二阶线性齐次差分方程
- 格式:pdf
- 大小:100.73 KB
- 文档页数:2
差分方程知识点总结一、差分方程的概念差分方程是指用差分运算符号(Δ)表示的方程。
差分运算符Δ表示的是某一变量在两个连续时间点的变化量。
差分方程通常用于描述离散时间下的变化规律,比如时间序列、离散动力系统等。
二、常见的差分方程1. 一阶线性差分方程一阶线性差分方程的一般形式为:y(t+1) - y(t) = a*y(t) + b,其中a和b为常数。
一阶线性差分方程常常用于描述某一变量在不同时间点之间的线性变化规律。
2. 二阶线性差分方程二阶线性差分方程的一般形式为:y(t+2) - 2*y(t+1) + y(t) = a*y(t) + b,其中a和b为常数。
二阶线性差分方程通常用于描述某一变量在不同时间点之间的二阶线性变化规律。
3. 线性非齐次差分方程线性非齐次差分方程的一般形式为:y(t+1) - a*y(t) = b,其中a和b为常数。
线性非齐次差分方程通常用于描述某一变量在不同时间点之间的线性变化规律,并且受到外部条件的影响。
4. 滞后差分方程滞后差分方程的一般形式为:y(t+1) = f(y(t)),其中f为某一函数。
滞后差分方程通常用于描述某一变量在不同时间点之间的非线性变化规律。
5. 差分方程组差分方程组是指由多个差分方程组成的方程组。
差分方程组通常用于描述多个变量之间的变化规律,比如混合动力系统、多变量时间序列等。
三、差分方程的解法1. 特征根法特征根法是解一阶或二阶线性差分方程的一种常用方法。
通过求解特征方程,可以求得差分方程的通解。
2. 递推法递推法是解一阶或二阶非齐次差分方程的一种常用方法。
通过递推关系,可以求得差分方程的特解。
3. Z变换法Z变换法是解一阶或二阶差分方程的一种常用方法。
通过对差分方程进行Z变换,可以将其转换为等价的代数方程,然后求解其解。
4. 数值解法对于复杂的差分方程,通常采用数值解法求解。
数值解法包括Euler法、Runge-Kutta法、递推法等,通过迭代计算逼近差分方程的解。
差分方程考研题库一、基础知识题1. 定义差分方程:给定一个函数\( y \),如果存在一个方程,使得\( y \)的第\( n \)项与前\( k \)项的函数值有关,那么这个方程被称为差分方程。
2. 差分方程的阶数:差分方程中,最高次的差分项的阶数称为该差分方程的阶。
3. 差分方程的解:满足差分方程的函数序列称为该差分方程的解。
二、计算题1. 给定一阶线性差分方程\( y_{n+1} - y_n = 2 \),求其通解。
2. 考虑二阶齐次线性差分方程\( y_{n+2} - 2y_{n+1} + y_n = 0 \),求其特征方程,并求出其通解。
3. 解下列非齐次线性差分方程\( y_{n+1} + y_n = 3n + 1 \)。
三、证明题1. 证明对于一阶线性齐次差分方程\( ay_{n+1} - by_n = 0 \),其通解为\( y_n = C \cdot b^n \),其中\( C \)为常数。
2. 证明二阶线性齐次差分方程\( y_{n+2} - 2y_{n+1} + y_n = 0 \)的特征方程为\( r^2 - 2r + 1 = 0 \)。
四、应用题1. 某公司每年的利润增长率为5%,如果第一年的利润为100万元,求第\( n \)年的利润。
2. 一个种群的增长遵循差分方程\( P_{n+1} = kP_n(1 -\frac{P_n}{K}) \),其中\( k \)是增长率,\( K \)是环境的承载能力。
求该种群的稳定状态。
五、综合题1. 考虑一个具有周期性变化的差分方程\( y_{n+1} = y_n + 2\sin(\frac{2\pi n}{T}) \),分析其解的性质。
2. 给定一个差分方程\( y_{n+1} = \alpha y_n + \beta n \),其中\( \alpha \)和\( \beta \)是常数,求其通解。
结束语差分方程的解题方法多样,包括直接法、特征方程法、迭代法等。
二阶差分方程的通解二阶差分方程的一般形式为:$y_{n+2}+ay_{n+1}+by_{n}=f(n)$其中,$a,b$为常数,$f(n)$为已知的函数。
二阶差分方程的通解一般可以分为两部分:齐次解和非齐次解。
1. 齐次解当$f(n)=0$时,原方程变为齐次方程:$y_{n+2}+ay_{n+1}+by_{n}=0$假设$y_n=x^n$是此齐次方程的一解,则代入原方程可得:$x^{n+2}+ax^{n+1}+bx^n=0$移项并化简得:x^n(x^2+ax+b)=0由于$x^n$不能恒等于零,所以有:$x^2+ax+b=0$这是一个二次方程,其通解可以表示为:$x_{1,2}= \frac{-a\pm\sqrt{a^2-4b}}{2}$因此,齐次解可以表示为:$y_n=c_1x_1^n+c_2x_2^n$其中,$c_1,c_2$为常数,$x_1,x_2$为二次方程$x^2+ax+b=0$的两根。
2. 非齐次解当$f(n)\neq 0$时,原方程既有齐次解又有非齐次解,非齐次解的形式可以根据具体$f(n)$的形式求得。
以$f(n)=p$为例,其中$p$为常数。
根据常数变易法,假设非齐次解为:$y_n=x_np$则代入原方程可得:$x_{n+2}p+ax_{n+1}p+bx_np=p$移项并化简得:$x_{n+2}+ax_{n+1}+bx_n=1$此时,非齐次解的形式可以表示为:$y_n=(c_1x_1^n+c_2x_2^n)+k$其中,$k$为待定常数。
将上式代入原方程可得:$k+ax_2c_1+(a+b)x_1c_2=1$由于$x_1,x_2$是二次方程$x^2+ax+b=0$的两根,因此:$x_1+x_2=-a$$x_1x_2=b$代入上式可得:$k=\frac{1}{a-b}(a^2p+(b-a)ap+b)$因此,二阶差分方程的通解为:$y_n=c_1x_1^n+c_2x_2^n+\frac{1}{a-b}(a^2p+(b-a)ap+b)$其中,$c_1,c_2$为待定常数,$x_1,x_2$为二次方程$x^2+ax+b=0$的两根,$p$为已知常数。
数学与统计学学院中期报告学院:专业:年级:题目:学生姓名: 学号:指导教师姓名职称:年月日目录1 引言 (1)2行列式性质 (2)3行列式计算方法 (6)3.1定义法 (6)3.2递推法 (9)3.3化三角法 (9)3.4拆元法 (11)3 .4加边法 (12)3.6数学归结法 (13)3.7降价法 (15)3.8利用普拉斯定理 (16)3.9利用范德蒙行列式参考文献......................................................................................................... 错误!未定义书签。
8行列式的概念及应用摘要:本文先列举行列式计算相关性质,然后归纳总结出行列式的方法,包括:定义法,化三角法,递推法,拆元法,加边法,数学归结法,降价法,利用拉普拉斯定理,利用范德蒙行列式。
关键词:行列式;线性方程组;范德蒙行列式The concept and application of determinant Summary:This article lists calculated properties of determinants, and then sum up the determinant method, including: Definition, triangulation, recursive method, remove method, bordered by, mathematical resolution method, cut method, using Laplace theorem, using the vandermonde determinant.Keywords: determinant;Linear equations;;Vandermonde determinant1 引言行列式的概念最初是伴随着方程组的求解而发展起来的。
差分方程常用解法1、 常系数线性差分方程的解方程)(...110n b x a x a x a n k k n k n =+++-++ (1)其中k a a a ,...,,10为常数,称方程(1)为常系数线性方程。
又称方程0...110=+++-++n k k n k n x a x a x a (2)为方程(1)对应的齐次方程。
如果(2)有形如n n x λ=的解,代入方程中可得:0...1110=++++--k k k k a a a a λλλ (3) 称方程(3)为方程(1)、(2)的特征方程。
显然,如果能求出方程(3)的根,则可以得到方程(2)的解。
基本结果如下:(1) 若(3)有k 个不同的实根,则(2)有通解:n k k n n n c c c x λλλ+++=...2211,(2) 若(3)有m 重根λ(即m 个根均为λ),则通解中有构成项:n m m n c n c c λ)...(121----+++(3)若(3)有一对单复根 βαλi ±=,令:ϕρλi e ±=,αβϕβαρarctan ,22=+=,则(2)的通解中有构成项:n c n c n n ϕρϕρsin cos 21--+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(2)的通项中有构成项:n n c n c c n n c n c c n m m m m n m m ϕρϕρsin )...(cos )...(1221121---++---+++++++综上所述,由于方程(3)恰有k 个根,从而构成方程(2)的通解中必有k 个独立的任意常数。
通解可记为:-n x如果能得到方程(1)的一个特解:*n x ,则(1)必有通解: =n x -n x +*n x (4)方程(4) 的特解可通过待定系数法来确定。
例如:如果)(),()(n p n p b n b m m n =为n 的m 次多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为n 的m 次多项式;如果b 是r 重特征根时,可设特解:r n n b )(n q m ,将其代入(1)中确定出系数即可。
2018考研数学重难点之二阶常系数线齐次差分方程通解分析、
差分方程是研究离散变量及离散变量满足的方程的求解问题,从本质上讲,差分方程就是用递推关系定义一系列的方程式,通过这些方程式将后面的项用前面的项表示出来。
按照差分方程中差分的最高阶数或方程中未知项的跨度,差分方程分为一阶差分方程、二阶差分方程等,常见的差分方程是常系数线性差分方程。
在考研数学中,仅数学三的考生要求了解一阶差分方程的求解,下面本文对二阶常系数线性齐次差分方程的求解方法做些分析介绍,供有兴趣的2018考研的同学拓展思路参考。
一、二阶常系数线性差分方程
从上面的分析我们容易看出,二阶常系数线性齐次差分方程的通解与二阶常系数线性齐次微分方程的通解有很多相似或者说平行之处,比如说它们的通解都是由两个线性无关的解的线性组合构成,而要求出其通解只要求出其特征方程的根即可相应得到通解,当然,差分方程与微分方程的通解还是有些区别的,这一点希望大家注意,不要把二者完全弄混了。
特征值方程特征根:特征根法也可用于通过数列的递推公式(即差分方程,必须为线性)求通项公式,其本质与微分方程相同。
称为二阶齐次线性差分方程:加权的特征方程。
特征向量:A为n阶矩阵,若数λ和n维非0列向量x满足Ax=λx,那么数λ称为A的特征值,x 称为A的对应于特征值λ的特征向量。
式Ax=λx也可写成( A-λE)x=0,并且|λE-A|叫做A 的特征多项式。
当特征多项式等于0的时候,称为A的特征方程,特征方程是一个齐次线性方程组,求解特征值的过程其实就是求解特征方程的解。
令|A-λE|=0,求出λ值。
A是n阶矩阵,Ax=λx,则x为特征向量,λ为特征值。
一旦找到两两互不相同的特征值λ,相应的特征向量可以通过求解方程(A –λI) v = 0 得到,其中v为待求特征向量,I为单位阵。
当特征值出现重根时,如λ1=λ2,此时,特征向量v1的求解方法为(A-λ1I)v1=0,v2为(A-λ2I)v2=v1,依次递推。
没有实特征值的一个矩阵的例子是顺时针旋转90度。
扩展资料:矩阵的特征向量是矩阵理论上的重要概念之一,它有着广泛的应用。
数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。
该向量在此变换下缩放的比例称为其特征值(本征值)。
一个线性变换通常可以由其特征值和特征向量完全描述。
特征空间是相同特征值的特征向量的集合。
“特征”一词来自德语的eigen。
1904年希尔伯特首先在这个意义下使用了这个词,更早亥尔姆霍尔兹也在相关意义下使用过该词。
eigen一词可翻译为”自身的”、“特定于……的”、“有特征的”、或者“个体的”,这显示了特征值对于定义特定的线性变换的重要性。
从数学上看,如果向量v与变换A满足Av=λv,则称向量v是变换A的一个特征向量,λ是相应的特征值。
这一等式被称作“特征值方程”。
假设它是一个线性变换,那么v可以由其所在向量空间的一组基表示为:其中vi是向量在基向量上的投影(即坐标),这里假设向量空间为n 维。
z 二阶线性齐次差分方程012=++++n n n cx bx ax 的特征根法求解:
令形式解 ,代入方程得特征方程: , 根:
n n x λ=02=++c b a λλ(1) βα,为实根, 对应有解: 和 ;
n n x α=)1(n n x β=)2((2) αα,为重根, 对应有解: 和n n x α=)
1(1)
2(lim −→=−−=n n n n n x αα
βαβαβ ,或者 n n n x α=)2((3) , ϕβαλi e r i ±⋅=±=()()ϕϕλϕλn i n e e e x r n i r n n n n sin cos ln ln ln ±====±⋅,
对应有解: 和.
ϕn e x r n n cos ln )1(=ϕn e x r n n sin ln )2(=(4) 关于解的结构理论与线性微分方程类似,由此得一般解: )2(2)1(1n
n n x c x c x +=1. (98) 求差分方程的一般解。
(n y y n n 51021=++()72
51255−+−=n C y n n ) 解:齐次方程的通解为,设非齐次方程的特解为:()n
n C y 5−=b an y n +=~,代入求。
b a ,2. 斐波拉契数( ⎩⎨⎧==+=++11012x x x x x n n n ⎥⎥⎦
⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛+=++1125125151n n n x ) 3. 银行实行贷款购房业务,A 贷元,月利r ,n 个月本利还清,在这个月内按复利计息,每月连本带息还n x 元。
(1) 求的关系; (2) 记个月的平均利息(r n A f x ,,=)n n
A x n v −=,求r v n ∞→lim . 设第i 个月欠元,则 i A (),101⎩⎨⎧=−+=−A
A x r A A i i 齐次方程的通解为 ();1n
n r C A +=非齐次方程的特解为r
x A n =~; 非齐次方程的通解为:();1r
x r C A n n ++= 代入初始条件得非齐次方程的特解为()();111r
r x r A A n n n −+−+= 0=n A 得x 值。
4. 己知差分方程⎪⎩
⎪⎨⎧+=+=++201)1(1αααx n x x n n 的解满是条件:211lim =⎟⎟⎠⎞⎜⎜⎝⎛++∞→n n n x ,求常数?=α。
(2)
1(1ααα+++=
n x n )。