带电离子在磁场中的偏转
- 格式:ppt
- 大小:610.00 KB
- 文档页数:29
难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。
(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。
圆心的确定,通常有以下两种方法。
① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。
运动电荷在磁场中的偏转针对运动电荷在磁场中的偏转这类问题的分析、解答,是高考命题中的一个热点,也是教学中的重点、难点。
因为在这类问题中对物理过程的分析能力,电荷在磁场中:运动轨迹的想象能力均有较高的要求,因此在历届高考中考生的得分率都很低。
为了更好地把握这类问题的教学,提高学生的解题能力,本文试就这类问题的题型特点及解答技巧作一些探讨。
高考要求:针对运动电荷在匀强磁场中偏转问题的复杂性,高考中只限于,带电微粒在匀强磁场中(只受洛仑兹力)做匀速圆周运动,这种特殊情况的分析。
知识要求:(1)在匀强磁场中做匀速圆周运动所需向。
心力由洛仑兹力充当:Bqvf =向 (2)粒子在磁场中运动时间的由来确定,式中的为粒子的速度偏转 角度,通常借助数学几ωθ=t θ何中有关“四点共圆’’的知识来确定,为粒子旋转的角速 度,由来确定。
ωm Bq =ω (3)圆心位置的确定:一般借助两确切位置速度垂线的交点;或一位置速度 的垂线和一条弦的中垂线的交点,等办法来确定。
(4)轴道半径的确定:一般借助于几何知识或运用来确定。
Bq mv R = 这类问题的多样性和复杂性主要来源于轨道半径和圆心位置的确定上,因此,这两个方面即是重点,又是难点。
下面我就这类问题中有关由已知条件的变化,而引起的题型变化情况来探讨这类问题的解题规律。
一、单一圆心位置型这类题目的特点是:不仅V 、B 的大小确定,而且粒子进、出磁场时速度的方向也唯一确定。
于是就可以利用粒子进、出磁场时作其速度的垂线来确定圆心的位置,这样它就具有确定的圆心位置和轨道半径,属于基础题型。
【例题1】如图:一束电子(电量为e)以速度垂直射入磁感应强度为B ,宽度为d 的匀v强磁场中,穿透磁场时速度方向与电子原来入射方向的夹角是300,则电子的质量和穿透磁场的时间是多少.【解析】电子在磁场中运动,只受洛仑兹力作用,故其轨迹是圆周的一部分,结合题目的条件,在电子进入磁场的A 点和出磁场的B 点分别作其速度的垂线,其交点0即为圆心分别作其速度的延长线得交点C ,由几何知识可知;AOBC 这四点共圆,于是有AB 弧对应的圆心角,0B 为半径R , 又由几何知识可得;030=∠AOB dd R 230sin 0==由; 有; R mv Bev 2=vBed m 2=由; , 有; vR t θωθ==v dt 3π=【例题2】如图,三个同样的带电粒子,分别以速度、2v 和3v 沿水平方向从1v 同一点射入同一匀强磁场中,且离开磁场时与水平边界线的夹角依次为,o 0190=θ,,(忽略粒子重力)试计算: 粒子在磁场中运动时间之比,0260=θ0330=θ【解析】这道题目与例题(1)属于同一类型,粒子进、出磁场时速度的方向都唯一确定。
一、知识归纳1、 带电粒子在电场中运动 (1)匀加速运动:2022121mv mv qU t -=注意1:求解时间时,用运动学公式注意2:求解某一方向运动时,也可利用动能定理(2)类平抛运动: ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=====-==+======αθtan 22tan 21212102002022220x yt v at v at v v mv mv y d U q qEy y v v at v dm Uqm Eq a at y tv x y y o y 或2、带电粒子在磁场中运动(1)匀速直线运动:利用平衡条件。
(2)匀速圆周运动:⎪⎪⎪⎩⎪⎪⎪⎨⎧=====⇒=Bq mT t Bq mv R T Bq mv R R v m qvB θπθππ2222,其中R 、θ主要通过几何关系确定。
注意1:确定圆心方法:利用三角函数、勾股定理等注意2:确定圆心角方法:利用速度的偏转角等于圆周运动的圆心角等 3、圆周运动的圆心确定方法法1:已知轨迹上两点的速度方向 法2:已知轨迹上的两点和其中一点的速度方向 法3:已知轨迹上一点的速度方向和半径R 法4:已知轨迹上的两点和半径R 4、带电粒子在有界磁场中运动的极值问题(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速度v 一定时,弧长(或弦长)越大,圆周角越大,则时间越长。
5、对称规律解题法(1)从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。
(2)在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。
(3)在圆形磁场区域内,不沿径向射入的粒子,也满足对称性。
1. 关于带负电的粒子(重力可忽略不计),下面说法中准确的是① 沿电场线方向飞入匀强电场,电场力做功,动能增加 ② 垂直电场线方向飞入匀强电场,电场力做功,动能增加 ③ 垂直磁感线方向飞入匀强磁场,磁场力不做功,动能不变 ④ 沿磁感线方向飞入匀强磁场,磁场力做功,动能增加 A. ①② B. ②③ C. ③④ D. ①④2、如图9,两个初速度大小相同的同种离子a 和b ,从O 点沿垂直磁场方向进入匀强磁场,最后打到屏P 上。
带电粒子在有界磁场中运动当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。
粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。
如何分析这类相关的问题是本文所讨论的内容。
一、带电粒子在有界磁场中运动的分析方法1.圆心的确定因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。
2.半径的确定和计算利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。
②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。
3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。
4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。
a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。
②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
7.〔08四川卷〕24.如图,一半径为R 的光滑绝缘半球面开口向下,固定在水平面上。
整个空间存在匀强磁场,磁感应强度方向竖直向下。
一电荷量为q 〔q >0〕、质量为m 的小球P 在球面上做水平的匀速圆周运动,圆心为O ’。
球心O到该圆周上任一点的连线与竖直方向的夹角为θ〔0<θ<)2π。
为了使小球能够在该圆周上运动,求磁感应强度大小的最小值及小球P 相应的速率。
重力加速度为g 。
解析:据题意,小球P 在球面上做水平的匀速圆周运动,该圆周的圆心为O ’。
P 受到向下的重力mg 、球面对它沿OP 方向的支持力N 和磁场的洛仑兹力f =qvB ①式中v 为小球运动的速率。
洛仑兹力f 的方向指向O ’。
根据牛顿第二定律0cos =-mg N θ ②θsin sin 2R v m N f =- ③ 由①②③式得0cos sin sin 22=+-θθθqR v m qBR v ④ 由于v 是实数,必须满足 θθθcos sin 4sin 22gR m qBR -⎪⎭⎫ ⎝⎛=∆≥0 ⑤ 由此得B ≥θcos 2R g q m⑥ 可见,为了使小球能够在该圆周上运动,磁感应强度大小的最小值为 θcos 2min R g q mB =⑦ 此时,带电小球做匀速圆周运动的速率为mR qB v 2sin min θ= ⑧ 由⑦⑧式得θθsin cos gR v = ⑨ 8.〔08重庆卷〕25.题25题为一种质谱仪工作原理示意图.在以O 为圆心,OH 为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH 轴的C 和D分别是离子发射点和收集点.CM 垂直磁场左边界于M ,且OM=d.现有一正离子束以小发散角〔纸面内〕从C 射出,这些离子在CM 方向上的分速度均为v 0.假设该离子束中比荷为q m的离子都能会聚到D ,试求: 〔1〕磁感应强度的大小和方向〔提示:可考虑沿CM 方向运动的离子为研究对象〕; 〔2〕离子沿与CM 成θ角的直线CN 进入磁场,其轨道半径和在磁场中的运动时间; 〔3〕线段CM 的长度.解析:〔1〕设沿CM 方向运动的离子在磁场中做圆周运动的轨道半径为R由12R '=200mv qv B R = R=d得B =0mv qd磁场方向垂直纸面向外〔2〕设沿CN 运动的离子速度大小为v ,在磁场中的轨道半径为R ′,运动时间为t 由v cos θ=v 0得v =0cos v θR ′=mv qB=cos d θ方法一:设弧长为st =s vs=2(θ+α)×R ′t =02v R '⨯+)(αθ 〔09年全国卷Ⅰ〕26〔21分〕如图,在x 轴下方有匀强磁场,磁感应强度大小为B ,方向垂直于xy 平面向外。
第三章第6节1.(2010年杭州十四中高二检测)一个带电粒子以初速度v0垂直于电场方向向右射入匀强电场区域,穿出电场后接着又进入匀强磁场区域.设电场和磁场区域有明确的分界线,且分界线与电场强度方向平行,如图3-6-22中的虚线所示.在图所示的几种情况中,可能出现的是( )图3-6-22解析:选AD.A、C选项中粒子在电场中向下偏转,所以粒子带正电,再进入磁场后,A 图中粒子应逆时针转,正确;C图中粒子应顺时针转,错误.同理可以判断B错、D对.2. (2008年高考广东卷)1932年劳伦斯制成了世界上第一台回旋加速器,其原理如图3-6-23所示,这台加速器由两个铜质D形盒D1、D2构成,其间留有空隙,下列说法正确的是( )图3-6-23A.离子由加速器的中心附近进入加速器B.离子由加速器的边缘进入加速器C.离子从磁场中获得能量D.离子从电场中获得能量解析:选AD.回旋加速器的两个D形盒间隙分布周期性变化的电场,不断地给带电粒子加速使其获得能量;而D形盒处分布有恒定不变的磁场,具有一定速度的带电粒子在D形盒内受到磁场的洛伦兹力提供的向心力而做圆周运动;洛伦兹力不做功故不能使离子获得能量,C 错;离子源在回旋加速器的中心附近.所以正确选项为A 、D.3.一个带电粒子沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图3-6-24所示.径迹上的每一小段都可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减小(带电量不变).从图中情况可以确定( )图3-6-24A .粒子从a 到b ,带正电B .粒子从a 到b ,带负电C .粒子从b 到a ,带正电D .粒子从b 到a ,带负电解析:选 C.垂直于磁场方向射入匀强磁场的带电粒子受洛伦兹力作用,使粒子做匀速圆周运动,半径R =m v /qB .由于带电粒子使沿途的空气电离,粒子的能量减小,磁感应强度B 在减小,故R 减小,可判定粒子从b 向a 运动;另R =10 cm 的圆柱形筒a 、b 现有一束比荷为q m=2×1011C/kg 的正离子,以不同角度α入射,α=30°,且不经碰撞而直接从出射孔射出的离( )图3-6-25A.4×105 m/s B.2×105 m/sC.4×106 m/s D.2×106 m/s答案:C5.如图3-6-26所示,在第Ⅰ象限内有垂直纸面向里的匀强磁场,一对正、负电子分别以相同速率沿与x轴成30°角的方向从原点射入磁场,则正、负电子在磁场中运动的时间之比为( )图3-6-26A.1∶2 B.2∶1C.1∶ 3 D.1∶1答案:B6.如图3-6-27所示,正方形区域abcd中充满匀强磁场,磁场方向垂直纸面向里.一个氢核从ad边中点m沿着既垂直于ad边,又垂直于磁场方向以一定速度射入磁场,正好从ab边中点n射出磁场.若将磁场的磁感应强度变为原来的2倍,其他条件不变,则这个氢核射出磁场的位置是( )图3-6-27A.在b、n之间某点B.在n、a之间某点C.a点D.在a、m之间某点解析:选 C.因为氢核是一带正电微粒,不计重力,在匀强磁场中做匀速圆周运动,由左手定则知其向上偏转.因为正好从n点射出,则可知其运行轨迹为1/4圆周.当磁感应强度B 变为原来的2倍时,由半径公式r =m v qB 可知,其半径变为原来的12,即射出位置为a 点,故C 选项正确.7.如图3-6-28所示,空间内存在着方向竖直向下的匀强电场E 和垂直纸面向里的匀强磁场B ,一个质量为m 的带电液滴,在竖直平面内做圆周运动,下列说法正确的是( )图3-6-28A .液滴在运动过程中速率不变B .液滴所带电荷一定为负电荷,电荷量大小为mg /EC .液滴一定沿顺时针方向运动D .液滴可以沿逆时针方向运动,也可以沿顺时针方向运动 答案:ABC8.如图3-6-29所示,在x >0,y >0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于Oxy 平面向里,大小为B .现有一质量为m .电荷量为q 的带电粒子,由x 轴上到原点的距离为x 0的P 点,以平行于y 轴的初速度射入此磁场,在磁场作用下沿垂直于y 轴的方向射出此磁场,不计重力的影响.由这些条件( )图3-6-29A .不能确定粒子通过y 轴时的位置B .不能确定粒子速度的大小C .不能确定粒子在磁场中运动所经历的时间D .以上三个判断都不对解析:选D.带电粒子从平行于y 轴的方向射入并从垂直于y 轴的方向射出,由此可确定此粒子圆周运动的圆心即为原点O ,半径为x 0,则粒子通过y 轴时的位置为(0,x 0),A 错;由R =m v qB 可求出粒子速度v ,B 错;粒子在磁场中经历的时间为T4,C 错.9.如图3-6-30所示,在x 轴上方有磁感应强度大小为B ,方向垂直纸面向里的匀强磁场.x 轴下方有磁感应强度大小为B /2,方向垂直纸面向外的匀强磁场.一质量为m 、电荷量为-q 的带电粒子(不计重力),从x 轴上O 点以速度v 0垂直x 轴向上射出.求:图3-6-30(1)射出之后经多长时间粒子第二次到达x 轴? (2)粒子第二次到达x 轴时离O 点的距离.解析:粒子射出后受洛伦兹力做匀速圆周运动,运动半个圆周后第一次到达x 轴,以向下的速度v 0进入下方磁场,又运动半个圆周后第二次到达x 轴.如图所示.(1)由牛顿第二定律有q v 0B =m v 2r ①T =2πr v 0② 得T 1=2πm qB ,T 2=4πm qB,粒子第二次到达x 轴需时间t =12T 1+12T 2=3πmqB .(2)由①式可知r 1=m v 0qB ,r 2=2m v 0qB, 粒子第二次到达x 轴时离O 点的距离s =2r 1+2r 2=6m v 0qB.答案:(1)3πm qB (2)6m v 0qB10.质谱仪原理如图3-6-31所示,a 为粒子加速器,电压为U 1;b 为速度选择器,磁场与电场正交,磁感应强度为B 1,板间距离为d ;c 为偏转分离器,磁感应强度为B 2.今有一质量为m 、电荷量为e 的正电子(不计重力),经加速后,该粒子恰能通过速度选择器,粒子进入分离器后做半径为R 的匀速圆周运动.求:图3-6-31(1)粒子的速度v 为多少? (2)速度选择器的电压U 2为多少?(3)粒子在B 2磁场中做匀速圆周运动的半径R 为多大?解析:根据动能定理可求出速度v ,根据电场力和洛伦兹力相等可得到U 2,再根据电子在磁场中做匀速圆周运动的知识可求得半径R .(1)在a 中,正电子被加速电场U 加速,由动能定理有eU 1=12m v 2,得v =2eU 1m.e U 2d=e v B 1,代入v 值,得U 2R =m v eB 2=1B 22mU 1e.(3)1B 22mU 1e间距离及PN 和MQ 长均为d ,一带正电的质子从PN 板的正中间O 点以速度v 0垂直射入磁场,为使质子能射出两板间,试求磁感应强度B 的大小.已知质子带电荷量为e ,质量为m .图3-6-32解析:由左手定则确定,质子向上偏转,所以质子能射出两板间的条件是:B 较弱时,质子从M 点射出(如右图所示),此时轨道的圆心为O ′点,由平面几何知识得]R 2=d 2+(R -12d )2得R =54d质子在磁场中有e v 0B =m v 20R所以R =m v 0eB ,即54d =m v 0eB 1,B 1=4m v 05deB 较强时,质子从N 点射出,此时质子运动了半个圆周,轨道半径R ′=d 4.所以14d =m v 0eB 2,即B 2=4m v 0de ,综合上述两种情况,B 的大小为4m v 05de ≤B ≤4m v 0de.答案:4m v 05de ≤B ≤4m v 0de12.(2010年汕头高二检测)质量为m 、电荷量为q 的带负电粒子自静止开始,经M 、N 板间的电场加速后,从A 点垂直于磁场边界射入宽度为d 的匀强磁场中,该粒子离开磁场时的位置P 偏离入射方向的距离为L ,如图3-6-33所示.已知M 、N 两板间的电压为U ,粒子的重力不计.图3-6-33(1)正确画出粒子由静止开始至离开匀强磁场时的轨迹图(用直尺和圆规规范作图); (2)求匀强磁场的磁感应强度B .解析:(1)作粒子在电场和磁场中的轨迹图如图所示.(2)设粒子在M 、N 两板间经电场加速后获得的速度为v ,由动能定理得:qU =12m v 2①粒子进入磁场后做匀速圆周运动,设其半径为r , 则:q v B =m v2②。
带电粒子在磁场中偏转问题的动量解法带电粒子在电场力作用下的运动和在洛伦兹力作用下的运动,有着不同的运动规律。
带电粒子在电场中运动时,通过电场力做功,使带电粒子在电场中加速和偏转,导致粒子的速度方向和速度大小发生变化;当带电粒子在匀强磁场中运动时,洛伦兹力不做功,因此粒子的速度大小始终不变,只有速度方向发生变化。
在高考压轴题中,经常出现把这二者的运动结合起来,让带电粒子分别通过电场和磁场,把两种或者两种以上的运动组合起来,全面考察我们队各种带电粒子运动规律的掌握情况。
求解这一类问题,一方面我们要按照顺序对题目上给出的运动过程进行分段分析,将复杂的问题分解为一个一个的简单熟悉的物理模型,另一方面我们也要全面准确分析相关过程中功能关系的变化,弄清楚各个状态之间的能量变化,便于我们按照动能定理或者能量守恒定律写方程。
在对带电粒子在每个场中的运动状况分析时,必须特别注意粒子到场与场交接处的运动情况,因为这通常就是一个临界状态,一定必须分析确切此刻粒子的速度大小和方向以及适当的边线关系,这通常对于步入另一个场中的运动存有决定性的影响!还有一些是两场共存或者是三场共存的问题,这些运动会更加复杂,但是他本质上是一个力学问题,只要我们掌握的相应的规律,利用力学问题的研究思路和基本规律,都是可以顺利克服的!对于带电粒子在电场、磁场、无机场中运动时,重力与否考量分后三种情况:(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等一般应当考虑其重力。
(2)在题目中存有明晰表明与否必须考量重力的,这种情况按题目建议处置比较非正规,也比较简单。
(3)不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要结合运动状态确定是否要考虑重力。
类型一、拆分的电场与磁场带电粒子在电场中的加速运动可以利用牛顿第二定律结合匀变速直线运动规律,或者从电场力做功角度出发求出粒子进入下一个场的速度。
带电离子在恒定磁场中的偏转求比荷用到的知识点一、知识概述《带电离子在恒定磁场中的偏转求比荷用到的知识点》①基本定义:- 比荷就是带电粒子的电荷量与其质量的比值。
咱就好比把它看作是每个粒子特有的一个属性,电荷量和质量有着一定的比例关系。
- 在恒定磁场里,带电离子会因为受到洛伦兹力而发生偏转,所谓洛伦兹力呢,就像是一个无形的手把带电离子往某个方向拽。
②重要程度:- 在物理学科里,这是了解微观粒子在磁场中运动的关键。
要研究离子加速器之类的东西,或者想知道一些物质的电磁性质,就离不开这个知识点。
就像造房子要知道每块砖的特性一样,这个知识点就是探索微观物理世界的一块小但非常重要的“砖头”。
③前置知识:- 首先得知道基本的电荷的概念,要是连电荷是什么都稀里糊涂的,那就没法玩了。
- 还得了解力的概念,毕竟洛伦兹力也是一种力嘛。
- 对于匀速圆周运动得有一定的认识,因为带电离子在磁场中的偏转轨道很多时候就是做圆周运动的。
④应用价值:- 在现实生活中,质谱仪就是靠这个原理工作的。
质谱仪就像一个粒子的“秤”,可以通过测量粒子的比荷和运动轨迹等,分析出物质的成分,像科学家分析一些化学物质的组成啊,有时候还能检测出微量元素之类的东西。
二、知识体系①知识图谱:- 在物理电磁学这个大家族里,这个知识点是属于带电粒子在电磁场中运动这个分支的,和电场里带电粒子的运动也是有点儿关联的,就像亲戚关系一样。
②关联知识:- 与安培力是有联系的,安培力可以看作是洛伦兹力的宏观表现。
- 跟电磁感应现象也有点沾边,电磁感应产生的磁场变化可能会影响带电离子的运动环境。
③重难点分析:- 掌握难度呢,说实话,一开始可能会觉得有点绕。
关键点在于理解洛伦兹力和粒子做圆周运动之间的关系。
要想象那个粒子在看不见的磁场里被一种力量拉着画圈,而且要准确地把力、速度、半径这些东西的关系搞明白,这个就如同在迷雾中找路一样,一旦走错方向就晕头转向了。
④考点分析:- 在物理考试中,这可是很重要的一个知识点。
“动态圆法”——定速不定向1.如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B =0.60T ,磁场内有一块平面感光板ab ,板面与磁场方向平行,在距ab 的距离16l cm =处,有一个点状的α放射源S ,它向各个方向发射α粒子,α粒子的速度都是63.010/v m s =⨯,已知α粒子的电荷与质量之比kg C mq/1057⨯=,现只考虑在图纸平面中运动的α粒子,求ab 上被α粒子打中的区域的长度?1 解析:α粒子带正电,故在磁场中沿逆时针方向做匀速圆周运动,用R 表示轨道半径,有qvB =m v 2R ,由此得R =mvqB,代入数值得R =10 cm ,可见,R<l<2R.因朝不同方向发射的α粒子的圆轨迹都过S ,由此可知,某一圆轨迹在图中N 左侧与ab 相切,则此切点P 1就是α粒子能打中的左侧最远点.NP 1=R 2--2=8 cm再考虑N 的右侧.任何α粒子在运动中离S 的距离不可能超过2R ,以2R 为半径、S 为圆心作圆,交ab 于N 右侧的P 2点,此即右侧能打到的最远点.由图中几何关系得NP 2=2-l 2=12 cm ,所求长度为P 1P 2=NP 1+NP 2,代入数值得P 1P 2=20 cm.2.如图所示,S 为一离子源,MN 为荧光屏,其长度为,MN S MN =到的距离 为,SP L P MN =为的中点,整个装置处在足够大的匀强磁场 中,磁感应强度大小为B ,方向垂直纸面向里.某时刻离子源S一次性沿平行纸面的各个方向均匀地喷发大量的正离子,此后 不再喷发。
喷发的离子速率均相等、质量均为m 、电荷量均为 q ,不考虑离子之间的相互作用力及一切阻力。
(1)若喷发离子在磁场中做圆周运动的半径为2L ,试求离子喷 发时的速率1v ;(2)若所有离子都打不到荧光屏,试求喷发离子速率2v 的取值 范围;(3)若喷发力子速率为qBLm,试求能打到荧光屏MN 的离子个数与喷发离子总数的比值k2.(20分)【解析】(1)离子在磁场中仅受洛伦兹力作用做匀速圆周运动,根据牛顿第二定律和向心力公式得 211q B m Rυυ= (2分)1m R qBυ=即 (1分) 又2R L = 解得12qBLmυ=(2分) (2)只要离子沿平行于MN 方向射出时打不到屏上,则所有离子都打不到平光屏,故离子做匀速圆周运动的半径2LR <(2分) 由222q B m Rυυ=得2qBRmυ=(1分) 故2υ的取值范围为22qBLmυ< (2分) (3)若3qBLmυ=,则离子做匀速圆周运动的半径R L = (1分) 如图所示,离子能打到荧光屏的范围为'N M ,有几何关系可得PN =(2分)'PM L = (2分)打到N 点的离子离开S 时的初速度方向和打到'M 点的离子离开S时的初速度方向之间的夹角56θπ=(2分)故能打到荧光屏MN 的离子数目与发射的离子总数之比为2k θπ=(2分) 即556212k ππ== (1分)3.如图所示,在直角坐标系的原点O 处有一放射源,向四周均匀发射速度大小相等、方向都平行于纸面的带电粒子。
磁场偏转半径公式一、引言磁场偏转半径公式是物理学中的一个重要公式,它描述了带电粒子在磁场中运动的轨迹偏转程度。
这个公式在许多领域都有广泛的应用,例如电子显微镜、粒子加速器、核磁共振成像等。
本文将详细介绍磁场偏转半径公式的推导过程、意义以及在不同场景中的应用。
二、磁场偏转半径公式的推导假设带电粒子在均匀磁场中做圆周运动,其运动方程可以表示为:qv×B=mv²/r,其中q是粒子的电荷量,v是粒子的速度,B是磁感应强度,m是粒子的质量,r是偏转半径。
这个方程可以简化为:mv²/r=qv×B。
整理得:r=mv/qB。
这就是磁场偏转半径公式。
三、磁场偏转半径公式的意义磁场偏转半径公式表明,带电粒子在磁场中运动的轨迹偏转程度与粒子的速度、质量和磁感应强度有关。
当粒子的速度和磁感应强度一定时,偏转半径与粒子的质量成正比;当粒子的质量和磁感应强度一定时,偏转半径与粒子的速度成反比;当粒子的速度和质量一定时,偏转半径与磁感应强度成反比。
因此,通过改变磁场强度、粒子速度或粒子质量,可以控制带电粒子运动的轨迹偏转程度。
四、磁场偏转半径公式的应用1.电子显微镜:在电子显微镜中,电子束代替了传统的可见光束。
由于电子具有电荷质量,它们在磁场中会受到洛伦兹力作用,从而改变电子束的传播方向。
通过调节磁场强度,可以控制电子束的聚焦和偏转,从而实现高分辨率成像。
2.粒子加速器:粒子加速器是利用电场加速带电粒子的装置。
为了将粒子引导到正确的轨道上,需要使用磁场来改变粒子的运动方向。
磁场偏转半径公式为设计粒子加速器的磁铁提供了重要的理论依据。
3.核磁共振成像:核磁共振成像是一种基于原子核自旋磁矩的医学成像技术。
在核磁共振成像中,磁场的作用是将能量传递给原子核,使原子核发生能级跃迁。
磁场偏转半径公式可用于计算原子核发生能级跃迁时的磁矩方向和强度,从而实现高分辨率的图像采集。
4.等离子体诊断:在等离子体物理领域中,磁场偏转半径公式可以帮助科学家理解等离子体中的带电粒子行为。
带电粒子在电场和磁场中的运动要点归纳一、不计重力的带电粒子在电场中的运动1.带电粒子在电场中加速当电荷量为q 、质量为m 、初速度为v 0的带电粒子经电压U 加速后,速度变为v t ,由动能定理得:qU =12m v t 2-12m v 02.若v 0=0,则有v t =2qU m,这个关系式对任意静电场都是适用的. 对于带电粒子在电场中的加速问题,应突出动能定理的应用.2.带电粒子在匀强电场中的偏转电荷量为q 、质量为m 的带电粒子由静止开始经电压U 1加速后,以速度v 1垂直进入由两带电平行金属板产生的匀强电场中,则带电粒子在匀强电场中做类平抛运动,其轨迹是一条抛物线(如图4-1所示).图4-1 qU 1=12m v 12 设两平行金属板间的电压为U 2,板间距离为d ,板长为L .(1)带电粒子进入两板间后粒子在垂直于电场的方向上做匀速直线运动,有:v x =v 1,L =v 1t粒子在平行于电场的方向上做初速度为零的匀加速直线运动,有:v y =at ,y =12at 2,a =qE m =qU 2md. (2)带电粒子离开极板时侧移距离y =12at 2=qU 2L 22md v 12=U 2L 24dU 1轨迹方程为:y =U 2x 24dU 1(与m 、q 无关) 偏转角度φ的正切值tan φ=at v 1=qU 2L md v 12=U 2L 2dU 1若在偏转极板右侧D 距离处有一竖立的屏,在求电子射到屏上的侧移距离时有一个很有用的推论,即:所有离开偏转电场的运动电荷好像都是从极板的中心沿中心与射出点的连线射出的.这样很容易得到电荷在屏上的侧移距离y ′=(D +L 2)tan φ. 以上公式要求在能够证明的前提下熟记,并能通过以上式子分析、讨论侧移距离和偏转角度与带电粒子的速度、动能、比荷等物理量的关系.二、不计重力的带电粒子在磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m 、电荷量为q 的带电粒子以初速度v 垂直进入匀强磁场B 中做匀速圆周运动,其角速度为ω,轨道半径为R ,运动的周期为T ,则有:q v B =m v 2R =mRω2=m v ω=mR (2πT)2=mR (2πf )2 R =m v qBT =2πm qB (与v 、R 无关),f =1T =qB 2πm. 3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定①若已知粒子在圆周运动中的两个具体位置及通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向及圆轨迹的半径R ,可在该位置上作速度的垂线,垂线上距该位置R 处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2 图4-3 图4-4(2)粒子圆轨迹的半径的确定①可直接运用公式R =m v qB来确定. ②画出几何图形,利用半径R 与题中已知长度的几何关系来确定.在利用几何关系时,要注意一个重要的几何特点,即:粒子速度的偏向角φ等于对应轨迹圆弧的圆心角α,并等于弦切角θ的2倍,如图4-5所示.图4-5 (3)粒子做圆周运动的周期的确定①可直接运用公式T =2πm qB来确定. ②利用周期T 与题中已知时间t 的关系来确定.若粒子在时间t 内通过的圆弧所对应的圆心角为α,则有:t =α360°·T (或t =α2π·T ). (4)圆周运动中有关对称的规律①从磁场的直边界射入的粒子,若再从此边界射出,则速度方向与边界的夹角相等,如图4-6所示. ②在圆形磁场区域内,沿径向射入的粒子必沿径向射出,如图4-7所示.图4-6 图4-7(5)带电粒子在有界磁场中运动的极值问题刚好穿出磁场边界的条件通常是带电粒子在磁场中运动的轨迹与边界相切.三、带电粒子在复合场中的运动1.高中阶段所涉及的复合场有四种组合形式,即:①电场与磁场的复合场;②磁场与重力场的复合场;③电场与重力场的复合场;④电场、磁场与重力场的复合场.2.带电粒子在复合场中的运动性质取决于带电粒子所受的合外力及初速度,因此应把带电粒子的运动情况和受力情况结合起来进行分析.当带电粒子在复合场中所受的合外力为零时,带电粒子做匀速直线运动(如速度选择器);当带电粒子所受的重力与电场力等值、反向,由洛伦兹力提供向心力时,带电粒子在垂直磁场的平面内做匀速圆周运动;当带电粒子所受的合外力是变力,且与初速度的方向不在一条直线上时,粒子做非匀变速曲线运动,运动轨迹也随之不规范地变化.因此,要确定粒子的运动情况,必须明确有几种场,粒子受几种力,重力是否可以忽略.3.带电粒子所受三种场力的特征(1)洛伦兹力的大小跟速度方向与磁场方向的夹角有关.当带电粒子的速度方向与磁场方向平行时,f 洛=0;当带电粒子的速度方向与磁场方向垂直时,f 洛=q v B .当洛伦兹力的方向垂直于速度v 和磁感应强度B 所决定的平面时,无论带电粒子做什么运动,洛伦兹力都不做功.(2)电场力的大小为qE ,方向与电场强度E 的方向及带电粒子所带电荷的性质有关.电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与其始末位置的电势差有关.(3)重力的大小为mg ,方向竖直向下.重力做功与路径无关,其数值除与带电粒子的质量有关外,还与其始末位置的高度差有关.注意:①微观粒子(如电子、质子、离子)一般都不计重力;②对带电小球、液滴、金属块等实际的物体没有特殊交代时,应当考虑其重力;③对未知名的、题中又未明确交代的带电粒子,是否考虑其重力,则应根据题给的物理过程及隐含条件具体分析后作出符合实际的决定.4.带电粒子在复合场中的运动的分析方法(1)当带电粒子在复合场中做匀速运动时,应根据平衡条件列方程求解.(2)当带电粒子在复合场中做匀速圆周运动时,往往应用牛顿第二定律和平衡条件列方程联立求解.(3)当带电粒子在复合场中做非匀速曲线运动时,应选用动能定理或动量守恒定律列方程求解.注意:如果涉及两个带电粒子的碰撞问题,要根据动量守恒定律列方程,再与其他方程联立求解. 由于带电粒子在复合场中的受力情况复杂,运动情况多变,往往出现临界问题,这时应以题目中的“恰好”、“最大”、“最高”、“至少”等词语为突破口,挖掘隐含条件,并根据临界条件列出辅助方程,再与其他方程联立求解.热点、重点、难点一、根据带电粒子的运动轨迹进行分析推理图4-8●例1 如图4-8所示,MN 是一正点电荷产生的电场中的一条电场线.一个带负电的粒子(不计重力)从a 到b 穿越这条电场线的轨迹如图中虚线所示.下列结论正确的是( )A .带电粒子从a 到b 的过程中动能逐渐减小B .正点电荷一定位于M 点的左侧C .带电粒子在a 点时具有的电势能大于在b 点时具有的电势能D .带电粒子在a 点的加速度大于在b 点的加速度【解析】由做曲线运动的物体的受力特点知带负电的粒子受到的电场力指向曲线的内侧,故电场线MN 的方向为N →M ,正点电荷位于N 的右侧,选项B 错误;由a 、b 两点的位置关系知b 点更靠近场源电荷,故带电粒子在a 点受到的库仑力小于在b 点受到的库仑力,粒子在b 点的加速度大,选项D 错误;由上述电场力的方向知带电粒子由a 运动到b 的过程中电场力做正功,动能增大,电势能减小,故选项A 错误、C 正确.[答案] C【点评】本专题内容除了在高考中以常见的计算题形式出现外,有时候也以选择题形式出现,通过带电粒子在非匀强电场中(只受电场力)的运动轨迹来分析电场力和能的特性是一种重要题型,解析这类问题时要注意以下三点:①电场力一定沿电场线曲线的切线方向且一定指向轨迹曲线的内侧;②W 电=qU a b =E k b -E k a ;③当电场线为曲线时,电荷的运动轨迹不会与之重合.二、带电粒子在电场中的加速与偏转图4-9●例2 喷墨打印机的结构简图如图4-9所示,其中墨盒可以发出墨汁微滴,其半径约为1×10-5 m ,此微滴经过带电室时被带上负电,带电荷量的多少由计算机按字体笔画的高低位置输入信号加以控制.带电后的微滴以一定的初速度进入偏转电场,带电微滴经过偏转电场发生偏转后打到纸上,显示出字体.无信号输入时,墨汁微滴不带电,径直通过偏转板而注入回流槽流回墨盒.偏转板长1.6 cm ,两板间的距离为0.50 cm ,偏转板的右端距纸3.2 cm .若墨汁微滴的质量为1.6×10-10 kg ,以20 m/s 的初速度垂直于电场方向进入偏转电场,两偏转板间的电压是8.0×103 V ,其打到纸上的点距原射入方向的距离是2.0 mm .求这个墨汁微滴通过带电室所带的电荷量的多少.(不计空气阻力和重力,可以认为偏转电场只局限于平行板电容器的内部,忽略边缘电场的不均匀性)为了使纸上的字放大10%,请你分析并提出一个可行的方法.【解析】设墨汁微滴所带的电荷量为q ,它进入偏转电场后做类平抛运动,离开电场后做直线运动打到纸上,则距原入射方向的距离为:y =12at 2+L tan φ又a =qU md ,t =l v 0,tan φ=at v 0解得:y =qUl md v 02(l 2+L ) 代入数据得:q =1.25×10-13 C要将字体放大10%,只要使y 增大为原来的 1.1倍,可采用的措施为将两偏转板间的电压增大到8.8×103 V ,或将偏转板右端与纸的间距增大到3.6 cm .[答案] 1.25×10-13 C 将两偏转板间的电压增大到8.8×103 V ,或将偏转板右端与纸的间距增大到3.6 cm【点评】①本题也可直接根据推论公式y =(l 2+L )tan φ=(l 2+L )qUl md v 02进行计算. ②和平抛运动问题一样,这类题型中偏转角度的正切表达式在解题中往往较为关键,且有tan θ=2tan α(α为射出点的位移方向与入射方向的夹角)的特点.★同类拓展1 如图4-10甲所示,在真空中,有一半径为R 的圆形区域内存在匀强磁场,磁场方向垂直纸面向外.在磁场右侧有一对平行金属板M 和N ,两板间距为R ,板长为2R ,板间的中心线O 1O 2与磁场的圆心O 在同一直线上.有一电荷量为q 、质量为m 的带正电的粒子以速度v 0从圆周上的a 点沿垂直于半径OO 1并指向圆心O 的方向进入磁场,当从圆周上的O 1点水平飞出磁场时,给M 、N 两板加上如图4-10乙所示的电压,最后粒子刚好以平行于N 板的速度从N 板的边缘飞出.(不计粒子所受到的重力、两板正对面之间为匀强电场,边缘电场不计)图4-10 (1)求磁场的磁感应强度B .(2)求交变电压的周期T 和电压U 0的值.(3)当t =T 2时,该粒子从M 、N 板右侧沿板的中心线仍以速度v 0射入M 、N 之间,求粒子从磁场中射出的点到a 点的距离.【解析】(1)粒子自a 点进入磁场,从O 1点水平飞出磁场,则其运动的轨道半径为R .由q v 0B =m v 02R ,解得:B =m v 0qR. (2)粒子自O 1点进入电场后恰好从N 板的边缘平行极板飞出,设运动时间为t ,根据类平抛运动规律有:2R=v 0tR 2=2n ·qU 02mR (T 2)2 又t =nT (n =1,2,3…)解得:T =2R n v 0(n =1,2,3…) U 0=nm v 022q(n =1,2,3…).图4-10丙(3)当t =T 2时,粒子以速度v 0沿O 2O 1射入电场,该粒子恰好从M 板边缘以平行于极板的速度射入磁场,进入磁场的速度仍为v 0,运动的轨迹半径为R .设进入磁场时的点为b ,离开磁场时的点为c ,圆心为O 3,如图4-10丙所示,四边形ObO 3c 是菱形,所以Oc ∥O 3b ,故c 、O 、a 三点共线,ca 即为圆的直径,则c 、a 间的距离d =2R .[答案] (1)m v 0qR(2)2R n v 0 (n =1,2,3…) nm v 022q(n =1,2,3…) (3)2R 【点评】带电粒子在匀强电场中偏转的运动是类平抛运动,解此类题目的关键是将运动分解成两个简单的直线运动,题中沿电场方向的分运动就是“受力周期性变化的加速运动”.三、带电粒子在有界磁场中(只受洛伦兹力)的运动1.带电粒子在磁场中的运动大体包含五种常见情境,即:无边界磁场、单边界磁场、双边界磁场、矩形边界磁场、圆形边界磁场.带电粒子在磁场中的运动问题综合性较强,解这类问题往往要用到圆周运动的知识、洛伦兹力,还要牵涉到数学中的平面几何、解析几何等知识.因此,解此类试题,除了运用常规的解题思路(画草图、找“圆心”、定“半径”等)之外,更应侧重于运用数学知识进行分析.2.带电粒子在有界匀强磁场中运动时,其轨迹为不完整的圆周,解决这类问题的关键有以下三点. ①确定圆周的圆心.若已知入射点、出射点及入射方向、出射方向,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两直线的交点即为圆周的圆心;若已知入射点、出射点及入射方向,可通过入射点作入射线的垂线,连接入射点和出射点,作此连线的垂直平分线,两垂线的交点即为圆周的圆心.②确定圆的半径.一般在圆上作图,由几何关系求出圆的半径.③求运动时间.找到运动的圆弧所对应的圆心角θ,由公式t =θ2πT 求出运动时间. 3.解析带电粒子穿过圆形区域磁场问题常可用到以下推论:①沿半径方向入射的粒子一定沿另一半径方向射出.②同种带电粒子以相同的速率从同一点垂直射入圆形区域的匀强磁场时,若射出方向与射入方向在同一直径上,则轨迹的弧长最长,偏转角有最大值且为α=2arcsin R r =2arcsin RBq m v. ③在圆形区域边缘的某点向各方向以相同速率射出的某种带电粒子,如果粒子的轨迹半径与区域圆的半径相同,则穿过磁场后粒子的射出方向均平行(反之,平行入射的粒子也将汇聚于边缘一点).●例3 如图4-11甲所示,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P (0,h )点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在只加电场,当粒子从P 点运动到x =R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点,不计重力,求:图4-11甲(1)粒子到达x =R 0平面时的速度方向与x 轴的夹角以及粒子到x 轴的距离.(2)M 点的横坐标x M .【解析】(1)粒子做直线运动时,有:qE =qB v 0做圆周运动时,有:qB v 0=m v 02R 0只有电场时,粒子做类平抛运动,则有:qE =maR 0=v 0tv y =at解得:v y =v 0粒子的速度大小为:v =v 02+v y 2=2v 0速度方向与x 轴的夹角为:θ=π4粒子与x 轴的距离为:H =h +12at 2=h +R 02. (2)撤去电场加上磁场后,有:qB v =m v 2R解得:R =2R 0此时粒子的运动轨迹如图4-11乙所示.圆心C 位于与速度v 方向垂直的直线上,该直线与x 轴和y轴的夹角均为π4.由几何关系可得C 点的坐标为:图4-11乙x C =2R 0y C =H -R 0=h -R 02 过C 点作x 轴的垂线,在△CDM 中,有:l CM =R =2R 0,l CD =y C =h -R 02解得:l DM =l CM 2-l CD 2=74R 02+R 0h -h 2 M 点的横坐标为:x M =2R 0+74R 02+R 0h -h 2. [答案] (1)π2 h +R 02 (2)2R 0+74R 02+R 0h -h 2 【点评】无论带电粒子在匀强电场中的偏转还是在匀强磁场中的偏转,偏转角往往是个较关键的量. ●例4 如图4-12甲所示,质量为m 、电荷量为e 的电子从坐标原点O 处沿xOy 平面射入第一象限内,射入时的速度方向不同,但大小均为v 0.现在某一区域内加一方向向外且垂直于xOy 平面的匀强磁场,磁感应强度大小为B ,若这些电子穿过磁场后都能垂直地射到与y 轴平行的荧光屏MN 上,求:图4-12甲 (1)荧光屏上光斑的长度.(2)所加磁场范围的最小面积.【解析】(1)如图4-12乙所示,要求光斑的长度,只要找到两个边界点即可.初速度沿x 轴正方向的电子沿弧OA 运动到荧光屏MN 上的P 点;初速度沿y 轴正方向的电子沿弧OC 运动到荧光屏MN 上的Q 点.图4-12乙设粒子在磁场中运动的半径为R ,由牛顿第二定律得:e v 0B =m v 02R ,即R =m v 0Be由几何知识可得:PQ =R =m v 0Be. (2)取与x 轴正方向成θ角的方向射入的电子为研究对象,其射出磁场的点为E (x ,y ),因其射出后能垂直打到屏MN 上,故有:x =-R sin θy =R +R cos θ即x 2+(y -R )2=R 2又因为电子沿x 轴正方向射入时,射出的边界点为A 点;沿y 轴正方向射入时,射出的边界点为C 点,故所加最小面积的磁场的边界是以(0,R )为圆心、R 为半径的圆的一部分,如图乙中实线圆弧所围区域,所以磁场范围的最小面积为:S =34πR 2+R 2-14πR 2=(π2+1)(m v 0Be)2. [答案] (1)m v 0Be (2)(π2+1)(m v 0Be)2 【点评】带电粒子在匀强磁场中偏转的试题基本上是年年考,大概为了求新求变,在2009年高考中海南物理卷(第16题)、浙江理综卷(第25题)中都出现了应用这一推论的题型.★同类拓展2 如图4-13甲所示,ABCD 是边长为a 的正方形.质量为m 、电荷量为e 的电子以大小为v 0的初速度沿纸面垂直于BC 边射入正方形区域.在正方形内适当区域中有匀强磁场.电子从BC 边上的任意点入射,都只能从A 点射出磁场.不计重力,求:图4-13甲(1)此匀强磁场区域中磁感应强度的方向和大小.(2)此匀强磁场区域的最小面积.[2009年高考·海南物理卷]【解析】(1)若要使由C 点入射的电子从A 点射出,则在C 处必须有磁场,设匀强磁场的磁感应强度的大小为B ,令圆弧AEC 是自C 点垂直于BC 入射的电子在磁场中的运行轨道,电子所受到的磁场的作用力f =e v 0B ,方向应指向圆弧的圆心,因而磁场的方向应垂直于纸面向外.圆弧AEC 的圆心在CB 边或其延长线上.依题意,圆心在A 、C 连线的中垂线上,故B 点即为圆心,圆半径为a .按照牛顿定律有: f =m v 02a联立解得:B =m v 0ea. (2)由(1)中决定的磁感应强度的方向和大小,可知自C 点垂直于BC 入射的电子在A 点沿DA 方向射出,且自BC 边上其他点垂直于入射的电子的运动轨道只能在BAEC 区域中,因而,圆弧AEC 是所求的最小磁场区域的一个边界.为了决定该磁场区域的另一边界,我们来考察射中A 点的电子的速度方向与BA 的延长线交角为θ(不妨设0≤θ<π2)的情形.该电子的运动轨迹QP A 如图4-13乙所示.图中,圆弧AP 的圆心为O ,PQ 垂直于BC 边,由上式知,圆弧AP 的半径仍为a .过P 点作DC 的垂线交DC 于G ,由几何关系可知∠DPG =θ,在以D 为原点、DC 为x 轴、DA 为y 轴的坐标系中,P 点的坐标(x ,y )为:x =a sin θ,y =a cos θ图4-13乙 这意味着,在范围0≤θ≤π2内,P 点形成以D 为圆心、a 为半径的四分之一圆周AFC ,它是电子做直线运动和圆周运动的分界线,构成所求磁场区域的另一边界.因此,所求的最小匀强磁场区域是分别以B 和D 为圆心、a 为半径的两个四分之一圆周 AEC 和 AFC 所围成的,其面积为:S =2(14πa 2-12a 2)=π-22a 2. [答案] (1)m v 0ea 方向垂直于纸面向外 (2)π-22a 2 四、带电粒子在复合场、组合场中的运动问题●例5 在地面附近的真空中,存在着竖直向上的匀强电场和垂直电场方向水平向里的匀强磁场,如图4-14甲所示.磁场的磁感应强度B 随时间t 的变化情况如图4-14乙所示.该区域中有一条水平直线MN ,D 是MN 上的一点.在t =0时刻,有一个质量为m 、电荷量为+q 的小球(可看做质点),从M 点开始沿着水平直线以速度v 0做匀速直线运动,t 0时刻恰好到达N 点.经观测发现,小球在t =2t 0至t =3t 0时间内的某一时刻,又竖直向下经过直线MN 上的D 点,并且以后小球多次水平向右或竖直向下经过D 点.求:图4-14(1)电场强度E 的大小.(2)小球从M 点开始运动到第二次经过D 点所用的时间.(3)小球运动的周期,并画出运动轨迹(只画一个周期).【解析】(1)小球从M 点运动到N 点时,有:qE =mg解得:E =mg q. (2)小球从M 点到达N 点所用时间t 1=t 0小球从N 点经过34个圆周,到达P 点,所以t 2=t 0小球从P 点运动到D 点的位移x =R =m v 0B 0q小球从P 点运动到D 点的时间t 3=R v 0=m B 0q所以时间t =t 1+t 2+t 3=2t 0+m B 0q[或t =m qB 0(3π+1),t =2t 0(13π+1)]. (3)小球运动一个周期的轨迹如图4-14丙所示.图4-14丙 小球的运动周期为:T =8t 0(或T =12πm qB 0). [答案] (1)mg q (2)2t 0+m B 0q(3)T =8t 0 运动轨迹如图4-14丙所示【点评】带电粒子在复合场或组合场中运动的轨迹形成一闭合的对称图形的试题在高考中屡有出现.五、常见的、在科学技术中的应用带电粒子在电场、磁场中的运动规律在科学技术中有广泛的应用,高中物理中常碰到的有:示波器(显像管)、速度选择器、质谱仪、回旋加速器、霍耳效应传感器、电磁流量计等.●例6 一导体材料的样品的体积为a ×b ×c ,A ′、C 、A 、C ′为其四个侧面,如图4-15所示.已知导体样品中载流子是自由电子,且单位体积中的自由电子数为n ,电阻率为ρ,电子的电荷量为e ,沿x 方向通有电流I .图4-15(1)导体样品A ′、A 两个侧面之间的电压是________,导体样品中自由电子定向移动的速率是________.(2)将该导体样品放在匀强磁场中,磁场方向沿z 轴正方向,则导体侧面C 的电势________(填“高于”、“低于”或“等于”)侧面C ′的电势.(3)在(2)中,达到稳定状态时,沿x 方向的电流仍为I ,若测得C 、C ′两侧面的电势差为U ,试计算匀强磁场的磁感应强度B 的大小.【解析】(1)由题意知,样品的电阻R =ρ·c ab根据欧姆定律:U 0=I ·R =ρcI ab分析t 时间定向移动通过端面的自由电子,由电流的定义式I =n ·ab ·v ·t ·e t可得v =I nabe.(2)由左手定则知,定向移动的自由电子向C ′侧面偏转,故C 侧的电势高于C ′侧面.(3)达到稳定状态时,自由电子受到电场力与洛伦兹力的作用而平衡,则有:q Ub=q v B解得:B =neaUI .[答案] (1)ρcI ab I nabe (2)高于 (3)neaUI【点评】本例实际上为利用霍耳效应测磁感应强度的方法,而电磁流量计、磁流体发电机的原理及相关问题的解析都与此例相似.★同类拓展3 如图4-16甲所示,离子源A 产生的初速度为零、带电荷量均为e 、质量不同的正离子被电压为U 0的加速电场加速后匀速通过准直管,垂直射入匀强偏转电场,偏转后通过极板HM 上的小孔S 离开电场,经过一段匀速直线运动,垂直于边界MN 进入磁感应强度为B 的匀强磁场.已知HO =d ,HS =2d ,∠MNQ =90°.(忽略离子所受重力)图4-16甲(1)求偏转电场场强E 0的大小以及HM 与MN 的夹角φ. (2)求质量为m 的离子在磁场中做圆周运动的半径.(3)若质量为4m 的离子垂直打在NQ 的中点S 1处,质量为16m 的离子打在S 2处.求S 1和S 2之间的距离以及能打在NQ 上的正离子的质量范围.[2009年高考·重庆理综卷]【解析】(1)设正离子经电压为U 0的电场加速后速度为v 1,应用动能定理有:图4-16乙eU 0=12m v 12-0正离子垂直射入匀强偏转电场,受到的电场力F =eE 0产生的加速度a =F m ,即a =eE 0m垂直电场方向做匀速运动,有:2d =v 1t沿电场方向,有:d =12at 2联立解得:E 0=U 0d又tan φ=v 1at解得:φ=45°.(2)正离子进入磁场时的速度大小为: v =v 12+v ⊥2=v 12+(at )2正离子在匀强磁场中做匀速圆周运动,由洛伦兹力提供向心力,则有:e v B =m v 2R联立解得:正离子在磁场中做圆周运动的半径R =2mU 0eB 2.(3)将4m 和16m 代入R ,得R 1=24mU 0eB 2、R 2=216mU 0eB 2图4-16丙由几何关系可知S 1和S 2之间的距离Δs =R 22-(R 2-R 1)2-R 1联立解得:Δs =4(3-1)mU 0eB 2由R ′2=(2R 1)2+(R ′-R 1)2得:R ′=52R 1由12R 1<R <52R 1 得:m <m 正<25m .[答案] (1)45° (2)2mU 0eB 2(3)m <m 正<25m经典考题带电粒子在电场、磁场以及复合场、组合场中的运动问题是每年各地高考的必考内容,留下大量的经典题型,认真地总结归纳这些试题会发现以下特点:①重这些理论在科学技术上的应用; ②需要较强的空间想象能力. 1.图示是科学史上一张著名的实验照片,显示一个带电粒子在云室中穿过某种金属板运动的径迹.云室放置在匀强磁场中,磁场方向垂直照片向里,云室中横放的金属板对粒子的运动起阻碍作用.分析此径迹可知粒子[2009年高考·安徽理综卷]( )。