材料科学研究:物相定性分析
- 格式:pptx
- 大小:3.77 MB
- 文档页数:15
物相定性分析的基本原理
物相定性分析是指通过对物质的性质、形态、结构等方面的观察和研究,来确定其物相的性质。
其基本原理可以总结为以下几点:
1. 形态特征分析:通过对样品的观察和描述,了解其形态特征。
包括物质的颜色、透明度、晶体外形等方面的观察。
2. 热学特性分析:通过测量样品的熔点、沸点、熔化热、蒸发热等热学性质,来确定物质的物相。
3. 表面性状分析:通过对样品的表面形貌进行观察和分析,包括颗粒形状、表面结构等方面的特征,来确定物质的物相。
4. 光学特性分析:通过测量样品的折射率、透射率、吸收谱等光学性质,来确定物质的物相。
5. 结构特征分析:通过使用X射线衍射、电子显微镜等分析
方法,来研究样品的晶体结构、分子结构等方面的特征,从而确定物质的物相。
通过以上的分析方法,结合物质的物理化学性质,可以较为准确地确定物质的物相,为后续的性质研究和应用提供基础数据和相关信息。
实验一 X射线衍射仪的结构与测试方法一、实验目的1、掌握X射线衍射的基本原理;2、了解X射线衍射仪的基本结构和操作步骤;3、掌握X射线衍射分析的样品制备方法;4、了解X射线的辐射及其防护方法二、实验原理根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。
每一种结晶物质都有各自独特的化学组成和晶体结构。
没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。
当X射线波长与晶体面间距值大致相当时就可以产生衍射。
因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I1来表征。
其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。
所以任何一种结晶物质的衍射数据d和I/I1是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。
三、实验设备丹东方圆仪器有限公司的D2700型X射线粉末衍射仪一台;玛瑙研体一个;化学药品或实际样品若干(Li4Ti5O12)。
四、实验内容1、采用玛瑙研体研磨样品,在玻璃样品架上制备一个合格试验样品;2、选择合适的试验参数,获得XRD图谱一张;3、理解样品、测试参数与XRD图谱特征的关系。
五、实验步骤1、开机1)打开总电源2)启动计算机3)将冷却水循环装置的机箱上的开关拨至运行位置,确认冷却水系统运行,水温正常(19—22℃);4)按下衍射仪ON绿色按键打开衍射仪主机开关5)启动高压部分(a)必须逐渐提升高压,稳定后再提高电流。
电压不超过40kV,管电流上限是40mA,一般为30mA。
(b)当超过4天未使用X光管时,必须进行光管的预热。
在25kV高压,预热10分钟;30kV,预热5分钟;35kV,预热5分钟。
(c)预热结束关机后,至少间隔30分钟以上方可再次开机实验。
6)将制备好的样品放入衍射仪样品台上;7)关好衍射仪门.2、样品测试1)在电脑上启动操作程序2)进入程序界面后,鼠标左键点击“测量”菜单,再点击“样品测量”命令,进入样品测量命令3)等待仪器自检完成后,设定好右边的控制参数;4)鼠标左键点击“开始测量”,保存输出文件;5)此时仪器立即开始采集数据,并在控制界面显示;(a)工作电压与电流:一般设为40kV,40mA;(b)扫描范围:起始角度>5°,终止角度<80°;(c)步进角度:推荐0.02°,一般在0.02—0。
物相定性分析原理物相定性分析是一种常用的材料分析方法,其主要原理是通过观察和分析材料在特定条件下的各种物相,来确定材料的组成、结构、性质和变化规律。
物相指的是材料在固相、液相和气相之间的状态变化,通过观察和分析物相变化的特征,可以确定材料的晶体结构、晶体形貌、晶格常数、元素组成、晶格缺陷和晶体性质等信息。
物相定性分析的主要方法包括X射线衍射、电子衍射、红外光谱、拉曼光谱、扫描电镜和透射电镜等。
这些技术能够提供关于晶体结构、成分和形貌的详细信息,从而揭示材料的内在性质和性能。
X射线衍射是物相定性分析中最常用的方法之一。
它利用X射线的特性和物质的晶体结构之间的相互作用,通过测量衍射图案来确定材料的晶体结构、晶格常数和晶面间距。
X射线衍射技术对晶体的要求比较高,只有具有一定程度的结晶性的材料才能通过X射线衍射进行分析。
通过X射线衍射分析,可以确定材料的晶体结构类型、晶胞参数和晶体取向。
电子衍射是一种通过电子束照射材料表面或薄片,利用电子与物质的相互作用来进行分析的方法。
电子衍射技术对样品的要求较低,可以分析非晶态材料或粉末材料的晶体结构。
通过电子衍射,可以确定材料的晶体结构、晶胞参数、相对晶格常数和晶体的取向。
红外光谱是一种通过测量物质在红外辐射下吸收和散射的光谱来进行分析的方法。
红外光谱可以用来研究物质的分子结构和化学键,通过分析红外光谱图谱,可以确定物质的官能团和化学组成。
拉曼光谱是一种通过测量物质在受到激发光照射时发生的光散射来进行分析的方法。
拉曼光谱对样品的要求较低,可以分析固态、液态和气态材料。
通过分析拉曼光谱图谱,可以确定物质的化学成分、结构和分子相互作用。
扫描电镜和透射电镜是通过利用电子束与样品相互作用,测量样品表面和内部结构的显微镜分析方法。
扫描电镜可以观察样品表面的形貌和结构特征,透射电镜可以观察样品的晶体结构、晶体形貌和晶格缺陷。
这两种电子显微镜技术对样品的要求较高,需要制备良好的样品。
物相定性分析步骤物相定性分析可以简单分为2步:1:利用布拉格公式2dsinθ= λ ,通过计算机将图谱中的衍射峰位转换成d值,衍射强度按百分比计算I(I=I测/I最大*100)。
得出只与相的特征有关而与仪器、波长无关的d-I列表,代替实际图谱。
2:将试样的d-I数据与PDF卡片的数据对比,可检测出待测试样中的物相。
而第二步,称为物相检索,通常又可以分为以下三步:1:给出检索条件,包括检索子库(如无机物、矿物、合金、陶瓷……)、可能含有的元素等等。
2:计算机按照给定的检索条件对d-I数据进行匹配,并计算出匹配因子(FOM)。
完全匹配时,FOM=0,完全不匹配时,FOM=100。
3:操作者通过观察匹配程度做出判断,检索出一定存在的物相。
4:判断是否将所有的物相检索出来,如果没有,重新设定检索条件,重复以上步骤。
判断物相是否存在的条件1:PDF卡片中峰位与测量谱的峰位是否匹配。
2:PDF卡片的峰强比与样品峰的的峰强比大致相同3:检索出的物相包含元素必须在样品中存在。
物相分析的局限性1:难以检测混合物中的微量相。
这些微量相可能将不足以产生自身完整的衍射图样,或者根本不出现衍射线条。
2:薄膜、薄层可视为二维晶体,它们的某些晶面不存在,因此某些面的衍射线不会出现。
3:由于加工、切削、磨制过程中产生晶粒严重的择优取向,其衍射谱可能与完全无序的衍射谱差别较大,给物相分析带来困难。
4:固溶体中由于其它原子的溶入,导致点阵常数变化,其衍射谱与标准衍射谱偏离较多。
5:多相材料中由于峰的重叠严重,量少的相可能检不出或不能确定。
6:纳米材料的峰形严重宽化,某些衍射线被重合。
7:没有录入PDF卡片的物质无法做物相分析。
XRD实验物相定性分析解析X射线衍射(XRD)是一种非常常用的实验技术,用于物相的定性和定量分析。
通过观察材料中X射线的衍射图案,我们可以确定材料的晶体结构、晶体定向和晶格参数等信息。
本文将详细介绍XRD实验物相定性分析的原理和解析过程。
nλ = 2dsinθ其中,n是衍射阶次,λ是入射X射线的波长,d是晶格间距,θ是入射角。
通过测量衍射角θ和计算晶格间距d,我们可以确定材料的晶体结构。
在进行XRD实验时,我们首先需要准备待测物样品,通常是一块固体材料。
然后,我们将样品放置在X射线束下,以使X射线通过样品,发生衍射。
衍射的X射线通过样品后,会被X射线探测器测量,产生衍射谱图。
在解读衍射谱图时,我们需要关注以下两个关键参数:衍射角(2θ)和衍射强度(I)。
衍射角是X射线的入射角度,是由仪器测量得到的,而衍射强度则表示材料中的晶体结构和取向。
通常,衍射强度与晶体的晶格性质、晶体结构以及晶体定向有关。
通过比对样品的衍射谱图与数据库中的标准衍射谱图,我们可以确定材料的物相。
数据库中包含了各种材料的XRD衍射谱图,包括金属、陶瓷、无机晶体等。
对于未知物相的样品,我们可以通过计算其衍射角和衍射强度与数据库中的标准进行比对,从而找到与其相匹配的物相。
此外,我们还可以通过拟合样品的衍射谱图,计算出材料的晶格参数。
常用的拟合方法有布拉格法、勒貌法和整形法等。
这些方法利用了衍射角和衍射强度的信息,通过数学模型计算出最适合样品的晶格参数。
需要注意的是,XRD实验在物相定性分析上具有一定的局限性。
例如,对于非晶态或粘土等无定形材料,XRD无法提供明确的物相信息。
此外,XRD实验还无法确定材料中不同晶体相的相对含量,只能进行物相定性分析。
综上所述,XRD实验是一种常用的物相定性分析技术。
通过观察样品的衍射谱图,并与数据库中的标准进行比对,我们可以确定材料的物相。
此外,通过拟合样品的衍射谱图,我们还可以计算材料的晶格参数。
第五章物相分析及点阵参数精确测定一、定性分析材料的成分和组织结构是决定其性能的基本因素。
化学分析、光光谱分析、X射线荧光光谱分析、X射线微区域分析(电子探针)等均可测定样品的元素组成,但X 射线物相分析却可鉴别样品中的物相。
物相包括纯元素、化合物和固溶体。
当待测样由单质元素或其混合物组成时,X射线物相分析所指示出是元素,此时元素就是物相;但当元素相互组成化合物或固溶体时,则所给出的是化合物或固溶体而非它们的组成元素。
X射线衍射得到的结果是宏观体积内(约1cm2×10μm)大量原子行为统计的结果,它与材料宏观的物理、化学及力学性能有直接、密切的关系。
(一)原理X射线定性相分析是根据晶体对X射线的衍射特——衍射线的方向及强度来达到鉴定结晶物质的。
X射线衍射分析是以晶体结构为基础的。
每种结晶物质都有其特定的结构参数,包括点阵类型、单胞大小、单胞中原子(离子或分子)的数目及其位置等等,而这些参数在X射线衍射花样中均有所反应。
尽管物质的种类有千千万万,但却没有两种衍射花样完全相同的物质。
因此,当X射线通过晶体时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个反射面的晶面间距d值和反射线的相对强度I/I1来表征,这里的I是同一结晶物质中某一晶面的反射线(衍射线)强度,I1是该结晶物质最强线的强度,一般把I1定为100。
其中面间距d与晶胞的形状和大小有关,相对强度I/I1则与质点的种类及其在晶胞中的位置有关,任何一种结晶物质的衍射数据d和I/I1是其晶体结构的必然反映,即使该物质存在于混合物中,它的衍射数据d和I/I1也不会改变,因而可以根据它们来鉴定结晶物质的物相。
即某种物质的多晶体衍射线条的数目、位置及其强度是该种物质的特征,因而可以成为鉴别物相的标志。
如果将几种物质混合后摄照,则所得结果将是各单独物相衍射线条的简单叠加。
根据这一原理,就有可能从混合物的衍射花样中,将各物相一个一个的寻找出来。
物相定性分析的原理是什么物相定性分析是指通过对物质的外部形态、颜色、形状、质地、硬度等特征进行观察和分析,以确定物质的组成、结构和性质的一种分析方法。
物相定性分析的原理主要包括形态学分析、光学显微分析、X射线衍射分析、电子显微分析等多种方法。
首先,形态学分析是物相定性分析的基础。
形态学分析是通过对物质的外部形态、颜色、形状、质地、硬度等特征进行观察和描述,从而初步推断物质的组成和性质。
通过形态学分析,可以初步判断物质是单质还是化合物,是无机物还是有机物,是金属还是非金属,从而为后续的定性分析提供基础。
其次,光学显微分析是物相定性分析的重要手段之一。
光学显微分析利用光学显微镜观察物质的微观形貌和结构,从而推断物质的组成和性质。
通过光学显微分析,可以观察到物质的晶体形态、晶体结构、晶体缺陷等信息,进而确定物质的晶体结构和晶体性质。
光学显微分析还可以观察到物质的晶体取向、晶体生长方式等信息,为进一步的定性分析提供重要依据。
另外,X射线衍射分析是物相定性分析的重要手段之一。
X射线衍射分析利用X射线衍射仪观察物质对X射线的衍射图样,从而推断物质的晶体结构和晶体性质。
通过X射线衍射分析,可以确定物质的晶体结构类型、晶格参数、晶面指数等信息,进而确定物质的晶体结构和晶体性质。
X射线衍射分析还可以确定物质的晶体取向、晶体取向分布等信息,为进一步的定性分析提供重要依据。
此外,电子显微分析也是物相定性分析的重要手段之一。
电子显微分析利用电子显微镜观察物质的微观形貌和结构,从而推断物质的组成和性质。
通过电子显微分析,可以观察到物质的晶体形貌、晶体结构、晶体缺陷等信息,进而确定物质的晶体结构和晶体性质。
电子显微分析还可以观察到物质的晶界、晶内结构等信息,为进一步的定性分析提供重要依据。
综上所述,物相定性分析的原理主要包括形态学分析、光学显微分析、X射线衍射分析、电子显微分析等多种方法。
这些方法相互结合,可以全面、准确地确定物质的组成、结构和性质,为物相定性分析提供了重要的理论和实验基础。