第6节一阶和二阶常系数线性差分方程
- 格式:ppt
- 大小:2.29 MB
- 文档页数:45
差分方程的阶数差分方程的阶数一、引言差分方程是离散时间系统的重要数学模型,它可以描述许多实际问题,如物理、工程、经济等领域中的动态过程。
在差分方程中,阶数是一个重要的概念,它决定了方程解的形式和求解方法。
本文将从阶数的定义、求解方法和应用等方面进行详细介绍。
二、阶数的定义1. 一阶差分方程一阶差分方程是指未知函数只含有一次时间导数的差分方程,即形如:y(n+1) = f(n, y(n))其中n表示时间步长,y(n)表示未知函数在第n个时间步长处的取值,f(n, y(n))表示已知函数关系。
由于该方程只含有一次时间导数,因此称为一阶差分方程。
2. 二阶差分方程二阶差分方程是指未知函数含有二次时间导数的差分方程,即形如:y(n+2) = f(n, y(n), y'(n), y''(n))其中y'(n)和y''(n)分别表示未知函数在第n个时间步长处的一次和二次时间导数。
由于该方程含有二次时间导数,因此称为二阶差分方程。
3. 高阶差分方程高阶差分方程是指未知函数含有高次时间导数的差分方程,即形如:y(n+k) = f(n, y(n), y'(n), ..., y^(k-1)(n))其中k为正整数,y^(k-1)(n)表示未知函数在第n个时间步长处的(k-1)次时间导数。
由于该方程含有高次时间导数,因此称为高阶差分方程。
三、求解方法1. 一阶差分方程对于一阶差分方程y(n+1) = f(n, y(n)),可以采用欧拉公式或泰勒公式进行逼近求解。
具体来说,可以将y(n+1)和y(n)在第n个时间步长处展开成泰勒级数:y(n+1) = y(n) + h*y'(n) + O(h^2)其中h表示时间步长。
将上式代入一阶差分方程中得到:y(n+1) = y(n) + h*f(n, y(n)) + O(h^2)将O(h^2)忽略不计,则得到欧拉逼近公式:y(n+1) ≈ y(n) + h*f(n, y(n))该公式可以用于迭代求解一阶差分方程的近似解。
差分方程知识点总结一、差分方程的概念差分方程是指用差分运算符号(Δ)表示的方程。
差分运算符Δ表示的是某一变量在两个连续时间点的变化量。
差分方程通常用于描述离散时间下的变化规律,比如时间序列、离散动力系统等。
二、常见的差分方程1. 一阶线性差分方程一阶线性差分方程的一般形式为:y(t+1) - y(t) = a*y(t) + b,其中a和b为常数。
一阶线性差分方程常常用于描述某一变量在不同时间点之间的线性变化规律。
2. 二阶线性差分方程二阶线性差分方程的一般形式为:y(t+2) - 2*y(t+1) + y(t) = a*y(t) + b,其中a和b为常数。
二阶线性差分方程通常用于描述某一变量在不同时间点之间的二阶线性变化规律。
3. 线性非齐次差分方程线性非齐次差分方程的一般形式为:y(t+1) - a*y(t) = b,其中a和b为常数。
线性非齐次差分方程通常用于描述某一变量在不同时间点之间的线性变化规律,并且受到外部条件的影响。
4. 滞后差分方程滞后差分方程的一般形式为:y(t+1) = f(y(t)),其中f为某一函数。
滞后差分方程通常用于描述某一变量在不同时间点之间的非线性变化规律。
5. 差分方程组差分方程组是指由多个差分方程组成的方程组。
差分方程组通常用于描述多个变量之间的变化规律,比如混合动力系统、多变量时间序列等。
三、差分方程的解法1. 特征根法特征根法是解一阶或二阶线性差分方程的一种常用方法。
通过求解特征方程,可以求得差分方程的通解。
2. 递推法递推法是解一阶或二阶非齐次差分方程的一种常用方法。
通过递推关系,可以求得差分方程的特解。
3. Z变换法Z变换法是解一阶或二阶差分方程的一种常用方法。
通过对差分方程进行Z变换,可以将其转换为等价的代数方程,然后求解其解。
4. 数值解法对于复杂的差分方程,通常采用数值解法求解。
数值解法包括Euler法、Runge-Kutta法、递推法等,通过迭代计算逼近差分方程的解。
差分方程的阶数差分方程是描述离散时间系统动力学行为的数学模型。
它是微分方程的离散形式,通过差分算子来逼近微分算子。
差分方程的阶数是指方程中最高阶差分项的阶数。
1. 一阶差分方程一阶差分方程是指方程中最高阶差分项为一阶差分项的差分方程。
一阶差分方程的一般形式为:y[n+1] = f(y[n]),其中y[n]表示第n 个时刻的状态值,y[n+1]表示下一个时刻的状态值,f是关于y[n]的函数。
一阶差分方程描述了系统在当前时刻的状态如何转移到下一个时刻的状态。
2. 二阶差分方程二阶差分方程是指方程中最高阶差分项为二阶差分项的差分方程。
二阶差分方程的一般形式为:y[n+2] = f(y[n], y[n+1]),其中y[n]和y[n+1]分别表示第n个时刻和第n+1个时刻的状态值,y[n+2]表示下两个时刻的状态值,f是关于y[n]和y[n+1]的函数。
二阶差分方程描述了系统在当前时刻和下一个时刻的状态如何转移到下两个时刻的状态。
3. 高阶差分方程高阶差分方程是指方程中最高阶差分项为高于二阶的差分项的差分方程。
高阶差分方程的一般形式为:y[n+k] = f(y[n], y[n+1], ...,y[n+k-1]),其中y[n]、y[n+1]、...、y[n+k-1]分别表示第n个时刻、第n+1个时刻、...、第n+k-1个时刻的状态值,y[n+k]表示下k个时刻的状态值,f是关于y[n]、y[n+1]、...、y[n+k-1]的函数。
高阶差分方程描述了系统在当前时刻和多个未来时刻的状态如何转移。
差分方程的阶数决定了系统动力学的复杂性。
一阶差分方程描述了简单的状态转移,而高阶差分方程可以描述更复杂的状态转移规律。
通过研究差分方程的阶数,可以深入理解系统的动力学行为,为系统的建模和分析提供有力的工具。
差分方程的阶数是指方程中最高阶差分项的阶数。
一阶差分方程描述了系统在当前时刻的状态如何转移到下一个时刻的状态,二阶差分方程描述了系统在当前时刻和下一个时刻的状态如何转移到下两个时刻的状态,高阶差分方程描述了系统在当前时刻和多个未来时刻的状态如何转移。
差分方程特解公式总结差分方程是一种离散的数学模型,可以用于描述离散时间下的动态系统。
在求解差分方程的过程中,特解是其中一种重要的解法。
本文将总结差分方程特解的公式,并对其应用进行讨论。
一、一阶线性差分方程特解公式一阶线性差分方程的一般形式为:$y_{n+1} = ay_n + b$,其中$a$和$b$为常数。
对于这种形式的差分方程,我们可以使用特解公式求解。
特解公式为:$y_n = \frac{b}{1-a}$,其中$n$为自变量的取值。
这个公式的推导思路是将差分方程中的$y_{n+1}$替换为$y_n$,然后求解出$y_n$。
这样得到的特解能够满足差分方程的要求。
二、二阶线性差分方程特解公式二阶线性差分方程的一般形式为:$y_{n+2} = ay_{n+1} + by_n + c$,其中$a$、$b$和$c$为常数。
对于这种形式的差分方程,我们可以使用特解公式求解。
特解公式为:$y_n = \frac{c}{1-a-b}$,其中$n$为自变量的取值。
特解公式的推导过程类似于一阶线性差分方程的推导过程。
我们将差分方程中的$y_{n+2}$替换为$y_n$,然后求解出$y_n$。
这样得到的特解能够满足差分方程的要求。
三、一般线性差分方程特解公式对于一般的线性差分方程,特解公式的形式会更加复杂。
我们可以通过猜测特解的形式,并将其代入差分方程中,然后求解出特解。
常见的特解形式包括常数特解、多项式特解、指数特解、三角函数特解等。
选择特解的形式时需要根据差分方程的具体形式和边界条件进行判断。
四、差分方程特解的应用差分方程特解的求解在实际问题中具有广泛的应用。
例如,在经济学中,差分方程可以用于描述经济系统的动态变化过程。
通过求解差分方程的特解,可以预测未来的经济发展趋势。
差分方程特解还可以用于模拟物理系统的运动过程、优化控制问题的求解等。
通过建立差分方程模型并求解特解,可以得到系统的稳定性分析和优化策略。
总结:差分方程特解公式是求解差分方程的一种重要方法。
微积分Calculus一阶常系数线性差分方程一一阶常系数线性差分方程概念1一般形式:1()x x y py f x +−=其中为不等于零的常数,为已知函数。
p ()f x ()f x 若不恒等于零,称以上方程为一阶常系数非齐次线性差分方程。
()f x 若恒等于零,称以上方程为一阶常系数齐次线性差分方程。
齐次线性差分方程的解法1yx =pyx−1=p ∙py x−2=p ∙p ∙py x−3=⋯=p x y 010x x y py +−=一阶齐次线性差分方程:将上述方程变形为:则有:记得一阶齐次线性差分方程的通解:0C y =xx y Cp = (为任意常数)C 二一阶常系数线性差分方程的解法y x+1=py x求差分方程130x x y y ++=的通解。
因为,将其代入通解公式得:3p =−(3)x x y C =− (为任意常数)C 13x xy y +=−将原方程变形为:例解一阶非齐次线性差分方程:1()x x y py f x +−=下面介绍对的三种特殊形式求非齐次差分方程特解的方法。
()f x 非齐次线性差分方程的解法2(1)(为常数,)()f x k =k 0k ≠差分方程变为:1x xy py k +−= 设其特解形式为:s x y Ax *=(其中为待定常数),A s1,p ≠①取即:0s =x y A*=1,p =②取即:1s =x y Ax*=x y A *=将代入差分方程求得A将代入差分方程求得Ax y Ax *=21716x x y y +++=求差分方程的通解.对应齐次差分方程:的通解为:217x x y y +++=0(7)xx y C =− (为任意常数)C p =−7≠1,设特解为y x ∗=A代入原方程得:2A =故原差分方程通解为:2(7)x x y C =+−(为任意常数)C 例解(2)(其中为常数,且)()xf x ka =k a ,0a >0a ≠非齐次差分方程变为:1x x x y py ka +−= 设特解形式为:x sx y Aa x*=①时,取即p a ≠0s =x x y Aa *=②p a =1s =x x y Axa *=时,取即求差分方程的通解11242x x x y y ++−=原方程化简为122xx x y y +−=对应齐次差分方程通解为2xx y C = (为任意常数)C 2p a ==由于,所以原方程得特解形式为:2xx y Ax =代入原方程得:1(1)2222x x xA x Ax ++−=12A =例解原方程特解为:11222x x x y x x *−==所以原方程通解为:12(2)x x x y x C −=+(为任意常数)C。
《高等数学》(经管类)教学大纲大纲说明课程代码:4915001总学时:128学时(讲课128学时)总学分:8分课程类别:必修适用专业:经管类本科一年级学生预修要求:初等数学一、课程性质、目的、任务本课程是本科经管类各专业的一门公共基础课,教学内容主要有一元与多元微积分;级数;常微分方程初步。
本课程教学目的是使学生获得从事经济管理和经济研究所必需的微积分方面的知识;学会应用变量数学的方法分析研究经济现象中的数量关系;培养抽象思维和逻辑推理的能力;树立辩证唯物主义的观点,同时,本课程也是后继经济应用数学(如概率统计等)的必要基础。
二、课程教学的基本要求:1、正确理解下列基本概念和它们之间的内在联系:函数、极限、无穷小、连续、导数、微分、不定积分、定积分、曲面的方程、偏导数、全微分、二重积分、常微分方程、无穷级数的收敛与发散性、边际、弹性。
2、正确理解下列基本定理和公式并能正确应用:极限的主要定理、罗尔定理、拉格朗日中值定理、柯西中值定理、定积分作为变上限的函数及其求导的定理、牛顿—莱布尼兹公式。
3、牢固掌握下列基本公式:基本初等函数的导数公式、基本积分公式、函数e x 、sinx 、cosx 、α)1(x +、ln(1+x)的幂级数展开式。
4、熟练运用下列法则和方法函数的和、差、积、商求导法则与复合函数的求导法则、隐函数的求导法、反函数的求导法、直接积分法、换元积分法、分部积分法、二重积分计算法、级数收敛性的比较判别法,达朗贝尔判别法、莱布尼兹判别法、幂级数收敛半径的求法、变量可分离的一阶微分方程的解法、一阶线性微方程的解法、二阶常系数线性微分方程的解法、拉格朗日乘数法、最小二乘法。
5、会运用微积分和常微分方程的方法解决一些简单的经济问题。
6、在学习过程中,逐步培养熟练的运算能力,抽象的思维能力,逻辑推理能力、空间想象能力。
知识的获得与能力的培养是同一过程的两个侧面,知识是发展能力的内容,能力是掌握知识的条件,我们既努力获得新知识,同时也注意不断提高分析问题和解决问题的能力。