回归模型拟合精度分析(1).doc
- 格式:doc
- 大小:157.50 KB
- 文档页数:5
线性回归模型的经典假定及检验、修正一、线性回归模型的基本假定1、一元线性回归模型一元线性回归模型是最简单的计量经济学模型,在模型中只有一个解释变量,其一般形式是Y =β0+β1X 1+μ其中,Y 为被解释变量,X 为解释变量,β0与β1为待估参数,μ为随机干扰项。
回归分析的主要目的是要通过样本回归函数(模型)尽可能准确地估计总体回归函数(模型)。
为保证函数估计量具有良好的性质,通常对模型提出若干基本假设。
假设1:回归模型是正确设定的。
模型的正确设定主要包括两个方面的内容:(1)模型选择了正确的变量,即未遗漏重要变量,也不含无关变量;(2)模型选择了正确的函数形式,即当被解释变量与解释变量间呈现某种函数形式时,我们所设定的总体回归方程恰为该函数形式。
假设2:解释变量X 是确定性变量,而不是随机变量,在重复抽样中取固定值。
这里假定解释变量为非随机的,可以简化对参数估计性质的讨论。
假设3:解释变量X 在所抽取的样本中具有变异性,而且随着样本容量的无限增加,解释变量X 的样本方差趋于一个非零的有限常数,即∑(X i −X ̅)2n i=1n→Q,n →∞ 在以因果关系为基础的回归分析中,往往就是通过解释变量X 的变化来解释被解释变量Y 的变化的,因此,解释变量X 要有足够的变异性。
对其样本方差的极限为非零有限常数的假设,旨在排除时间序列数据出现持续上升或下降的变量作为解释变量,因为这类数据不仅使大样本统计推断变得无效,而且往往产生伪回归问题。
假设4:随机误差项μ具有给定X 条件下的零均值、同方差以及无序列相关性,即E(μi|X i)=0Var(μi|X i)=σ2Cov(μi,μj|X i,X j)=0, i≠j随机误差项μ的条件零均值假设意味着μ的期望不依赖于X的变化而变化,且总为常数零。
该假设表明μ与X不存在任何形式的相关性,因此该假设成立时也往往称X为外生性解释变量随机误差项μ的条件同方差假设意味着μ的方差不依赖于X的变化而变化,且总为常数σ2。
线性回归模型线性回归是统计学中一种常用的预测分析方法,用于建立自变量和因变量之间的线性关系模型。
该模型可以通过拟合一条直线或超平面来预测因变量的值。
在本文中,我们将探讨线性回归模型的基本原理、应用场景以及如何构建和评估模型。
一、基本原理线性回归模型的基本原理是通过最小二乘法来确定自变量与因变量之间的线性关系。
最小二乘法的目标是使模型预测值与真实观测值的残差平方和最小化。
通过最小二乘法,可以获得模型的系数和截距,从而建立线性回归模型。
二、应用场景线性回归模型适用于连续型变量的预测与分析。
以下是一些常见的应用场景:1. 经济学领域:预测GDP增长、通货膨胀率等经济指标;2. 市场营销:分析广告投入与销售额之间的关系;3. 生物医学:研究药物剂量与治疗效果的关联性;4. 地理科学:探索自然地理因素与社会经济发展之间的关系。
三、构建线性回归模型1. 数据收集:收集自变量和因变量的数据,确保数据的可靠性和完整性;2. 数据探索:通过统计分析、可视化等手段对数据进行初步探索,检查是否存在异常值或缺失值;3. 特征选择:选择与因变量相关性较高的自变量,可以使用统计方法或领域知识进行选择;4. 模型建立:使用最小二乘法等方法拟合线性回归模型,并求解模型的系数和截距;5. 模型评估:使用各种指标(如均方误差、决定系数等)来评估模型的性能和拟合度;6. 模型优化:根据模型评估结果,对模型进行进一步优化,可以考虑添加交互项、多项式项等。
四、评估线性回归模型线性回归模型的评估可以通过以下指标进行:1. 均方误差(Mean Squared Error,MSE):衡量模型预测值与真实观测值之间的误差;2. 决定系数(Coefficient of Determination,R-squared):衡量模型对因变量变异的解释程度;3. 残差分析:通过检查预测残差的正态性、独立性和同方差性来评估模型的拟合效果。
五、总结线性回归模型是一种简单而强大的统计学方法,可用于预测和分析连续型变量。
回归分析1、回归分析的概念在工农业生产和科学研究中,常常需要研究变量之间的关系。
变量之间的关系可以分为两类:确定性关系、非确定性关系。
确定性关系就是指存在某种函数关系。
然而,更常见的变量之间的关系存在着某种不确定性。
例如:商品的销售量与当地人口有关,人口越多,销售量越大,但它们之间并没有确定性的数值关系,同样的人口,可能有不同的销售量。
这种既有关联,又不存在确定性数值关系的相互关系,就称为相关关系。
回归分析就是研究变量之间相关关系的一种数理统计分析方法。
在回归分析中,主要研究以下几个问题: (1)拟合:建立变量之间有效的经验函数关系; (2)变量选择:在一批变量中确定哪些变量对因变量有显著影响,哪些没有实质影响; (3)估计与检验:估计回归模型中的未知参数,并且对模型提出的各种假设进行推断; (4)预测:给定某个自变量,预测因变量的值或范围。
根据自变量个数和经验函数形式的不同,回归分析可以分为许多类别。
2、一元线性回归⏹ 回归系数的最小二乘估计已知(x1, y1),(x2 ,y2),...,(xn, yn),代入回归模型得到: 一元线性回归模型给定一组数据点(x1, y1),(x2 ,y2),...,(xn, yn),如果通过散点图可以观察出变量间大致存在线性函数关系,则可以建立如下模型:其中a,b 称为一元线性回归的回归系数;ε表示回归值与测量值之间的误差。
针对该模型,需要解决以下问题: (1)如何估计参数a,b 以及σ2; (2)模型的假设是否正确?(3)如何应用所求的回归方程对试验指标进行预测。
⏹ 回归系数的最小二乘估计已知(x1, y1),(x2 ,y2),...,(xn, yn),代入回归模型得到: 采用最小二乘法(即使观测值与回归值的离差平方和最小):⎩⎨⎧++=),0(~2σεεN bX a Y 2,~(0,),1,2,...,i i i i y a bx N i n e e s =++=1221111112111(,)2[()]0min (,)[()](,)2[()]011ˆˆˆn i i n n i i i i n i i i i i i n i i n n i i ii i n n n i i i ii i i Q a b y a bx a Q a b y a bx Q a b x y a bx b a y b x y n n na b x y a x b x x y e ==========ì锒ï=--+=ïï¶ï==-+ íï¶ï=--+=ïï¶ïî=-=-ìïï+=ïïï揶íïï+=ïïïîå邋åå邋邋1111221ˆ1n i n n n i i i ixy i i i nn xxbx x y x y L n b L ====ìïïïïïïïïí-ïï==ïïïå邋⏹ 回归系数估计量的性质⏹ 样本相关系数及其显著性检验显然:样本相关系数R 的符号决定于Lxy ,因此与相关系数b 的符号一致。
回归模型1 回归模型的根本知识 模型简介主要应用在研究某些现象发生的概率p ,比方股票涨还是跌,公司成功或失败的概率,以及讨论概率p 与那些因素有关。
显然作为概率值,一定有10≤≤p ,因此很难用线性模型描述概率p 与自变量的关系,另外如果p 接近两个极端值,此时一般方法难以较好地反映p 的微小变化。
为此在构建p 与自变量关系的模型时,变换一下思路,不直接研究p ,而是研究p 的一个严格单调函数)(p G ,并要求)(p G 在p 接近两端值时对其微小变化很敏感。
于是变换被提出来:〔1〕其中当p 从10→时,)(p Logit 从+∞→∞-,这个变化范围在模型数据处理上带来很大的方便,解决了上述面临的难题。
另外从函数的变形可得如下等价的公式:XT XT T ee p Xppp Logit βββ+=⇒=-=11ln )( 〔2〕模型(2)的根本要求是,因变量〔y 〕是个二元变量,仅取0或1两个值,而因变量取1的概率)|1(X y P =就是模型要研究的对象。
而T k x x x X ),,,,1(21 =,其中i x 表示影响y 的第i 个因素,它可以是定性变量也可以是定量变量,T k ),,,(10ββββ =。
为此模型(2)可以表述成:kx k x k x k x kk eep x x pp βββββββββ+++++++=⇒+++=- 11011011011ln 〔3〕显然p y E =)(,故上述模型说明是k x x x ,,,21 的线性函数。
此时我们称满足上面条件的回归方程为线性回归。
线性回归的主要问题是不能用普通的回归方式来分析模型,一方面离散变量的误差形式服从伯努利分布而非正态分布,即没有正态性假设前提;二是二值变量方差不是常数,有异方差性。
不同于多元线性回归的最小二乘估计法那么(残差平方和最小),变换的非线性特征采用极大似然估计的方法寻求最正确的回归系数。
因此评价模型的拟合度的标准变为似然值而非离差平方和。
如何用残差分析的方法判断回归模型的拟合效果中图分类号:G635.1文献标识码:A文章编号:ISSN1001-2982(2019)04-079-02如何判断回归模型的拟合效果好坏是回归分析的重要内容,在回归分析中通常用残差分析来判断回归模型的拟合效果一:残差分析的方法1.残差图(1)残差:对于样本点,它们的随机误差为,,其估计值,,称为相应于点的残差,即=真实值—预报值(2)残差图:纵坐标为残差,横坐标可以选为样本编号或其他相关数据。
残差点比较均匀地落在水平的带状区域中,说明选用的模型拟合效果好,带状区域宽度越窄,说明拟合精度越高,回归方程的精度越高。
(3)残差平方和:越小拟合效果越好2.相关系数:(1)(2)时线性相关性越强,越弱(3)时认为两个变量有很强的相关关系3相关指数(1)(2)越大,说明残差平方和越小,模型拟合效果越好,,模型拟合效果差(3)与相关系数作用相同(4)实际应用中,应选用大的回归模型二.典例分析例.某运动员训练次数与运动成绩之间的数据关系如下:次数x3033353739444650成绩y3034373942464851试预测该运动员训练47次以及55次的成绩。
解:(1)作出该运动员训练次数x与成绩y之间的散点图,如图所示,由散点图可知,它们之间具有线性相关关系。
图1(2)列表计算:次数成绩30309009009003334108911561122353712251369129537391369152114433942152117641638444619362116202446482116230422085051250026012550由上表可求得,,,所以所以回归直线方程为(3)计算相关系数将上述数据代入得,查表可知,而,故y与x 之间存在显著的相关关系。
(4)残差分析:作残差图如图,由图知,残差点比较均匀地分布在水平带状区域中,说明选用的模型比较合适。
计算残差的方差得,说明预报的精度较高。
线性回归方程一、考点、热点回顾一、相关关系:1、⎩⎨⎧<=1||1||r r 不确定关系:相关关系确定关系:函数关系2、相关系数:∑∑∑===-⋅---=ni ini ini iiy y x x y y x x r 12121)()())((,其中:(1)⎩⎨⎧<>负相关正相关00r r ;(2)相关性很弱;相关性很强;3.0||75.0||<>r r3、散点图:初步判断两个变量的相关关系。
二、线性回归方程:1、回归方程:a x b yˆˆˆ+= 其中2121121)())((ˆxn x yx n yx x x y yx x bn i i ni ii n i i ni ii--=---=∑∑∑∑====,x b y aˆˆ-=(代入样本点的中心) 2、残差:(1)残差图:横坐标为样本编号,纵坐标为每个编号样本对应的残差。
(2)残差图呈带状分布在横轴附近,越窄模型拟合精度越高。
(3)残差平方和∑=-ni i iyy12)ˆ(越小,模型拟合精度越高。
3、相关指数:∑∑==---=n i ini i iy yyyR 12122)()ˆ(1(1)其中:∑=-ni i iyy12)ˆ(为残差平方和;∑=-ni i y y 12)(为总偏差平方和。
(2))1,0(2∈R ,越大模型拟合精度越高。
二、典型例题+拓展训练典型例题1:在一组样本数据),,,2)(,(),,(),,(212211不全相等n n n x x x n y x y x y x ≥的散点图中,若所有样本点),2,1)(,(n i y x i i =都在直线121+-=x y 上,则样本相关系数为( ) 21.21.1.1.--D C B A典型例题2:设某大学的女生体重)(kg y 与身高)(cm x 具有线性相关关系,根据一组样本数据)2,1)(,(n i y x i i =,用最小二乘法建立的回归方程为71.8585.0ˆ-=x y ,则不正确的是( )A.y 与x 具有正的线性相关关系;B.回归直线过样本点的中心),(y xC.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg扩展2.一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转的速度而变化,下表为抽样试(1)对变量y 与x 进行相关性检验;(2)如果y 与x 有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?典型例题3.为了对x 、Y 两个变量进行统计分析,现有以下两种线性模型: 6.517.5y x =+,717y x =+,试比较哪一个模型拟合的效果更好.52211521()155110.8451000()i i i ii y y R yy ==-=-=-=-∑∑,221R =-521521()18010.821000()ii i ii yy y y ==-=-=-∑∑,84.5%>82%,所以甲选用的模型拟合效果较好.扩展1.下列说法正确的是( )(1)残差平方和越小,相关指数2R 越小,模型拟合效果越差; (2)残差平方和越大,相关指数2R 越大,模型拟合效果越好; (3)残差平方和越小,相关指数2R 越大,模型拟合效果越好; (4)残差平方和越大,相关指数2R 越小,模型拟合效果越差;A.(1)(2)B.(3)(4)C.(1)(4)D.(2)(3)扩展2.关于某设备的使用年限x (年)和所支出的维修费用y (万元)有下表所示的资料:若由资料知,y 对x 呈线性相关关系,求:(1)线性回归方程a x b yˆˆˆ+=中的回归系数b a ˆ,ˆ; (2)残差平方和与相关指数2R ,作出残差图,并对该回归模型的拟合精度作出适当判断; (3)使用年限为10年时,维修费用大约是多少?三、典型例题4.非线性回归模型:某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费和年销售量(i=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值。
统计与回归线性回归模型的建立与分析一、引言统计是现代科学中广泛应用的一种方法,而回归分析又是统计学中非常重要的一种技术。
在统计学中,线性回归模型被广泛应用于研究和分析,可以帮助我们了解变量之间的关系及其对结果的影响。
本文将介绍线性回归模型的建立和分析方法,以便读者在实际问题中能够充分利用线性回归的优势。
二、线性回归模型的基本原理线性回归模型是一种通过拟合数据来建立因变量与自变量之间线性关系的统计模型。
在线性回归中,因变量和自变量之间的关系被假设为一个线性方程,其数学形式可以表示为:Y = β0 +β1X1 + β2X2 + ... + βnXn + ε,其中Y是因变量,X1至Xn是自变量,β0至βn是回归系数,ε是误差项。
通过最小化误差项和观测值之间的差异,可以得到最佳的回归系数,从而建立线性回归模型。
三、线性回归模型的建立步骤1. 数据收集:首先,需要收集相关的数据集,包括因变量和自变量的观测值。
这些数据可以通过实验、调查或其他途径获得。
2. 数据准备:在建立线性回归模型之前,需要对数据进行清洗和准备。
这包括处理缺失值、异常值以及进行数据变换等。
3. 模型选择:根据研究的目标和数据的特点,选择适当的线性回归模型。
常见的线性回归模型包括一元线性回归、多元线性回归和多重线性回归等。
4. 拟合模型:通过最小二乘法等方法,拟合数据与线性回归模型之间的关系,得到最佳的回归系数。
5. 模型评估:对建立的线性回归模型进行评估,检验模型的拟合程度和显著性。
常见的评估指标包括确定系数(R²)、标准误差(SE)等。
6. 模型应用:利用建立的线性回归模型进行预测和解释。
可以根据模型的系数和显著性检验结果,解释自变量对因变量的影响程度。
四、线性回归模型的分析与解释在分析线性回归模型时,需要综合考虑回归系数的大小、显著性以及模型评估结果,来解释自变量对因变量的影响。
1. 回归系数:回归系数反映了自变量对因变量的影响程度和方向。
应用回归分析例库封面
一、案例背景
新中国50年来,我国的国民经济迅猛发展,综合国力显著增强。
研究表明:截至2004年50多年来中国经济增长是不均衡的,经济增长模式是不同的,可分为几个阶段。
文章基于对53年来中国财政收入、农业增加值、工业增加值、社会消费总额等因素的研究,
-生产函数,分三个阶段分析了财政消除价格膨胀因素的影响,采用采用Cobb Dauglas
收入与其他因素之间的关系,并且从经济学角度对所建立的模型给出了合理的解释,结论符合中国实际。
二、数据介绍
新中国50年来,我国的国民经济迅猛发展,综合国力显著增强。
研究表明:截至2004年50多年来中国经济增长是不均衡的,经济增长模式是不同的,可分为几个阶段。
文章基于对53年来中国财政收入、农业增加值、工业增加值、社会消费总额等因素的研究,
-生产函数,分三个阶段分析了财政消除价格膨胀因素的影响,采用采用Cobb Dauglas
收入与其他因素之间的关系,并且从经济学角度对所建立的模型给出了合理的解释,结论符合中国实际。
三、分析过程
经过对26个模型中标准残差、复相关系数、PRESS和AIC的对比,发现以下模型最优。
表2 4个最优回归模型比较
F统计量的概率值都为0,说明每个回归方程中的自变量作为一个整体对因变量Y的影响是显著的。
为了确定最优模型,将T统计量的概率值比较如下
从表3可以看出,当显著性水平0.05α=时,只有第一个模型中所有的P 值都满足
Pr(>|t|)<0.05,说明这个模型中的每个自变量对因变量的影响显著。
综合以上因素,我
们认为Y 关于因素123,,X X X 的回归模型是最优的,即1952年—1971年这20年间,影响财政收入的主要因素是农业增加值、工业增加值和建筑业增加值。
4.2.2 1972—2004年最优回归模型
过程同上。
经过对比,发现以下4个模型最优。
表4 4个最优模型比较
F 统计量的概率值都为0,T 统计量的概率值如表5所示。
当显著性水平0.05α=时,表5中第一个模型和第三个模型中所有的P 值都满足
Pr(>|t|)<0.05,说明这两个回归方程中的每个自变量对因变量的影响显著。
结合表4,我
们认为Y 关于因素1245,,,X X X X 的回归模型是最优的,即1972年—2004年这33年间,影响财政收入的主要因素是农业增加值、工业增加值、人口数和社会消费总额。
表6 两个总体最优模型汇总
四、结论
本文根据中国财政收入、农业增加值、工业增加值等因素增长趋势的特点,采用
Cobb Dauglas -生产函数,讨论了中国财政收入与社会各因素之间的关系。
比较表7中三个最优方程,可以看出在我国经济的不同发展阶段,影响财政收入的因素以及各因素的权重有所不同,说明随着时代的发展,社会制度的变迁,影响财政收入的主要因素也会发生变化。
在1952—1961年的回归方程中,农业增加值、工业增加值和建筑业增加值对财政收入的影响较大,其中工业增加值的权重系数较大。
这一时期,正值我国生产资料私有制的社会主义改造基本完成,1957年又完成了发展国民经济的第一个五年计划,开始进入全面建设社会主义的新时期。
在1961—1981年的回归方程中,工业增加值、人口数和社
会消费总额对财政收入的影响较大,其中工业增加值的权重系数仍然较大,由于忽视了“三农”问题,农业增加值没有列入其中。
1966年5月至1976年10月的“文化大革命”,使党、国家和人民遭到建国以来最严重的挫折和损失。
因此,在这一时期,各因素数据不稳定,起伏较大。
在1982—2004年这个阶段,尽管对财政收入的影响因素与前一阶段相同,但是较大的权重系数转移到人口数和社会消费总额。
在这23年里,中国的经济体制由计划经济一步步走向市场经济。
相对于前两个阶段经济发展属于较平稳的时期,这个阶段的成绩是调整改革的成果。
党中央、国务院早已经意识到了“三农问题”,在2004年,温家宝总理在政府工作报告中谈到,解决农业、农村和农民问题,是我们全部工作的重中之重,各级政府要加强对“三农”的投入。
出台了一系列有利于“三农”改革政策,包括农村税费改革,逐步降低农业税税率,五年内取消农业税。
总之,这53年来中国财政收入以及与其有关的各因素的增长趋势分成三个阶段是合理的,即分成1951—1960年,1961—1981年,1982—2004年,由此可以清楚地看出中国经济发展的历程。