带电离子在磁场中的偏转
- 格式:ppt
- 大小:610.00 KB
- 文档页数:29
难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。
(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。
圆心的确定,通常有以下两种方法。
① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。
运动电荷在磁场中的偏转针对运动电荷在磁场中的偏转这类问题的分析、解答,是高考命题中的一个热点,也是教学中的重点、难点。
因为在这类问题中对物理过程的分析能力,电荷在磁场中:运动轨迹的想象能力均有较高的要求,因此在历届高考中考生的得分率都很低。
为了更好地把握这类问题的教学,提高学生的解题能力,本文试就这类问题的题型特点及解答技巧作一些探讨。
高考要求:针对运动电荷在匀强磁场中偏转问题的复杂性,高考中只限于,带电微粒在匀强磁场中(只受洛仑兹力)做匀速圆周运动,这种特殊情况的分析。
知识要求:(1)在匀强磁场中做匀速圆周运动所需向。
心力由洛仑兹力充当:Bqvf =向 (2)粒子在磁场中运动时间的由来确定,式中的为粒子的速度偏转 角度,通常借助数学几ωθ=t θ何中有关“四点共圆’’的知识来确定,为粒子旋转的角速 度,由来确定。
ωm Bq =ω (3)圆心位置的确定:一般借助两确切位置速度垂线的交点;或一位置速度 的垂线和一条弦的中垂线的交点,等办法来确定。
(4)轴道半径的确定:一般借助于几何知识或运用来确定。
Bq mv R = 这类问题的多样性和复杂性主要来源于轨道半径和圆心位置的确定上,因此,这两个方面即是重点,又是难点。
下面我就这类问题中有关由已知条件的变化,而引起的题型变化情况来探讨这类问题的解题规律。
一、单一圆心位置型这类题目的特点是:不仅V 、B 的大小确定,而且粒子进、出磁场时速度的方向也唯一确定。
于是就可以利用粒子进、出磁场时作其速度的垂线来确定圆心的位置,这样它就具有确定的圆心位置和轨道半径,属于基础题型。
【例题1】如图:一束电子(电量为e)以速度垂直射入磁感应强度为B ,宽度为d 的匀v强磁场中,穿透磁场时速度方向与电子原来入射方向的夹角是300,则电子的质量和穿透磁场的时间是多少.【解析】电子在磁场中运动,只受洛仑兹力作用,故其轨迹是圆周的一部分,结合题目的条件,在电子进入磁场的A 点和出磁场的B 点分别作其速度的垂线,其交点0即为圆心分别作其速度的延长线得交点C ,由几何知识可知;AOBC 这四点共圆,于是有AB 弧对应的圆心角,0B 为半径R , 又由几何知识可得;030=∠AOB dd R 230sin 0==由; 有; R mv Bev 2=vBed m 2=由; , 有; vR t θωθ==v dt 3π=【例题2】如图,三个同样的带电粒子,分别以速度、2v 和3v 沿水平方向从1v 同一点射入同一匀强磁场中,且离开磁场时与水平边界线的夹角依次为,o 0190=θ,,(忽略粒子重力)试计算: 粒子在磁场中运动时间之比,0260=θ0330=θ【解析】这道题目与例题(1)属于同一类型,粒子进、出磁场时速度的方向都唯一确定。
一、知识归纳1、 带电粒子在电场中运动 (1)匀加速运动:2022121mv mv qU t -=注意1:求解时间时,用运动学公式注意2:求解某一方向运动时,也可利用动能定理(2)类平抛运动: ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=====-==+======αθtan 22tan 21212102002022220x yt v at v at v v mv mv y d U q qEy y v v at v dm Uqm Eq a at y tv x y y o y 或2、带电粒子在磁场中运动(1)匀速直线运动:利用平衡条件。
(2)匀速圆周运动:⎪⎪⎪⎩⎪⎪⎪⎨⎧=====⇒=Bq mT t Bq mv R T Bq mv R R v m qvB θπθππ2222,其中R 、θ主要通过几何关系确定。
注意1:确定圆心方法:利用三角函数、勾股定理等注意2:确定圆心角方法:利用速度的偏转角等于圆周运动的圆心角等 3、圆周运动的圆心确定方法法1:已知轨迹上两点的速度方向 法2:已知轨迹上的两点和其中一点的速度方向 法3:已知轨迹上一点的速度方向和半径R 法4:已知轨迹上的两点和半径R 4、带电粒子在有界磁场中运动的极值问题(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速度v 一定时,弧长(或弦长)越大,圆周角越大,则时间越长。
5、对称规律解题法(1)从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。
(2)在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。
(3)在圆形磁场区域内,不沿径向射入的粒子,也满足对称性。
1. 关于带负电的粒子(重力可忽略不计),下面说法中准确的是① 沿电场线方向飞入匀强电场,电场力做功,动能增加 ② 垂直电场线方向飞入匀强电场,电场力做功,动能增加 ③ 垂直磁感线方向飞入匀强磁场,磁场力不做功,动能不变 ④ 沿磁感线方向飞入匀强磁场,磁场力做功,动能增加 A. ①② B. ②③ C. ③④ D. ①④2、如图9,两个初速度大小相同的同种离子a 和b ,从O 点沿垂直磁场方向进入匀强磁场,最后打到屏P 上。
带电粒子在有界磁场中运动当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。
粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。
如何分析这类相关的问题是本文所讨论的内容。
一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。
2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。
②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。
3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。
4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。
a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。
②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
7.〔08四川卷〕24.如图,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上。
整个空间存在匀强磁场,磁感应强度方向竖直向下。
一电荷量为q 〔q >0〕、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ’。
球心O到该圆周上任一点的连线与竖直方向的夹角为θ〔0<θ<)2π。
为了使小球能够在该圆周上运动,求磁感应强度大小的最小值及小球P 相应的速率。
重力加速度为g 。
解析:据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O ’。
P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率。
洛仑兹力f 的方向指向O ’。
根据牛顿第二定律0cos =-mg N θ ②θsin sin 2R v m N f =- ③ 由①②③式得0cos sin sin 22=+-θθθqR v m qBR v ④ 由于v 是实数,必须满足 θθθcos sin 4sin 22gR m qBR -⎪⎭⎫ ⎝⎛=∆≥0 ⑤ 由此得B ≥θcos 2R g q m⑥ 可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为 θcos 2min R g q mB =⑦ 此时,带电小球做匀速圆周运动的速率为mR qB v 2sin min θ= ⑧ 由⑦⑧式得θθsin cos gR v = ⑨ 8.〔08重庆卷〕25.题25题为一种质谱仪工作原理示意图.在以O 为圆心,OH 为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH 轴的C 和D分别是离子发射点和收集点.CM 垂直磁场左边界于M ,且OM=d.现有一正离子束以小发散角〔纸面内〕从C 射出,这些离子在CM 方向上的分速度均为v 0.假设该离子束中比荷为q m的离子都能会聚到D ,试求: 〔1〕磁感应强度的大小和方向〔提示:可考虑沿CM 方向运动的离子为研究对象〕; 〔2〕离子沿与CM 成θ角的直线CN 进入磁场,其轨道半径和在磁场中的运动时间; 〔3〕线段CM 的长度.解析:〔1〕设沿CM 方向运动的离子在磁场中做圆周运动的轨道半径为R由12R '=200mv qv B R = R=d得B =0mv qd磁场方向垂直纸面向外〔2〕设沿CN 运动的离子速度大小为v ,在磁场中的轨道半径为R ′,运动时间为t 由v cos θ=v 0得v =0cos v θR ′=mv qB=cos d θ方法一:设弧长为st =s vs=2(θ+α)×R ′t =02v R '⨯+)(αθ 〔09年全国卷Ⅰ〕26〔21分〕如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于xy 平面向外。
第三章第6节1.(2010年杭州十四中高二检测)一个带电粒子以初速度v0垂直于电场方向向右射入匀强电场区域,穿出电场后接着又进入匀强磁场区域.设电场和磁场区域有明确的分界线,且分界线与电场强度方向平行,如图3-6-22中的虚线所示.在图所示的几种情况中,可能出现的是( )图3-6-22解析:选AD.A、C选项中粒子在电场中向下偏转,所以粒子带正电,再进入磁场后,A 图中粒子应逆时针转,正确;C图中粒子应顺时针转,错误.同理可以判断B错、D对.2. (2008年高考广东卷)1932年劳伦斯制成了世界上第一台回旋加速器,其原理如图3-6-23所示,这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是( )图3-6-23A.离子由加速器的中心附近进入加速器B.离子由加速器的边缘进入加速器C.离子从磁场中获得能量D.离子从电场中获得能量解析:选AD.回旋加速器的两个D形盒间隙分布周期性变化的电场,不断地给带电粒子加速使其获得能量;而D形盒处分布有恒定不变的磁场,具有一定速度的带电粒子在D形盒内受到磁场的洛伦兹力提供的向心力而做圆周运动;洛伦兹力不做功故不能使离子获得能量,C 错;离子源在回旋加速器的中心附近.所以正确选项为A 、D.3.一个带电粒子沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图3-6-24所示.径迹上的每一小段都可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电量不变).从图中情况可以确定( )图3-6-24A .粒子从a 到b ,带正电B .粒子从a 到b ,带负电C .粒子从b 到a ,带正电D .粒子从b 到a ,带负电解析:选 C.垂直于磁场方向射入匀强磁场的带电粒子受洛伦兹力作用,使粒子做匀速圆周运动,半径R =m v /qB .由于带电粒子使沿途的空气电离,粒子的能量减小,磁感应强度B 在减小,故R 减小,可判定粒子从b 向a 运动;另R =10 cm 的圆柱形筒a 、b 现有一束比荷为q m=2×1011C/kg 的正离子,以不同角度α入射,α=30°,且不经碰撞而直接从出射孔射出的离( )图3-6-25A.4×105 m/s B.2×105 m/sC.4×106 m/s D.2×106 m/s答案:C5.如图3-6-26所示,在第Ⅰ象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速率沿与x轴成30°角的方向从原点射入磁场,则正、负电子在磁场中运动的时间之比为( )图3-6-26A.1∶2 B.2∶1C.1∶ 3 D.1∶1答案:B6.如图3-6-27所示,正方形区域abcd中充满匀强磁场,磁场方向垂直纸面向里.一个氢核从ad边中点m沿着既垂直于ad边,又垂直于磁场方向以一定速度射入磁场,正好从ab边中点n射出磁场.若将磁场的磁感应强度变为原来的2倍,其他条件不变,则这个氢核射出磁场的位置是( )图3-6-27A.在b、n之间某点B.在n、a之间某点C.a点D.在a、m之间某点解析:选 C.因为氢核是一带正电微粒,不计重力,在匀强磁场中做匀速圆周运动,由左手定则知其向上偏转.因为正好从n点射出,则可知其运行轨迹为1/4圆周.当磁感应强度B 变为原来的2倍时,由半径公式r =m v qB 可知,其半径变为原来的12,即射出位置为a 点,故C 选项正确.7.如图3-6-28所示,空间内存在着方向竖直向下的匀强电场E 和垂直纸面向里的匀强磁场B ,一个质量为m 的带电液滴,在竖直平面内做圆周运动,下列说法正确的是( )图3-6-28A .液滴在运动过程中速率不变B .液滴所带电荷一定为负电荷,电荷量大小为mg /EC .液滴一定沿顺时针方向运动D .液滴可以沿逆时针方向运动,也可以沿顺时针方向运动 答案:ABC8.如图3-6-29所示,在x >0,y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于Oxy 平面向里,大小为B .现有一质量为m .电荷量为q 的带电粒子,由x 轴上到原点的距离为x 0的P 点,以平行于y 轴的初速度射入此磁场,在磁场作用下沿垂直于y 轴的方向射出此磁场,不计重力的影响.由这些条件( )图3-6-29A .不能确定粒子通过y 轴时的位置B .不能确定粒子速度的大小C .不能确定粒子在磁场中运动所经历的时间D .以上三个判断都不对解析:选D.带电粒子从平行于y 轴的方向射入并从垂直于y 轴的方向射出,由此可确定此粒子圆周运动的圆心即为原点O ,半径为x 0,则粒子通过y 轴时的位置为(0,x 0),A 错;由R =m v qB 可求出粒子速度v ,B 错;粒子在磁场中经历的时间为T4,C 错.9.如图3-6-30所示,在x 轴上方有磁感应强度大小为B ,方向垂直纸面向里的匀强磁场.x 轴下方有磁感应强度大小为B /2,方向垂直纸面向外的匀强磁场.一质量为m 、电荷量为-q 的带电粒子(不计重力),从x 轴上O 点以速度v 0垂直x 轴向上射出.求:图3-6-30(1)射出之后经多长时间粒子第二次到达x 轴? (2)粒子第二次到达x 轴时离O 点的距离.解析:粒子射出后受洛伦兹力做匀速圆周运动,运动半个圆周后第一次到达x 轴,以向下的速度v 0进入下方磁场,又运动半个圆周后第二次到达x 轴.如图所示.(1)由牛顿第二定律有q v 0B =m v 2r ①T =2πr v 0② 得T 1=2πm qB ,T 2=4πm qB,粒子第二次到达x 轴需时间t =12T 1+12T 2=3πmqB .(2)由①式可知r 1=m v 0qB ,r 2=2m v 0qB, 粒子第二次到达x 轴时离O 点的距离s =2r 1+2r 2=6m v 0qB.答案:(1)3πm qB (2)6m v 0qB10.质谱仪原理如图3-6-31所示,a 为粒子加速器,电压为U 1;b 为速度选择器,磁场与电场正交,磁感应强度为B 1,板间距离为d ;c 为偏转分离器,磁感应强度为B 2.今有一质量为m 、电荷量为e 的正电子(不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做半径为R 的匀速圆周运动.求:图3-6-31(1)粒子的速度v 为多少? (2)速度选择器的电压U 2为多少?(3)粒子在B 2磁场中做匀速圆周运动的半径R 为多大?解析:根据动能定理可求出速度v ,根据电场力和洛伦兹力相等可得到U 2,再根据电子在磁场中做匀速圆周运动的知识可求得半径R .(1)在a 中,正电子被加速电场U 加速,由动能定理有eU 1=12m v 2,得v =2eU 1m.e U 2d=e v B 1,代入v 值,得U 2R =m v eB 2=1B 22mU 1e.(3)1B 22mU 1e间距离及PN 和MQ 长均为d ,一带正电的质子从PN 板的正中间O 点以速度v 0垂直射入磁场,为使质子能射出两板间,试求磁感应强度B 的大小.已知质子带电荷量为e ,质量为m .图3-6-32解析:由左手定则确定,质子向上偏转,所以质子能射出两板间的条件是:B 较弱时,质子从M 点射出(如右图所示),此时轨道的圆心为O ′点,由平面几何知识得]R 2=d 2+(R -12d )2得R =54d质子在磁场中有e v 0B =m v 20R所以R =m v 0eB ,即54d =m v 0eB 1,B 1=4m v 05deB 较强时,质子从N 点射出,此时质子运动了半个圆周,轨道半径R ′=d 4.所以14d =m v 0eB 2,即B 2=4m v 0de ,综合上述两种情况,B 的大小为4m v 05de ≤B ≤4m v 0de.答案:4m v 05de ≤B ≤4m v 0de12.(2010年汕头高二检测)质量为m 、电荷量为q 的带负电粒子自静止开始,经M 、N 板间的电场加速后,从A 点垂直于磁场边界射入宽度为d 的匀强磁场中,该粒子离开磁场时的位置P 偏离入射方向的距离为L ,如图3-6-33所示.已知M 、N 两板间的电压为U ,粒子的重力不计.图3-6-33(1)正确画出粒子由静止开始至离开匀强磁场时的轨迹图(用直尺和圆规规范作图); (2)求匀强磁场的磁感应强度B .解析:(1)作粒子在电场和磁场中的轨迹图如图所示.(2)设粒子在M 、N 两板间经电场加速后获得的速度为v ,由动能定理得:qU =12m v 2①粒子进入磁场后做匀速圆周运动,设其半径为r , 则:q v B =m v2②。