已知0 mn ,则点(m ,n )在 。
易错点分析:漏掉另一种情况。
既然mn=0,则m 或是n 的值为0,那么点就可能是横坐标为0,或是纵坐标为零,再或是横纵坐标同时为0,则点就应该在y 轴或是x 轴上。
3、若点B(a ,b)在第三象限,则点C(-a+1,3b -5) 在第 象限。
4、如果点A 的坐标为(a 2+1,-1-b 2),那么点A 在第几象限?为什么?知识点回顾2:5、坐标轴上点的坐标特征: x 轴上的点,纵坐标为零;y 轴上的点,横坐标为零;原点的坐标为(0 , 0)。
平面直角坐标系-位置认识1.小义同学给如图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化馆、超市、宾馆、市场的坐标;(2)在图中标出小义家(3,﹣1),小锐家(﹣1,﹣1)和学校(﹣1,1)的位置.(3)小义从家途径小锐家到学校最近的路是个单位长度.平面直角坐标系-密码组合1.如图是一组密码的一部分,为了保密,许多情况下可采用不同的密码,请你运用所学的知识找到破译密码的“钥匙”.目前,已破译出“今天考试”的真实意思是“努力发挥”,若“今”所处的位置是(x,y),你找到的密码钥匙是(,),破译“正做数学”的真实意思是“”.平面直角坐标系-诗词调整1.如图,我们从唐代诗人韩愈的《早春呈水部张十八员外》和刘禹锡的《浪淘沙•其一》中各选取一句整齐排列放在平面直角坐标系中,“浪”的坐标是(1,1).(1)“曲”和“酥”的坐标依次是和.(2)将第2行与第3行对调,再将第4列与第7列对调,“河”由开始的坐标最终变换为.(3)“雨”开始的坐标是,使它的坐标变换到(5,3),应该哪两行对调,同时哪两列对调?1.如图是一个平面直角坐标系.(1)请在图中描出以下6个点:A(0,2)、B(4,2)、C(3,4)A′(﹣4,﹣4)、B'(0,﹣4)、C′(﹣1,﹣2)(2)分别顺次连接A、B、C和A′、B'、C',得到三角形ABC和三角形A′B′C′;(3)观察所画的图形,判断三角形A′B′C′能否由三角形ABC平移得到,如果能,请说出三角形A′B′C′是由三角形ABC怎样平移得到的;如果不能,说明理由.1.如图,△DEF是△ABC经过某种变换得到的图形,点A与点D,点B 与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4﹣b)与点Q(2a,2b﹣3)也是通过上述变换得到的对应点,求a、b的值.平面直角坐标系-面积求解1.△ABC与△A'B'C'在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A';B';C';(2)说明△A'B'C'由△ABC经过怎样的平移得到?.(3)若点P(a,b)是△ABC内部一点,则平移后△A'B'C'内的对应点P'的坐标为;(4)求△ABC的面积.1.已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)写出A′、B′、C′的坐标;(2)求出△ABC的面积;(3)点P在y轴上,且△BCP与△ABC的面积相等,求点P的坐标.1.如图,在平面直角坐标系中,点A(﹣3b,0)为x轴负半轴上一点,点B(0,4b)为y轴正半轴上一点,其中b满足方程3(b+1)=6.(1)求点A,B的坐标;(2)点C为y轴负半轴上一点,且△ABC的面积为12,求点C的坐标;1.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.1.已知,点P(2m﹣6,m+2).(1)若点P在y轴上,P点的坐标为;(2)若点P的纵坐标比横坐标大6,求点P在第几象限?(3)若点P和点Q都在过A(2,3)点且与x轴平行的直线上,PQ=3,求Q点的坐标.平面直角坐标系-文字叙述求解3 1.已知在平面直角坐标系中有一点M(2m﹣1,m﹣3).(1)当点M到y轴的距离为1时,求点M的坐标;(2)当点M到x轴的距离为2时,求点M的坐标.1.在平面直角坐标系中,已知点M(m,2m+3).(1)若点M在x轴上,求m的值;(2)若点M在第二象限内,求m的取值范围;(3)若点M在第一、三象限的角平分线上,求m的值.1.已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.1.如图所示,在平面直角坐标系中,点A,B的坐标分别为A(a,0),B(b,0),且a,b满足|a+2|+=0,点C的坐标为(0,3).(1)求a,b的值及SABC;△(2)若点M在x轴上,且SACM=S△ABC,试求点M的坐标.△1.如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.1.如图在直角坐标系中,已知A(0,a),B(b,0)C(3,c)三点,若a,b,c满足关系式:|a﹣2|+(b﹣3)2+=0.(1)求a,b,c的值.(2)求四边形AOBC的面积.(3)是否存在点P(x,﹣x),使△AOP的面积为四边形AOBC 的面积的两倍?若存在,求出点P的坐标,若不存在,请说明理由.1.已知:如图,△ABC的三个顶点位置分别是A(1,0)、B(﹣2,3)、C(﹣3,0).(1)求△ABC的面积是多少?(2)若点A、C的位置不变,当点P在y轴上时,且SACP=2S△ABC,△求点P的坐标?(3)若点B、C的位置不变,当点Q在x轴上时,且SBCQ=2S△ABC△求点Q的坐标?1.已知点A(a,0)和B(0,b)满足(a﹣4)2+|b﹣6|=0,分别过点A、B作x轴、y轴的垂线交于点C,如图所示,点P从原点出发,以每秒1个单位长度的速度沿着O﹣B﹣C﹣A﹣O的路线移动.(1)写出A、B、C三点的坐标;A,B,C;(2)点P在运动过程中,当△OAP的面积为6时,求点P的坐标;(3)当P运动14秒时,连接O、P两点,将线段OP向上平移h个单位(h>0),得到O'P',若O'P'将四边形OACB的面积分成相等的两部分,求h的值.1.如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.1.在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒).(1)直接写出点B和点C的坐标B(,)、C(,);(2)当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围;(3)点D(2,0),连接PD、AD,在(2)条件下是否存在这样的t值,使SAPD=S四边形ABOC,若存在,请求出t值,若不存在,请说明理由.△1.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2022的坐标为.2.在平面直角坐标系中,点A1(1,0),A2(2,3),A3(3,8),A4(4,15),…,用你发现的规律确定点A n的坐标为.1.如图,在平面直角坐标系中,一动点从原点O出发,沿着箭头所示方向,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,-1),P5(2,-1),P6(2,0)…,则P2020的坐标是2.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(﹣1,1),第2次接着运动到点(﹣2,0),第3次接着运动到点(﹣3,2),…,按这样的运动规律,经过第2022次运动后,动点P的坐标是1.点A在y轴正半轴上,OA=a,点B位于第二象限,且点B到两坐标轴的距离均为b,其中a、b满足b=++4.(1)a=,b=;(2)点C在x轴的负半轴上,射线CD∥AB.①如图1,过C作射线CE交y轴于点E,使∠DCE=3∠ECO,过A作射线AF交CE于点F,使∠BAF=3∠OAF,求∠AFE的度数;1.如图,在平面直角坐标系中,点O(0,0),A(0,a),C(b,0)满足+|b﹣2|=0.(1)直接写出A、C两点的坐标.(2)如图2,点G是第二象限上的点,连OG,且OG∥AC,点F是线段AC上一点,满足∠AOG=∠AOF.点E是射线OA上一动点,连CE交直线OF于点H,当点E在射线OA上运动的过程中,请确定∠OHC,∠ACE 和∠OEC的数量关系,并说明理由.平面直角坐标---动点和面积压轴1.如图,在平面直角坐标系中,点O(0,0),A(0,a),C(b,0)满足+|b﹣2|=0.(1)直接写出A、C两点的坐标.(2)如图1,已知坐标轴上有两动点P、Q同时从O点出发,P点沿x轴正方向以2个单位长度每秒的速度匀速移动,Q点以1个单位长度每秒的速度沿y轴正方向移动,点D(1,2)为线段AC上一点,设运动时间为t(t>0)秒.问:是否存在这样的t,使SDPC=S三角形DQO,若存在,请求出t的值;三角形若不存在,请说明理由.。