带电粒子在匀强磁场中偏转(直线和平行边界)汇总
- 格式:pptx
- 大小:202.60 KB
- 文档页数:15
带电粒子在有界匀强磁场中的运动归类解析一、单直线边界磁场1.进入型:带电粒子以一定速度υ垂直于磁感应强度B 进入磁场. 规律要点:(1)对称性:若带电粒子以与边界成θ角的速度进入磁场,则一定以与边界成θ角的速度离开磁场.如图1所示.(2)完整性:比荷相等的正、负带电粒子以相同速度进入同一匀强磁场,则它们运动的圆弧轨道恰构成一个完整的圆;正、负带电粒子以相同速度进入同一匀强磁场时,两粒子轨道圆弧对应的圆心角之和等于2πrad ,即2+-+=ϕϕπ,且2-=ϕθ(或2+=ϕθ).2.射出型:粒子源在磁场中,且可以向纸面内各个方向以相同速率发射同种带电粒子.规律要点:(以图2中带负电粒子的运动轨迹为例)(1)最值相切:当带电粒子的运动轨迹小于12圆周时且与边界相切(如图2中a 点),则切点为带电粒子不能射出磁场的最值点(或恰能射出磁场的临界点);(2)最值相交:当带电粒子的运动轨迹大于或等于12圆周时,直径与边界相交的点(图2中的b 点)为带电粒子射出边界的最远点.图2中,在ab 之间有带电粒子射出,设ab 距离为x ,粒子源到磁场边界的距离为d ,带电粒子的质量为m ,速度为υ,则m υr=Bqa O r-d二、双直线边界磁场规律要点:最值相切:当粒子源在一条边界上向纸面内各个方向以相同速率发射同一种粒子时,粒子能从另一边界射出的上、下最远点对应的轨道分别与两直线相切.图3所示.对称性:过粒子源S 的垂线为ab 的中垂线.在图3中,ab 之间有带电粒子射出,可求得ab=最值相切规律可推广到矩形区域磁场中.例1.一足够长的矩形区域abcd 内充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,矩形区域的左边界ad 宽为L ,现从ad 中点O 垂直于磁场射入一带电粒子,速度大小为0υ方向与ad 边夹角为30°,如图4所示。
已知粒子的电荷量为q ,质量为m (重力不计)。
(1)若粒子带负电,且恰能从d 点射出磁场,求0υ的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求0υ的取值范围以及此范围内粒子在磁场中运动时间t 的范围。
带电粒子在匀强磁场中运动的规律总结、画图分析技巧本文适用于高三学生复习参考、或者高二(已学习带电粒子在匀强磁场中的运动相关章节内容)的学生。
文中系统总结了带电粒子在匀强磁场中运动的相关知识点,列举了这类问题常用的方法技巧,比如,找半径的方法,粒子轨迹圆心的确定方法,周期的算法,粒子运动时间的算法;超出书本之外的方法技巧:如常用的画圆弧技巧,需要用到的几何知识,粒子运动最长时间最短时间的确定方法,磁聚焦类问题规律方法,并附有相关例题,以及详细的画图(附手绘画图步骤)、解析过程。
详见如下具体内容,谨供有需要的学生参考。
一些用红色字迹显示的结论,可以在理解的基础上记忆。
目录一、带电粒子在匀强磁场中运动的基本知识点:半径公式、周期公式、运动时间公式、圆心的确定方法 (2)二、基本画图技巧 (2)三、常用画图相关几何知识、规律1.对称性的应用(1)直线边界磁场(附证明过程) (3)(2)圆形边界磁场(附证明过程) (4)2.缩放圆法 (5)3.旋转圆法 (5)四、粒子在有界磁场中运动过程的最长、最短时间的确定方法 (5)五、磁聚焦类问题原理(附详细证明过程)、规律与分析方法 (6)六、带电粒子在磁场中运动的多解情形举例 (8)七、精选带电粒子在匀强磁场中运动例题,附手绘画图步骤、分析过程、解答过程……………………………………………………9—23一、带电粒子在匀强磁场中运动的基本知识点:半径公式、周期公式、运动时间公式(并附有推理过程)、圆心的确定方法1.基本知识点:物理情景模型:以下内容只讨论匀强磁场。
当带电粒子以一定的初速度v 沿垂直磁场方向进入匀强磁场时,带电粒子只受洛伦兹力,洛伦兹力与粒子运动的速度方向总是垂直的,因此,洛伦兹力只改变粒子的速度方向,不改变粒子运动的速度大小,由F 洛=qvB ,可知,v 大小不变,F 洛大小也不变,如右图,这一特征符合物体做匀速圆周运动的动力学特征——向心力总与物体运动的速度方向垂直,只改变速度方向,不改变速度大小。
专题带电粒子在匀强电场中的偏转问题【专题简介】带电粒子在匀强电场中的偏转问题是一种特殊的曲线运动,是高考的高频考点。
此类运动往往与平抛运动类似,故也称之为“类平抛运动”,故在处理此类问题时的方法和思想也是——“化曲为直”,即将运动分解为初速度方向的匀速直线运动和合外力方向的匀变速直线运动。
它与平抛的不同之处就在于要通过受力分析来求解合外力,从而根据牛顿第二定律求出加速度。
带电粒子在匀强电场中的偏转问题的特征:所受合外力为恒力且与初速度垂直。
带电粒子在匀强电场中的偏转问题的相关公式:1.牛顿第二定律:F合=ma2.匀强电场:E=Ud3.水初速度方向:x =v 0t,v x=v04.合外力方向:y=12at2,v y=at5.合运动:v=√v02+v y2,s=√x2+y26.角度问题:(1)速度夹角α:tanα=v yv0;(2)位移夹角θ:tanα=yx【高考真题】1.(2013广东卷)喷墨打印机的简化模型如图所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中()A.向负极板偏转B.电势能逐渐增大C.运动轨迹是抛物线D.运动轨迹与带电量无关2.(2022浙江卷)如图所示,带等量异种电荷的两正对平行金属板M、N间存在匀强电场,板长为L(不考虑边界效应)。
t=0时刻,M板中点处的粒子源发射两个速度大小为v0的相同粒子,垂直M板向右的粒子,到达N板时速度大小为√2v0;平行M板向下的粒子,刚好从N板下端射出。
不计重力和粒子间的相互作用,则()A.M板电势高于N板电势B.两个粒子的电势能都增加C.粒子在两板间的加速度a=2v02LD.粒子从N板下端射出的时间t=(√2−1)L2v0速度关系位移关系2.(2007海南卷)一平行板电容器中存在匀强电场,电场沿竖直方向。
两个比荷(即粒子的电荷量与质量之比)不同的带正电的粒子a和b,从电容器的P点(如图)以相同的水平速度射入两平行板之间。
一、知识归纳1、 带电粒子在电场中运动 (1)匀加速运动:2022121mv mv qU t -=注意1:求解时间时,用运动学公式注意2:求解某一方向运动时,也可利用动能定理(2)类平抛运动: ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=====-==+======αθtan 22tan 21212102002022220x yt v at v at v v mv mv y d U q qEy y v v at v dm Uqm Eq a at y tv x y y o y 或2、带电粒子在磁场中运动(1)匀速直线运动:利用平衡条件。
(2)匀速圆周运动:⎪⎪⎪⎩⎪⎪⎪⎨⎧=====⇒=Bq mT t Bq mv R T Bq mv R R v m qvB θπθππ2222,其中R 、θ主要通过几何关系确定。
注意1:确定圆心方法:利用三角函数、勾股定理等注意2:确定圆心角方法:利用速度的偏转角等于圆周运动的圆心角等 3、圆周运动的圆心确定方法法1:已知轨迹上两点的速度方向 法2:已知轨迹上的两点和其中一点的速度方向 法3:已知轨迹上一点的速度方向和半径R 法4:已知轨迹上的两点和半径R 4、带电粒子在有界磁场中运动的极值问题(1)刚好穿出磁场边界的条件是带电粒子在磁场中运动的轨迹与边界相切。
(2)当速度v 一定时,弧长(或弦长)越大,圆周角越大,则时间越长。
5、对称规律解题法(1)从同一边界射入的粒子,又从同一边界射出时,速度与边界的夹角相等。
(2)在圆形磁场区域内,沿径向射入的粒子,一定沿径向射出。
(3)在圆形磁场区域内,不沿径向射入的粒子,也满足对称性。
1. 关于带负电的粒子(重力可忽略不计),下面说法中准确的是① 沿电场线方向飞入匀强电场,电场力做功,动能增加 ② 垂直电场线方向飞入匀强电场,电场力做功,动能增加 ③ 垂直磁感线方向飞入匀强磁场,磁场力不做功,动能不变 ④ 沿磁感线方向飞入匀强磁场,磁场力做功,动能增加 A. ①② B. ②③ C. ③④ D. ①④2、如图9,两个初速度大小相同的同种离子a 和b ,从O 点沿垂直磁场方向进入匀强磁场,最后打到屏P 上。
确定带电粒子在磁场中运动轨迹的四种方法带电粒子在匀强磁场中作圆周运动的问题是高考的热点,这些考题不仅涉及到洛伦兹力作用下的动力学问题,而且往往与平面图形的几何关系相联系,成为考查学生综合分析问题、运用数字知识解决物理问题的难度较大的考题。
但无论这类问题情景多么新颖、设问多么巧妙,其关键一点在于规范、准确地画出带电粒子的运动轨迹。
只要确定了带电粒子的运动轨迹,问题便迎刃而解。
现将确定带电粒子运动轨迹的方法总结如下:一、对称法带电粒子如果从匀强磁场的直线边界射入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,且入射速度方向与出射速度方向与边界的夹角相等(如图1);带电粒子如果沿半径方向射入具有圆形边界的匀强磁场,则其射出磁场时速度延长线必过圆心(如图2 )。
利用这两个结论可以轻松画出带电粒子的运动轨迹,找出相应的几何关系。
例1.如图3 所示,直线MN上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?解析:正、负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径和轨迹(如图4),由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距s =2r= ,由图还看出经历时间相差,所以解此题的关键是找圆心、找半径和用对称。
图6 所示。
O以与MN 成30°角的例2.如图5 所示,在半径为r 的圆形区域内,有一个匀强磁场。
一带电粒子以速度v0 从M点沿半径方向射入磁场区,并由N点射出,O点为圆心。
当∠ MO=N 120°时,求:带电粒子在磁场区的偏转半径R及在磁场区中的运动时间。
解析:分别过M、N 点作半径OM、ON的垂线,此两垂线的交点O'即为带电粒子作圆周运动时圆弧轨道的圆心,如由图中的几何关系可知,圆弧MN所对的轨道圆心角为60°,O、O' 的边线为该圆心角的角平分线,由此可得带电粒子圆轨道半径为R=r/tan30 ° =又带电粒子的轨道半径可表示为:故带电粒子运动周期:带电粒子在磁场区域中运动的时间二、旋转圆法在磁场中向垂直于磁场的各个方向发射速度大小相同的带电粒子时,带电粒子的运动轨迹是围绕发射点旋转的半径相同的动态圆(如图7),用这一规律可快速确定粒子的运动轨迹。
高二物理选修3-1第三章磁场第六节带电粒子在匀强磁场中的运动有界磁场向各个方向运动专题专项训练习题集【知识点梳理】在有界的磁场中从同一点向各个方向发射出去的相同的带电粒子在运动中,存在两种情况。
当它们的速度大小不同时,在磁场中运动的半径不同,相同的带电粒子,在相同的磁场中运动的半径与速度成正比。
当它们的速度大小相同时,在磁场中运动的半径相同,它们运动圆心的轨迹是在同一个圆周上。
这个圆是以发射点为圆心,以带电粒子在此磁场中运动的半径为半径的圆。
【典题强化】1.如图所示,在直角三角形abc区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=60°,∠b=90°,边长ab=L。
一个粒子源在b点将质量为m,电荷量为q的带负电粒子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中,速度的最大值是()A.qBL/3m B.√3qBL/3m C.√3qBL/2m D.√3qBL/m2.如图所示,在直角三角形abc区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=600,∠b=900,边长ac=L。
一个粒子源在a点将质量为m、电荷量为q的带正电粒子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中,速度的最大值是()A.qBL/2m B.√3qBL/6m C.√3qBL/4m D.qBL/6m3.如图所示,在xOy平面内有一半径为r的圆形磁场区域,其内分布着磁感应强度为B方向垂直纸面向里的匀强磁场,圆形区域边界上放有圆形的感光胶片,粒子打在其上会感光。
在磁场边界与x轴交点A处有一放射源A,发出质量为m,电量为q的粒子沿垂直磁场方向进入磁场,其方向分布在由AB和AC所夹角度内,B和C为磁区边界与y轴的两个交点.经过足够长的时间,结果光斑全部落在第Ⅱ象限的感光胶片上,则这些粒子中速度最大的是()A.√2qBr/2m B.qBr/2m C.√2qBr/m D.(2+√2)qBr/m4.如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平面(未画出)。