dM qRd R1cos( ) qR21cos( )d
所以,在切向载荷 q 与多余未知力 FBy 作用下,截面的弯矩为
6
M
(
)
0
qR2
1
cos(
)d
FBy
R
sin
qR2
(
sin
)
FBy
R
sin
(b)
在图 c 所示铅垂单位载荷作用下,截面的弯矩则为
M () Rsin
根据单位载荷法,得相当系统横截面 B 的铅垂位移为
1
9F 4
2FN1
2
3F 2
FN1
1
0
得
FN1 F
ቤተ መጻሕፍቲ ባይዱ
由此得
FN2
F 4
,
FN3
F 2
2. 角位移计算
施加单位力偶如图 d 所示,并同样以刚性杆 BC 与 DG 为研究对象,则由平衡方程
11
M B 0, 1 F N2 2a F N3 3a 0
MG 0, F N2 2a F N3 a 0
M ( ) qR2 4 sin π
在图 d 所示水平单位载荷作用下,截面的弯矩则为
M () R(1cos)
于是,得截面 B 的水平位移为
ΔBx
1 EI
π/2
R(1
0
cos )qR2
4 π
sin
Rd
qR4 EI
π2 8
π 2
2 π
1
( )
14-5 图示桁架,各杆各截面的拉压刚度均为 EA,试求杆 BC 的轴力。
MG 0, F 3a FN1 3a FN2 2a FN3 a 0
得
FN2