,YB
9qa 16
X
A
qa 16
,
YA
7qa 16
目录
上面我们讲的是只有一个多余约束的情况! 那么当多余约束不止一个时,力法方程是什么样的呢?
P2
P2
P1
P1
P3
P3
X3
X1
X2
目录
变形协调条件 :
1 2 3 0
i 表示 X作i 用点沿着 方向X的i 位移
由叠加原理:
1 1X1 1X 2 1X3 1P 0 1 11 X 1 12 X 2 13 X 3 1P 0
C
B 11
对于线弹性结构,位移与力成正比,X1是单位力“1”的X1倍,故1X1
的X1倍,即有
1X1 11 X1
也是11
所以(*)式可变为: 11 X 1 1F 0
若:
11
l3 3EI
于是可求得
1F
Fa 2 6EI
(3l a)
X1
Fa 2 2l 3
(3l
a)
目录
例14.1:试求图示平面刚架的支座反力。已知各杆 EI=常数。
可得:
12 21 23 32 0
于是正则方程可化为
11 X 1 13 X 3 1F
31 X 1 33 X 3 3F
22 X 2 0
目录
对称结构在反对称载荷作用下的情况:
F P
F P
F
X3
X2
F
X1
X3 X2
P
P
同样用图乘法可证明
当对称结构上受反对称载荷作用时,
在对称面上对称内力等于零。
目录
例如:
该体系中多出一个外部约束,为一次超静定梁