最新橡胶工艺原理08
- 格式:pdf
- 大小:454.39 KB
- 文档页数:8
橡胶成型原理
橡胶成型原理指的是将橡胶材料通过特定的加工工艺,加热软化后注入模具中,经过冷却固化形成所需形状的工艺过程。
橡胶成型原理主要涉及到以下几个方面:
1. 橡胶材料选择:根据不同的需求,选择适当的橡胶材料进行成型。
常用的橡胶材料有天然橡胶、丁苯橡胶、氯丁橡胶等。
2. 模具设计:根据产品的形状和尺寸要求,设计相应的模具。
模具通常由上模和下模组成,可以根据需要加入一些辅助结构,如冷却水道和排气孔等。
3. 橡胶材料处理:将橡胶材料加热至一定温度,使其软化,便于注入模具中。
这一步骤通常称为预热或热塑化处理。
4. 模具注塑:将软化的橡胶材料注入模具中。
通常使用注射机将橡胶材料注入模具的腔室中,然后通过模具的开合运动,使橡胶材料填充整个模腔。
5. 冷却固化:注塑完成后,模具会快速冷却,使橡胶材料迅速固化。
这是为了保证成型件的尺寸稳定性和物理性能。
6. 拆模与处理:冷却固化后,将模具打开,取出成型件。
成型件通常需要进行去除毛刺、修整或进行表面处理等工艺。
综上所述,橡胶成型原理是通过将橡胶材料加热软化后注入模具中,经冷却固化形成所需形状的工艺过程。
这一过程包括橡
胶材料选择、模具设计、橡胶材料处理、模具注塑、冷却固化以及成品处理等多个环节。
橡胶加工原理
橡胶加工原理是指利用适当的机械和化学工艺对天然橡胶和合成橡胶进行处理,使其具备特定的物理和化学性能,以满足不同应用领域的需求。
橡胶加工的基本原理包括橡胶破碎、橡胶塑化、橡胶混炼、橡胶挤出、橡胶压延、橡胶模压等过程。
其中,橡胶破碎是将原料橡胶切碎成适当的颗粒大小,以便后续塑化和混炼。
橡胶塑化是通过机械或热能作用,使橡胶分子链发生流动和扩展,使其可塑性增加。
橡胶混炼是将塑化好的橡胶与添加剂进行混合,以调整橡胶的物理性能和化学性能。
橡胶挤出是将混炼好的橡胶通过模具挤压成所需的形状。
橡胶压延是将混炼好的橡胶经过辊式压延机械设备压制成薄板或厚板。
橡胶模压是将混炼好的橡胶放入模具中,在加热和压力的作用下形成所需的产品。
在橡胶加工过程中,还需要加入适量的填充剂、增塑剂、交联剂等辅助剂,以调整橡胶的硬度、耐磨性、耐候性等性能。
通过控制加工条件和添加剂的种类和用量,可以获得不同用途的橡胶制品,如轮胎、输送带、密封件等。
总的来说,橡胶加工原理是利用机械和化学手段对橡胶进行一系列处理,改变其分子结构和性能,最终得到具有所需物理和化学性能的橡胶制品。
最新橡胶工艺原理(八)王作龄 编译中图分类号:TQ330.1 文献标识码:E 文章编号:167128232(2003)0520049208d.丁苯橡胶(SBR)丁苯橡胶的弹性、强度特性、耐磨耗性诸性能之间的平衡性优良,加工性能好,而且价格低廉,因此,它是当今生产量和消费量最大的一种通用合成橡胶。
(1)丁苯橡胶的制造方法 丁苯橡胶是以苯乙烯和丁二烯为单体,用乳聚法和溶聚法制造的。
乳聚丁苯橡胶(E2SBR)是通过界面活性剂使单体分散于水中(即乳化),而后在其中加入自由基引发剂、催化剂和链转移剂等助剂进行聚合、凝固和干燥制成。
乳聚丁苯橡胶大致可分为聚合温度为(40~50)°C的高温聚合丁苯橡胶和(5~10)°C的低温聚合丁苯橡胶,现在是以诸性能均优的低温聚合丁苯橡胶为主导产品。
溶聚丁苯橡胶(S2SBR)采用活性阴离子法制造。
即在烃类溶剂中,以苯乙烯和丁二烯为单体,以有机锂化合物和醚、胺等极性化合物为催化剂经聚合、溶剂回收、干燥制成。
因为丁苯橡胶为活性聚合,所以它是嵌段聚合物的合成,其分子链末端可以改性。
(2)丁苯橡胶的结构与特征 丁苯橡胶的化学结构是苯乙烯和丁二烯的无规共聚物,见图5-11。
—(CH2—CH=CH—CH2)m—(CH2CH)—n图5-11 丁苯橡胶的化学结构式因乳聚丁苯橡胶(E2SBR)由自由基聚合制得,所以其丁二烯部分的微结构大致上固定,分子量分布宽,玻璃化温度取决于苯乙烯含量。
据此,可以选择所要求的弹性和耐寒性的指标。
溶聚丁苯橡胶(S2SBR)具有可容易地控制其微结构、分子量和分子量分布等聚合物结构方面的特征。
S2SBR的苯乙烯聚合物主链中的结构样式从无规到嵌段可以控制;丁二烯部分的微结构通过向聚合物系统添加醚和胺等极性化合物,使乙烯基含量(1,22结构)可在约(10~80)%范围内进行选择。
分子量分布窄,通过选择聚合方法(连续法、分批法)和引入任意支链结构,可将M w M n控制在约1.0~2.5的范围内。
橡胶工艺原理
橡胶是一种由橡胶树的乳液经过加工制成的具有弹性的材料。
橡胶的工艺原理主要包括以下几个方面。
1. 采集橡胶乳液:橡胶树的树干被割开后,乳液会自然流出。
采集工人使用刮刀将乳液慢慢刮下,收集到容器中。
2. 乳液稳定化:采集到的橡胶乳液中含有大量的水分和其他杂质,需要经过稳定化处理。
常用的稳定化剂包括氨水和醋酸,它们可以使乳液保持稳定状态,并防止乳液中的橡胶团聚。
3. 合成橡胶:乳液经过稳定化处理后,需要加入硫化剂、填充剂和加工助剂等多种化学物质进行合成橡胶的加工。
其中,硫化剂可以使橡胶分子之间的交联结构更加牢固,增加橡胶材料的强度和耐磨性;填充剂可以提高橡胶材料的硬度和耐磨性;加工助剂则可以调整橡胶材料的流动性和加工性能。
4. 橡胶成型:合成橡胶经过调配后,可以通过各种成型方法将其制成不同形状的橡胶制品。
常见的成型方法包括压延、压缩模压、浇注和挤出等。
5. 硫化和固化:成型后的橡胶制品需要进行硫化或固化处理,使其获得所需的弹性和耐磨性。
硫化是将成型的橡胶制品置于加热的硫化炉中,在一定温度下与硫化剂反应,形成较为稳定的交联结构;固化则是使用特定的固化剂或光线照射,使成型的橡胶制品的分子链交联,增加其硬度和强度。
通过以上的工艺原理,橡胶可以被制备成各种应用于工业、交通、建筑和日常生活中的橡胶制品,如轮胎、密封件、橡胶管、橡胶鞋等。
橡胶工艺原理绪论一.橡胶材料的特点1.高弹性:弹性模量低,伸长变形大,有可恢复的变形,并能在很宽的温度(-50~150℃)范围内保持弹性。
2.粘弹性:橡胶材料在产生形变和恢复形变时受温度和时间的影响,表现有明显的应力松弛和蠕变现象,在震动或交变应力作用下,产生滞后损失。
3.电绝缘性:橡胶和塑料一样是电绝缘材料。
4.有老化现象:如金属腐蚀、木材腐朽、岩石风化一样,橡胶也会因为环境条件的变化而产生老化现象,使性能变坏,寿命下降。
5.必须进行硫化才能使用,热塑性弹性体除外。
6.必须加入配合剂。
其它如比重小、硬度低、柔软性好、气密性好等特点,都属于橡胶的宝贵性能。
表征橡胶物理机械性能的指标:1.拉伸强度:又称扯断强度、抗张强度,指试片拉伸至断裂时单位断面上所承受的负荷,单位为兆帕(MPa),以往为公斤力/平方厘米(kgf/cm2)。
2.定伸应力:旧称定伸强度,指试样被拉伸到一定长度时单位面积所承受的负荷。
计量单位同拉伸强度。
常用的有100%、300%和500%定伸应力。
它反映的是橡胶抵抗外力变形能力的高低。
3.撕裂强度:将特殊试片(带有割口或直角形)撕裂时单位厚度所承受的负荷,表示材料的抗撕裂性,单位为kN/m。
4.伸长率:试片拉断时,伸长部分与原长度之比叫作伸长率;用百分比表示。
5.永久变形:试样拉伸至断裂后,标距伸长变形不可恢复部分占原始长度的百分比。
在解除了外力作用并放置一定时间(一般为3分钟),以%表示。
6.回弹性:又称冲击弹性,指橡胶受冲击之后恢复原状的能力,以%表示。
7.硬度:表示橡胶抵抗外力压入的能力,常用邵尔硬度计测定。
橡胶的硬度范围一般在2 0~100之间,单位为邵氏A。
二.关于橡胶的几个概念1.橡胶:世界上通用的橡胶的定义引自美国的国家标准ASTM-D1566。
定义如下:橡胶是一种材料,它在大的变形下能迅速而有力地恢复其变形,能够被改性(硫化)。
改性的橡胶实质上不溶于(但能溶脹于)沸腾的苯、甲乙酮、乙醇—甲苯混合物等溶剂中。
第四章橡胶的老化与防护§4.1 概述各种高分子材料虽然都有着各自优异的特性,但也有着共同的缺点,也就是说都有着一定的使用期限,原因就是它们都会在不同程度上发生老化。
一.橡胶老化的概念橡胶或橡胶制品在加工、贮存和使用的过程中,由于受内、外因素的综合作用(如热、氧、臭氧、金属离子、电离辐射、光、机械力等)使性能逐渐下降,以至于最后丧失使用价值,这种现象称为橡胶的老化。
橡胶老化的现象多种多样,例如:生胶经久贮存时会变硬,变脆或者发粘;橡胶薄膜制品(如雨衣、雨布等)经过日晒雨淋后会变色,变脆以至破裂;在户外架设的电线、电缆,由于受大气作用会变硬,破裂,以至影响绝缘性;在仓库储存的或其他制品会发生龟裂;在实验室中的胶管会变硬或发粘等。
此外,有些制品还会受到水解的作用而发生断裂或受到霉菌作用而导致破坏……所有这些都是橡胶的老化现象。
老化过程是一种不可逆的化学反应,象其他化学反应一样,伴随着外观、结构和性能的变化。
二.橡胶在老化过程中所发生的变化1.外观变化橡胶品种不同,使用条件不同,发生的变化也不同。
变软发粘:天然橡胶的热氧化、氯醇橡胶的老化。
变硬变脆:顺丁橡胶的热氧老化,丁腈橡胶、丁苯橡胶的老化。
龟裂:不饱和橡胶的臭氧老化、大部分橡胶的光氧老化、但龟裂形状不一样。
发霉:橡胶的生物微生物老化。
另外还有:出现斑点、裂纹、喷霜、粉化泛白等现象。
2.性能变化(最关键的变化)物理化学性能的变化:比重、导热系数、玻璃化温度、熔点、折光率、溶解性、熔胀性、流变性、分子量、分子量分布;耐热、耐寒、透气、透水、透光等性能的变化。
物理机械性能的变化:拉伸强度、伸长率、冲击强度、弯曲强度、剪切强度、疲劳强度、弹性、耐磨性都下降。
电性能的变化:绝缘电阻、介电常数、介电损耗、击穿电压等电性能的变化、电绝缘性下降。
外观变化、性能变化产生的原因是结构变化。
3.结构变化分子间产生交联,分子量增大;外观表现变硬变脆。
分子链降解(断裂),分子量降低,外观表现变软变粘。