齿轮修形课件ppt
- 格式:ppt
- 大小:4.06 MB
- 文档页数:7
NO.6841 2 3 4 5 6 7齿轮修形可以极大地提高传动精度,并增加齿轮强度。
广义上的齿轮修形有许多类别(齿端修形、齿顶修形、齿根修形、变位、修改压力角),本文将分享答主在精密传动设计中,关于齿轮修形的心得。
(以下将『输出扭矩波动率小』作为『传动精度高』的唯一指标)1. 齿『端』修形(齿向修形)齿『端』修形是最常见(最容易加工)的修形方式,通常是为了帮助装配,和机械设计中多数倒角的作用是一样的,但其实对传动精度和齿轮强度都有影响。
2. 齿『顶』修形(齿顶高系数)齿『顶』修形是所有修形方式中,对传动精度影响(提高)最大的。
我们希望齿轮啮合线是这的形状:红色是啮合线(理想的)但其实是这样的:红色是啮合线(实际的),啮合线只有一部分是“正确”的因为标准齿形中,齿顶被“削”去了一部分,所以渐开线是不完整的,导致主齿轮的齿顶和副齿轮的齿面(从截面上看)是先由点-线接触,再过渡到线-线接触:上图的放大版如果齿顶少“削”一点(齿顶高系数从1 提高至1.3,相应地,齿根高系数从1.25 提高至1.4),渐开线会变得更完整,啮合线也变得从1.25 提高至1.4、),渐开线会变得更完整,啮合线也变得更接近理想的形状:啮合线“正确部分”变长了、“不正确部分”变短了但并不是“削”得越少,传动精度越高,因为齿顶的材料厚度小、应变大,因此在啮合的过程中,渐开线越靠近齿根的部分,啮合精度越高;渐开线越靠近齿顶的部分,啮合精度越低。
不同场景中(主要影响因素是额定扭矩、齿轮模数、齿数、压力齿轮副参数:基于ISO 53:1998轮廓A 齿形、1 模24 齿、20 度压力角、厚度7 mm、10 Nm 输入扭矩、4775 RPM 输入转速、5 kW 输入功率、齿根高系数1.4、无变位、无其他修形、中心矩公差为0、齿厚公差/背隙/齿距误差为0、无摩擦。
此时扭矩波动仅受材料模量和齿形影响。
若齿顶高系数为1,输出扭矩曲线:若齿顶高系数为1.2:旋转角度(齿轮A)[°]扭矩波动范围为(+0.02,-0.12),波峰在C 点左侧、波谷在C 点右侧若齿顶高系数为1.4:旋转角度(齿轮A)[°]输出扭矩波动范围为(+0.01,-0.1),波谷在C 点左侧、波峰在C 点右侧这个例子是(容许范围内)齿顶高系数越大、传动精度越高。
齿轮修形原理可以归纳为以下几个方面:
1.齿形修正:通过切削或磨削齿轮的齿面,调整齿轮的齿形参数,
如齿高、齿顶间距、齿根间距等,以改善齿轮的传动性能。
2.齿数调整:如果需要改变齿轮的齿数,可以通过切削或磨削齿
轮的齿槽来实现。
这样可以使两个齿轮的齿数匹配,以便更好
地进行传动。
3.齿轮配合调整:在一对齿轮传动中,齿轮之间的间隙和啮合角
度对传动性能有影响。
通过切削或磨削齿轮的齿面,可以调整
齿轮之间的配合间隙和啮合角度,以提高传动的平稳性和效率。
4.齿轮修形的精度控制:在齿轮修形过程中,需要控制修形的精
度,以确保齿轮的质量和精度要求。
这包括修形工具的精度、
修形过程的控制和测量检验等。
总之,齿轮修形原理是通过调整齿轮的齿形、齿数、配合间隙和啮合角度等参数,来改善齿轮的传动性能和质量,以满足特定的工程需求。
齿轮微观修形影响分析RomaxDesigner微观修形分析步骤:修形目的Romax软件提供的修形方法修形设置及结果查看已有的模型planetary gear pair MicroGeomodification.ssdEffect of MicroGeoModification.ssd手动修形数据齿向与齿廓标准修形数据标准齿廓修形标准修形数据标准齿向修形齿轮微观修形分析详细分析步骤为什么进行齿轮微观修形?修改齿轮微观几何参数能改善齿轮啮合性能弥补轴变形对齿轮寿命影响减小弯曲应力、接触应力以及传动误差降低噪声……Romax提供的修形方法手动修形标准修行自动修行手动修形齿向修形(Lead)沿齿面方向斜率切除以及鼓形齿廓(形)修形(Porfile/Involute)沿齿根到齿顶方向考虑齿面弹性变形与铸造、热处理以及装配等公差影响因素对角修形(Bias)标准修形由剑桥大学的Munro教授提出以某个载荷工况下传动误差最小为目标考虑节圆误差对直齿轮修形效果非常好手动修形步骤使用模型planetary gear pair MicroGeomodification.ssd planetary gear pair MicroGeomodification ssd打开齿轮微观几何设置界面微观几何设置界面选取要进行修形的齿轮设置修形评估极限选取齿轮的工作齿面进行修形齿向修形点击上图中“轮廓(R)…”按钮,打开下图,通过输入坐标点来进行细致修形注意:最终修形结果是用这两种修形方法得到的综合修形结果同理,可设置齿廓修形极限,其中SAP(有效齿廓起始点)——SAP底端评估极限——EAP(有效齿廓终止点)——EAP顶端评估极限——可在Romax软件中详细齿轮设计界面中接触几何参数表中查到齿廓修形极限设置齿廓修形需要设置齿顶测量直径(TMD)和齿根测量直径(RMD),以及齿根修缘(RR)和齿顶修缘(TR)的起始点。
其中齿根修缘和齿顶修缘起始点位置,由CAD图纸给出。
齿轮修形渐开线齿轮的修形李钊刚齿廓修整基本原理基于以下原因渐开线齿轮在实际运行中达不到理想渐开线齿轮那样的平稳而产生啮合冲击产生动载荷并影响承载能力。
•制造误差•受力元件(齿轮、箱体、轴、轴承等)的变形•运转产生的温度变形•轮齿啮合过程中的载荷突变。
以上因素均会引起齿轮的齿距改变(偏离理想齿距值)。
当主动轮的齿距小于从动轮的齿距时就会产生啮入干涉冲击当主动轮的齿距大于从动轮的齿距时就会产生啮出干涉冲击(图)。
图轮齿受载变形受载前b)受载后下面分析一下轮齿啮合过程中的载荷突变现象。
图为一对齿轮的啮合过程。
啮合线、重合度、轮齿单齿啮合的上界点和下界点正常情况下个齿轮的啮合线长度取决于两个齿轮的齿顶圆直径。
如图所示当小齿轮主动时大轮齿顶的齿廓与小轮齿根的齿廓在A 点相遇A是啮合的起始点到小轮齿顶的齿廓和大轮齿根的齿廓在E 点退出啮合E点为啮合的终止点。
AE为啮合线长度。
端面重合度εα=AEpb式中:pb基圆齿距。
当<εα<时存在双齿啮合区。
在距啮合的起始点A一个基圆齿距的D点大轮第二个齿开始进入啮合DE段为双齿啮合区该D点称为小齿轮单齿啮合的上(外)界点。
当力作用在D点时齿根应力最大D点是计算齿根弯曲应力起决定作用的力的作用点。
α‘t啮合角αFen载荷作用角rr小、大齿轮的节圆半径rara小、大齿轮的齿顶圆半径rbrb小、大齿轮的基圆半径pbt基齿距P节点B 小齿轮单对齿啮合区下界点D小齿轮单对齿啮合区上界点。
图齿轮的单、双齿啮合区同样在距啮合的终止点E往前一个基圆齿距的B点小轮前一个齿开始退出啮合AB段为双齿啮合区BD段为单齿啮合区该B点称为小齿轮单齿啮合的下(内)界点。
因为小齿轮的点蚀大多发生在齿根处(即AC之间)在齿面接触强度计算时以B点的赫兹压应力作为起决定作用的力的判据点。
啮合线EBDA为轮齿参加啮合的一个周期。
其中EB段和DA段为双齿啮合区BD段为单齿啮合区。
因此轮齿啮合过程中的载荷分布明显不均匀(图)。