试述齿轮修形的作用
- 格式:doc
- 大小:68.50 KB
- 文档页数:3
NO.6841 2 3 4 5 6 7齿轮修形可以极大地提高传动精度,并增加齿轮强度。
广义上的齿轮修形有许多类别(齿端修形、齿顶修形、齿根修形、变位、修改压力角),本文将分享答主在精密传动设计中,关于齿轮修形的心得。
(以下将『输出扭矩波动率小』作为『传动精度高』的唯一指标)1. 齿『端』修形(齿向修形)齿『端』修形是最常见(最容易加工)的修形方式,通常是为了帮助装配,和机械设计中多数倒角的作用是一样的,但其实对传动精度和齿轮强度都有影响。
2. 齿『顶』修形(齿顶高系数)齿『顶』修形是所有修形方式中,对传动精度影响(提高)最大的。
我们希望齿轮啮合线是这的形状:红色是啮合线(理想的)但其实是这样的:红色是啮合线(实际的),啮合线只有一部分是“正确”的因为标准齿形中,齿顶被“削”去了一部分,所以渐开线是不完整的,导致主齿轮的齿顶和副齿轮的齿面(从截面上看)是先由点-线接触,再过渡到线-线接触:上图的放大版如果齿顶少“削”一点(齿顶高系数从1 提高至1.3,相应地,齿根高系数从1.25 提高至1.4),渐开线会变得更完整,啮合线也变得从1.25 提高至1.4、),渐开线会变得更完整,啮合线也变得更接近理想的形状:啮合线“正确部分”变长了、“不正确部分”变短了但并不是“削”得越少,传动精度越高,因为齿顶的材料厚度小、应变大,因此在啮合的过程中,渐开线越靠近齿根的部分,啮合精度越高;渐开线越靠近齿顶的部分,啮合精度越低。
不同场景中(主要影响因素是额定扭矩、齿轮模数、齿数、压力齿轮副参数:基于ISO 53:1998轮廓A 齿形、1 模24 齿、20 度压力角、厚度7 mm、10 Nm 输入扭矩、4775 RPM 输入转速、5 kW 输入功率、齿根高系数1.4、无变位、无其他修形、中心矩公差为0、齿厚公差/背隙/齿距误差为0、无摩擦。
此时扭矩波动仅受材料模量和齿形影响。
若齿顶高系数为1,输出扭矩曲线:若齿顶高系数为1.2:旋转角度(齿轮A)[°]扭矩波动范围为(+0.02,-0.12),波峰在C 点左侧、波谷在C 点右侧若齿顶高系数为1.4:旋转角度(齿轮A)[°]输出扭矩波动范围为(+0.01,-0.1),波谷在C 点左侧、波峰在C 点右侧这个例子是(容许范围内)齿顶高系数越大、传动精度越高。
齿轮修形的作用
齿轮修形的作用主要有以下几点:
1. 提高传动精度:通过修形,可以减小齿轮的误差,提高齿轮的啮合精度,从而提高传动精度。
2. 增加齿轮强度:修形能够改善齿轮的受力状况,减小应力集中,从而提高齿轮的强度。
3. 降低噪声和振动:修形可以改善齿轮的动态特性,降低齿轮运行时的噪声和振动。
4. 延长使用寿命:通过修形,可以减小齿轮的磨损,延长齿轮的使用寿命。
5. 提高传动效率:适当的修形可以减小齿轮的滑动摩擦,提高齿轮的传动效率。
总之,齿轮修形对于提高齿轮的性能和延长其使用寿命具有重要作用。
1 4.试述齿轮修形的作用有意识地微量修整齿轮的齿面,使其偏离理论齿面的工艺措施。
按修形部位的不同,轮齿修形可分为齿廓修形和齿向修形。
齿廓修形指的是微量修整齿廓,使其偏离理论齿廓。
齿廓修形包括修缘、修根和挖根等。
齿廓修形分类修缘修根挖根定义对齿顶附近的齿廓修形对齿根附近的齿廓修形对轮齿的齿根过渡曲面进行修整作用可以减轻轮齿的冲击振动和噪声,减小动载荷,改善齿面的润滑状态,减缓或防止胶合破坏修根的作用与修缘基本相同,但修根使齿根弯曲强度削弱。
采用磨削工艺修形时,为提高工效有时以小齿轮修根代替配对大齿轮修缘经淬火和渗碳的硬齿面齿轮,在热处理后需要磨齿,为避免齿根部磨削烧伤和保持残余压应力的有利作用,齿根部不应磨削,为此在切制时可进行挖根。
此外,通过挖根可增大齿根过渡曲线的曲率半径,以减小齿根圆角处的应力集中。
齿向修形指的是沿齿线方向微量修整齿面,使其偏离理论齿面。
通过齿向修形可以改善载荷沿轮齿接触线的不均匀分布,提高齿轮承载能力。
齿轮修形可以分为齿端修薄、螺旋角修整、鼓形修整、曲面修整和其他。
齿向修形分类齿端修薄螺旋角修整鼓形修整曲面修整定义对轮齿的一端或两端在一小段齿宽上将齿厚向端部逐渐削薄微量改变齿向或螺旋角β的大小,使实际齿面位置偏离理论齿面位置采用齿向修形使轮齿在齿宽中央鼓起,一般两边呈对称形状按实际偏载误差进行齿向修形。
考虑实际偏载误差,特别是考虑热变形,则修整以后的齿面不一定总是鼓起的,而通常呈凹凸相连的曲面作用最简单螺旋角修整比齿端修薄效果好改善轮齿接触线上载荷的不均匀分布曲面修整效果较好,是较理想的修形方法齿轮修形除了上述的分类,还有一些具体措施。
齿轮修形具体措施齿根圆角修形齿端修薄与齿顶角倒角齿顶直径修正其他作用减少应力集中及提高弯曲强度缓解伴随毗连齿轮之间传递载荷所发生的迅猛作用稍许增大外直径,可以显著改进齿轮啮合接触比,而不引起配对齿轮齿根干涉。
适当减小全齿高可以减少根切机会,当有力作用于齿顶时可以减小齿根弯曲应力。
论渐开线圆柱齿轮的齿形齿向修形问题摘要:本文通过对齿面受力情况并结合齿形齿向的多种修形方法进行分析,找出改善齿面接触状况的因素,同时运用专业软件,根据接触有限元理论和材料力学分析轮齿的变形刚度,从而获得轮齿的修形曲线和最大修形量,并结合实际经验公式,得出一种渐开线高速齿轮齿部修形的设计方法,并应用于工程实际中。
关键词:渐开线圆柱齿轮齿形修形齿向修形齿轮修形技术是高精度齿轮传动设计和制造的关键技术,随着齿轮传动研究和齿轮制造技术水平的提高,为了拓宽渐开线圆柱齿轮的使用范围,开发在重载、高速条件下品质优良的齿轮传动,齿轮修形技术有了很大发展,特别是在国外的重型汽车变速箱齿轮中应用更为广泛。
1 渐开线圆柱齿轮的齿形修形齿形修形是指在一对齿轮轮齿的啮合过程中,为改善两齿轮齿面的接触状态,防止胶合,而把原来的渐开线齿廓在齿顶或接近齿根圆角的部位修去一部分。
其关键之处在于确定修形的三要素:修形长度、修形量和修形曲线。
一般做法有:①沿渐开线相距等于基节的段不修形,啮入端和啮出端修形长度相等,修形量从最大值逐渐变化到零;②同时对两齿的齿顶修形;③对单个齿的齿顶和齿根同时修形,与之匹配的另一个齿不修形。
常用的方式有以下几种:1、齿顶或齿根修形实际使用中,由于齿根修形会降低齿轮的承载能力,而且容易造成根切,除非齿顶采用大修形都不能满足要求,否则尽量不采用。
多数采用两个齿轮同时对齿顶薄修,这样每个齿轮的修形量可以小一些。
2、齿廓倾斜修形与齿顶修形相似,不同的是修形起始点不同,从评价起始点开始进行整个齿廓修形,也称为压力角修形。
但由于其所改变的角度很小,导致加工量不容易控制,不利于加工。
3、齿廓鼓形修形齿廓鼓形修形是指通过修形后使轮齿在齿宽中部鼓起,两边呈对称形状布置,一般这种鼓是按等半径圆弧来设计。
齿轮在传动过程中齿面承受正压力,微观上齿面会产生弹性变形,为保证变形后齿廓曲线更接近渐开线,因此需要对渐开线齿廓进行鼓形修正从而提高传动的平稳性。
齿轮齿部修形技术研究在目前我国机械行业中,齿轮传动仍是使用作广泛的传动形式,它具有速比恒定、承载能力高和传动效率高的优点,但由于不可避免的制造、安装误差的影响(以齿轮基节误差的影响等尤为突出),以及齿轮受力时的变形使齿轮基节产生变化(从动轮基节增大,主动轮基节减小),以至在齿轮传动中产生顶刃啮合现象,可对齿轮进行齿高方向修形,这就时齿轮修缘。
齿轮修缘是提高齿轮传动质量的重要措施之一,尤其对高速齿轮及高速重载齿轮传动更为重要。
二、修形原理1、齿廓修形原理在一对齿的啮合过程中,由于参与啮合的轮齿对数变化引起了啮合刚度变化,在极短的时间内,啮合刚度急剧变化将引起严重的激振,为使啮合刚度变化比较和缓,为减小由于基节误差和受载变形所引起的啮入和啮出冲击,或为了改善齿面润滑状态防止胶合发生,而把原来的渐开线齿廓在齿顶或接近齿根圆角的部位修去一部分,使该处的齿廓不再是渐开线形状,这种措施或方法就是所谓的齿廓修正(齿廓修形)。
2、齿向修形原理齿轮轴或齿轮轮齿受载后会发生弯曲及扭转弹性变形,此外,制造中的齿向误差、箱体轴承座孔的误差和受载后的变形所引起轴线不平行,以及高速齿轮因为离心力引起的变形和温差引起的热变形等,他们都会使齿面负荷沿齿宽方向发生变化,情况严重时造成载荷局部集中,引起高负荷区的齿面破坏或折断。
高速重载齿轮运转时温度较高,热弹变形更使负荷沿齿宽的分布复杂化,特别是小齿轮因转速高,温度高,热变形更为显著,其影响也更大,亦应注意,齿向修形也包括鼓形修形和齿端修形,其目的是相同的。
三、几种齿廓修形工艺方法及修形技术进展1、利用修形滚刀滚齿实现齿廓修形这种方法最为简便,无需调整计算。
只是在精滚齿时采用修形滚刀滚齿,修形滚刀本身修形是靠模法在其制造过程中实现的,修形量由滚刀设计时所采用的修形滚刀标准决定的。
2、利用磨齿机修形机构实现修形磨齿机种类很多,其修形原理也不尽相同。
现针对常用的蝶形双砂轮磨齿机和锥面砂轮磨齿机的修形方法分别介绍。
NO.6841 2 3 4 5 6 7齿轮修形可以极大地提高传动精度,并增加齿轮强度。
广义上的齿轮修形有许多类别(齿端修形、齿顶修形、齿根修形、变位、修改压力角),本文将分享答主在精密传动设计中,关于齿轮修形的心得。
(以下将『输出扭矩波动率小』作为『传动精度高』的唯一指标)1. 齿『端』修形(齿向修形)齿『端』修形是最常见(最容易加工)的修形方式,通常是为了帮助装配,和机械设计中多数倒角的作用是一样的,但其实对传动精度和齿轮强度都有影响。
2. 齿『顶』修形(齿顶高系数)齿『顶』修形是所有修形方式中,对传动精度影响(提高)最大的。
我们希望齿轮啮合线是这的形状:红色是啮合线(理想的)但其实是这样的:红色是啮合线(实际的),啮合线只有一部分是“正确”的因为标准齿形中,齿顶被“削”去了一部分,所以渐开线是不完整的,导致主齿轮的齿顶和副齿轮的齿面(从截面上看)是先由点-线接触,再过渡到线-线接触:上图的放大版如果齿顶少“削”一点(齿顶高系数从1 提高至1.3,相应地,齿根高系数从1.25 提高至1.4),渐开线会变得更完整,啮合线也变得从1.25 提高至1.4、),渐开线会变得更完整,啮合线也变得更接近理想的形状:啮合线“正确部分”变长了、“不正确部分”变短了但并不是“削”得越少,传动精度越高,因为齿顶的材料厚度小、应变大,因此在啮合的过程中,渐开线越靠近齿根的部分,啮合精度越高;渐开线越靠近齿顶的部分,啮合精度越低。
不同场景中(主要影响因素是额定扭矩、齿轮模数、齿数、压力齿轮副参数:基于ISO 53:1998轮廓A 齿形、1 模24 齿、20 度压力角、厚度7 mm、10 Nm 输入扭矩、4775 RPM 输入转速、5 kW 输入功率、齿根高系数1.4、无变位、无其他修形、中心矩公差为0、齿厚公差/背隙/齿距误差为0、无摩擦。
此时扭矩波动仅受材料模量和齿形影响。
若齿顶高系数为1,输出扭矩曲线:若齿顶高系数为1.2:旋转角度(齿轮A)[°]扭矩波动范围为(+0.02,-0.12),波峰在C 点左侧、波谷在C 点右侧若齿顶高系数为1.4:旋转角度(齿轮A)[°]输出扭矩波动范围为(+0.01,-0.1),波谷在C 点左侧、波峰在C 点右侧这个例子是(容许范围内)齿顶高系数越大、传动精度越高。
齿形齿向修形在生产中的应用研究 高惠良 (河南石油勘探局机械制造厂,河南南阳473132)[摘要]齿轮向修形是齿轮加工的必要工艺,是提高产品质量的重要步骤。
齿形修形是以渐开线为基础,考虑制造误差和弹性形变对噪声,动载荷的影响加以修正的齿形。
齿向修形是要求实际螺旋角与理论螺旋角有适当的差值,以补偿齿轮在全工况下,多种原因造成的螺旋角有确定的齿向。
齿轮进行齿形定向修形后,还需要进行检测,才能在生产中应用。
[关键词]齿轮;齿形;齿向;修形;应用[中图分类号]TH 1321413;T G 61[文献标识码]A [文章编号]10009752(2001)增刊012902 在齿轮加工工序中滚齿和剃齿两道工序是影响齿轮精度的关键工序。
由于滚刀和剃齿刀都是标准刀具,所以加工出来的产品在装配试验中,普遍存在噪声大、动载荷不均匀现象,影响了产品质量。
在经过多次试验后,针对配套厂家的实际要求,对齿形、齿向进行修形,是齿轮加工必须进行的工艺措施,也是提高产品质量的重要步骤。
1 齿形修形在通常情况下,所说的齿形是标准渐开线齿形,当齿轮齿廓为理想(即没有形状或压力角误差)渐开线时,实测记录是一条直线。
而齿形修形(齿形精度标准规定又称设计齿形)是以渐开线为基础,考虑制造误差和弹性形变对噪声、动载荷的影响加以修正的齿形。
它可以是修正的理论渐开线,包括修缘齿形、凸齿形等。
为防止顶刃啮合,新标准中规定:齿顶和齿根处的齿形误差只允许偏向齿体内。
如图1标准的渐开线齿形,当齿轮齿廓为一理想渐开线时,实测记录曲线如图2(a )所示。
但是,实际生产中齿轮齿形存在偏差,如图2(b )为正齿顶齿形,图2(c )为负齿顶齿形。
给定齿形公差为∃f f 时,在图2(a ),(b )中只要包容实际齿形误差曲线的两条平行线之间的距离不超过∃f f 时,该齿形均合格。
当将图2(a ),2(b )重叠时,就产生了新的等效的带形公差带,如图3所示。
图1 标准的渐开线齿形 图2 实际生产中的齿形偏差 图3 带形磁带当图3的带形公差带经过变形或齿顶、齿根修缘技术要求的限定之后,就变成了K 形公差带或凸形公差带[1],这正是所需要的。
修形对齿轮性能的影响——对相关理论的学习及书刊选摘一、齿轮修形在机械工程中,齿轮传动是一种应用最广的机械传动形式,具有传动效率高、结构紧凑等特点。
但由于不可避免地存在制造和安装误差, 齿轮传动装置的振动和噪声往往较大, 特别是在一些高速重载传动装置中, 振动和噪声对传动性能有较大的影响。
齿轮修形是降低齿轮传动装置振动和噪声的一种成熟而有效的技术, 近年来获得了越来越广泛的应用。
齿轮修形包括齿廓修形和齿向修形。
1.齿向修形1)齿向修形原理:齿轮传动系统在载荷的作用下将会产生弹性变形,包括轮齿的弯曲变形、剪切变形和接触变形, 还有支撑轴的弯曲变形和扭转变形。
这些变形将会使轮齿的螺旋线发生变形,导致轮齿沿一端接触, 造成载荷分布不均匀,出现偏载现象。
齿向修形可以通过补偿形变改善传动效果。
1图1齿向修形原因1摘自《齿形齿向修形初探》2图 2齿向修形理论曲线2) 齿向修形的方法:齿向修形一般只对小齿轮进行修形,分为齿端修形、鼓形修形和曲面修形。
A. 齿端修形由于全修形曲面较为复杂,所以在一定传动条件下可以用齿端修形代替齿向的全修形,齿端修形是指在轮齿的两端沿齿宽方向倒坡修形, 或在齿根至齿顶45° 倒角也可以有效避免齿端过载。
图 3齿端修形及截面图齿端修形的公式:修形量:mm f S H 02.041±=β 其中:βH f ——齿向线角度偏差(参照GB1009—88)修形长度:mm m S n 52.22+≤或mm B S 51.02+≤ 2来自《斜齿轮齿向修形研究》m——齿轮模数其中: nB——齿宽3B.鼓形修形齿轮齿向修形的目的是消除齿轮轴受载产生的弯曲及扭转产生的弹性变形所带来的应力集中。
另外,轴承孔座的误差及受载后的变形所引起的轴线不平度以及高速齿轮因为离心力引起的变形等因素都会对齿向修形产生一定影响。
而鼓形齿修形既减少顶啮合发生的啮合冲击及噪声,又降低因齿向误差及齿轮轴向弯曲和扭转变形而造成的载荷集中,啮合过程平稳,载荷沿齿向分布均匀。
4.试述齿轮修形的作用
有意识地微量修整齿轮的齿面,使其偏离理论齿面的工艺措施。
按修形部位的不同,轮齿修形可分为齿廓修形和齿向修形。
齿廓修形指的是微量修整齿廓,使其偏离理论齿廓。
齿廓修形包括修缘、修根和挖根等。
齿廓修形
分类修缘修根挖根
定义对齿顶附近的齿廓修形对齿根附近的齿廓修形对轮齿的齿根过渡曲面进行修整
作用可以减轻轮齿的冲击振动和噪声,减
小动载荷,改善齿面的润滑状态,减缓
或防止胶合破坏
修根的作用与修缘基本相同,但修根
使齿根弯曲强度削弱。
采用磨削工艺
修形时,为提高工效有时以小齿轮修
根代替配对大齿轮修缘
经淬火和渗碳的硬齿面齿轮,在热处理后
需要磨齿,为避免齿根部磨削烧伤和保持
残余压应力的有利作用,齿根部不应磨削,
为此在切制时可进行挖根。
此外,通过挖
根可增大齿根过渡曲线的曲率半径,以减
小齿根圆角处的应力集中。
齿向修形指的是沿齿线方向微量修整齿面,使其偏离理论齿面。
通过齿向修形可以改善载荷沿轮齿接触线的不均匀分布,提高齿轮承载能力。
齿轮修形可以分为齿端修薄、螺旋角修整、鼓形修整、曲面修整和其他。
齿向修形
分类齿端修薄螺旋角修整鼓形修整曲面修整
定义对轮齿的一端或两端在一小
段齿宽上将齿厚向端部逐渐
削薄微量改变齿向或螺旋角β的大
小,使实际齿面位置偏离理论
齿面位置
采用齿向修形使轮齿在齿宽
中央鼓起,一般两边呈对称形
状
按实际偏载误差进行齿向修
形。
考虑实际偏载误差,特别
是考虑热变形,则修整以后的
齿面不一定总是鼓起的,而通
常呈凹凸相连的曲面
作用最简单螺旋角修整比齿端修薄效果
好改善轮齿接触线上载荷的不
均匀分布
曲面修整效果较好,是较理想
的修形方法
齿轮修形除了上述的分类,还有一些具体措施。
齿轮修形
具体措施齿根圆角修形齿端修薄与齿顶角倒角齿顶直径修正其他
作用减少应力集中及提高弯曲强
度缓解伴随毗连齿轮之间传递
载荷所发生的迅猛作用
稍许增大外直径,可以显著
改进齿轮啮合接触比,而不
引起配对齿轮齿根干涉。
适当减小全齿高可以减
少根切机会,当有力作用于
齿顶时可以减小齿根弯曲应
力。
减少齿顶相对滑动从而
提高效率,但会减小啮合率。
适当增加全齿高可以增
大啮合率,两齿轮中心距允
许误差可以增加,但会增加
根切机会。
增大压力角可减小齿轮
弯曲应力和接触应力,同时
还会因减少了两齿轮的相对
滑动而提高效率,但会导致
啮合率下降,同时导致齿根
圆角半径被限制在一个很小
的变化范围内。